int_x86.cc revision de99bba92b4beac4c347772177f47bdd61e8f376
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* This file contains codegen for the X86 ISA */
18
19#include "codegen_x86.h"
20#include "dex/quick/mir_to_lir-inl.h"
21#include "mirror/array.h"
22#include "x86_lir.h"
23
24namespace art {
25
26/*
27 * Perform register memory operation.
28 */
29LIR* X86Mir2Lir::GenRegMemCheck(ConditionCode c_code,
30                                int reg1, int base, int offset, ThrowKind kind) {
31  LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind,
32                    current_dalvik_offset_, reg1, base, offset);
33  OpRegMem(kOpCmp, reg1, base, offset);
34  LIR* branch = OpCondBranch(c_code, tgt);
35  // Remember branch target - will process later
36  throw_launchpads_.Insert(tgt);
37  return branch;
38}
39
40/*
41 * Perform a compare of memory to immediate value
42 */
43LIR* X86Mir2Lir::GenMemImmedCheck(ConditionCode c_code,
44                                int base, int offset, int check_value, ThrowKind kind) {
45  LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind,
46                    current_dalvik_offset_, base, check_value, 0);
47  NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base, offset, check_value);
48  LIR* branch = OpCondBranch(c_code, tgt);
49  // Remember branch target - will process later
50  throw_launchpads_.Insert(tgt);
51  return branch;
52}
53
54/*
55 * Compare two 64-bit values
56 *    x = y     return  0
57 *    x < y     return -1
58 *    x > y     return  1
59 */
60void X86Mir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1,
61                            RegLocation rl_src2) {
62  FlushAllRegs();
63  LockCallTemps();  // Prepare for explicit register usage
64  LoadValueDirectWideFixed(rl_src1, r0, r1);
65  LoadValueDirectWideFixed(rl_src2, r2, r3);
66  // Compute (r1:r0) = (r1:r0) - (r3:r2)
67  OpRegReg(kOpSub, r0, r2);  // r0 = r0 - r2
68  OpRegReg(kOpSbc, r1, r3);  // r1 = r1 - r3 - CF
69  NewLIR2(kX86Set8R, r2, kX86CondL);  // r2 = (r1:r0) < (r3:r2) ? 1 : 0
70  NewLIR2(kX86Movzx8RR, r2, r2);
71  OpReg(kOpNeg, r2);         // r2 = -r2
72  OpRegReg(kOpOr, r0, r1);   // r0 = high | low - sets ZF
73  NewLIR2(kX86Set8R, r0, kX86CondNz);  // r0 = (r1:r0) != (r3:r2) ? 1 : 0
74  NewLIR2(kX86Movzx8RR, r0, r0);
75  OpRegReg(kOpOr, r0, r2);   // r0 = r0 | r2
76  RegLocation rl_result = LocCReturn();
77  StoreValue(rl_dest, rl_result);
78}
79
80X86ConditionCode X86ConditionEncoding(ConditionCode cond) {
81  switch (cond) {
82    case kCondEq: return kX86CondEq;
83    case kCondNe: return kX86CondNe;
84    case kCondCs: return kX86CondC;
85    case kCondCc: return kX86CondNc;
86    case kCondUlt: return kX86CondC;
87    case kCondUge: return kX86CondNc;
88    case kCondMi: return kX86CondS;
89    case kCondPl: return kX86CondNs;
90    case kCondVs: return kX86CondO;
91    case kCondVc: return kX86CondNo;
92    case kCondHi: return kX86CondA;
93    case kCondLs: return kX86CondBe;
94    case kCondGe: return kX86CondGe;
95    case kCondLt: return kX86CondL;
96    case kCondGt: return kX86CondG;
97    case kCondLe: return kX86CondLe;
98    case kCondAl:
99    case kCondNv: LOG(FATAL) << "Should not reach here";
100  }
101  return kX86CondO;
102}
103
104LIR* X86Mir2Lir::OpCmpBranch(ConditionCode cond, int src1, int src2,
105                             LIR* target) {
106  NewLIR2(kX86Cmp32RR, src1, src2);
107  X86ConditionCode cc = X86ConditionEncoding(cond);
108  LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ ,
109                        cc);
110  branch->target = target;
111  return branch;
112}
113
114LIR* X86Mir2Lir::OpCmpImmBranch(ConditionCode cond, int reg,
115                                int check_value, LIR* target) {
116  if ((check_value == 0) && (cond == kCondEq || cond == kCondNe)) {
117    // TODO: when check_value == 0 and reg is rCX, use the jcxz/nz opcode
118    NewLIR2(kX86Test32RR, reg, reg);
119  } else {
120    NewLIR2(IS_SIMM8(check_value) ? kX86Cmp32RI8 : kX86Cmp32RI, reg, check_value);
121  }
122  X86ConditionCode cc = X86ConditionEncoding(cond);
123  LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ , cc);
124  branch->target = target;
125  return branch;
126}
127
128LIR* X86Mir2Lir::OpRegCopyNoInsert(int r_dest, int r_src) {
129  if (X86_FPREG(r_dest) || X86_FPREG(r_src))
130    return OpFpRegCopy(r_dest, r_src);
131  LIR* res = RawLIR(current_dalvik_offset_, kX86Mov32RR,
132                    r_dest, r_src);
133  if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
134    res->flags.is_nop = true;
135  }
136  return res;
137}
138
139LIR* X86Mir2Lir::OpRegCopy(int r_dest, int r_src) {
140  LIR *res = OpRegCopyNoInsert(r_dest, r_src);
141  AppendLIR(res);
142  return res;
143}
144
145void X86Mir2Lir::OpRegCopyWide(int dest_lo, int dest_hi,
146                               int src_lo, int src_hi) {
147  bool dest_fp = X86_FPREG(dest_lo) && X86_FPREG(dest_hi);
148  bool src_fp = X86_FPREG(src_lo) && X86_FPREG(src_hi);
149  assert(X86_FPREG(src_lo) == X86_FPREG(src_hi));
150  assert(X86_FPREG(dest_lo) == X86_FPREG(dest_hi));
151  if (dest_fp) {
152    if (src_fp) {
153      OpRegCopy(S2d(dest_lo, dest_hi), S2d(src_lo, src_hi));
154    } else {
155      // TODO: Prevent this from happening in the code. The result is often
156      // unused or could have been loaded more easily from memory.
157      NewLIR2(kX86MovdxrRR, dest_lo, src_lo);
158      dest_hi = AllocTempDouble();
159      NewLIR2(kX86MovdxrRR, dest_hi, src_hi);
160      NewLIR2(kX86PunpckldqRR, dest_lo, dest_hi);
161      FreeTemp(dest_hi);
162    }
163  } else {
164    if (src_fp) {
165      NewLIR2(kX86MovdrxRR, dest_lo, src_lo);
166      NewLIR2(kX86PsrlqRI, src_lo, 32);
167      NewLIR2(kX86MovdrxRR, dest_hi, src_lo);
168    } else {
169      // Handle overlap
170      if (src_hi == dest_lo) {
171        OpRegCopy(dest_hi, src_hi);
172        OpRegCopy(dest_lo, src_lo);
173      } else {
174        OpRegCopy(dest_lo, src_lo);
175        OpRegCopy(dest_hi, src_hi);
176      }
177    }
178  }
179}
180
181void X86Mir2Lir::GenSelect(BasicBlock* bb, MIR* mir) {
182  RegLocation rl_result;
183  RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
184  RegLocation rl_dest = mir_graph_->GetDest(mir);
185  rl_src = LoadValue(rl_src, kCoreReg);
186
187  // The kMirOpSelect has two variants, one for constants and one for moves.
188  const bool is_constant_case = (mir->ssa_rep->num_uses == 1);
189
190  if (is_constant_case) {
191    int true_val = mir->dalvikInsn.vB;
192    int false_val = mir->dalvikInsn.vC;
193    rl_result = EvalLoc(rl_dest, kCoreReg, true);
194
195    /*
196     * 1) When the true case is zero and result_reg is not same as src_reg:
197     *     xor result_reg, result_reg
198     *     cmp $0, src_reg
199     *     mov t1, $false_case
200     *     cmovnz result_reg, t1
201     * 2) When the false case is zero and result_reg is not same as src_reg:
202     *     xor result_reg, result_reg
203     *     cmp $0, src_reg
204     *     mov t1, $true_case
205     *     cmovz result_reg, t1
206     * 3) All other cases (we do compare first to set eflags):
207     *     cmp $0, src_reg
208     *     mov result_reg, $true_case
209     *     mov t1, $false_case
210     *     cmovnz result_reg, t1
211     */
212    const bool result_reg_same_as_src = (rl_src.location == kLocPhysReg && rl_src.low_reg == rl_result.low_reg);
213    const bool true_zero_case = (true_val == 0 && false_val != 0 && !result_reg_same_as_src);
214    const bool false_zero_case = (false_val == 0 && true_val != 0 && !result_reg_same_as_src);
215    const bool catch_all_case = !(true_zero_case || false_zero_case);
216
217    if (true_zero_case || false_zero_case) {
218      OpRegReg(kOpXor, rl_result.low_reg, rl_result.low_reg);
219    }
220
221    if (true_zero_case || false_zero_case || catch_all_case) {
222      OpRegImm(kOpCmp, rl_src.low_reg, 0);
223    }
224
225    if (catch_all_case) {
226      OpRegImm(kOpMov, rl_result.low_reg, true_val);
227    }
228
229    if (true_zero_case || false_zero_case || catch_all_case) {
230      int immediateForTemp = false_zero_case ? true_val : false_val;
231      int temp1_reg = AllocTemp();
232      OpRegImm(kOpMov, temp1_reg, immediateForTemp);
233
234      ConditionCode cc = false_zero_case ? kCondEq : kCondNe;
235      OpCondRegReg(kOpCmov, cc, rl_result.low_reg, temp1_reg);
236
237      FreeTemp(temp1_reg);
238    }
239  } else {
240    RegLocation rl_true = mir_graph_->GetSrc(mir, 1);
241    RegLocation rl_false = mir_graph_->GetSrc(mir, 2);
242    rl_true = LoadValue(rl_true, kCoreReg);
243    rl_false = LoadValue(rl_false, kCoreReg);
244    rl_result = EvalLoc(rl_dest, kCoreReg, true);
245
246    /*
247     * 1) When true case is already in place:
248     *     cmp $0, src_reg
249     *     cmovnz result_reg, false_reg
250     * 2) When false case is already in place:
251     *     cmp $0, src_reg
252     *     cmovz result_reg, true_reg
253     * 3) When neither cases are in place:
254     *     cmp $0, src_reg
255     *     mov result_reg, true_reg
256     *     cmovnz result_reg, false_reg
257     */
258
259    // kMirOpSelect is generated just for conditional cases when comparison is done with zero.
260    OpRegImm(kOpCmp, rl_src.low_reg, 0);
261
262    if (rl_result.low_reg == rl_true.low_reg) {
263      OpCondRegReg(kOpCmov, kCondNe, rl_result.low_reg, rl_false.low_reg);
264    } else if (rl_result.low_reg == rl_false.low_reg) {
265      OpCondRegReg(kOpCmov, kCondEq, rl_result.low_reg, rl_true.low_reg);
266    } else {
267      OpRegCopy(rl_result.low_reg, rl_true.low_reg);
268      OpCondRegReg(kOpCmov, kCondNe, rl_result.low_reg, rl_false.low_reg);
269    }
270  }
271
272  StoreValue(rl_dest, rl_result);
273}
274
275void X86Mir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) {
276  LIR* taken = &block_label_list_[bb->taken];
277  RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0);
278  RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2);
279  ConditionCode ccode = mir->meta.ccode;
280
281  if (rl_src1.is_const) {
282    std::swap(rl_src1, rl_src2);
283    ccode = FlipComparisonOrder(ccode);
284  }
285  if (rl_src2.is_const) {
286    // Do special compare/branch against simple const operand
287    int64_t val = mir_graph_->ConstantValueWide(rl_src2);
288    GenFusedLongCmpImmBranch(bb, rl_src1, val, ccode);
289    return;
290  }
291
292  FlushAllRegs();
293  LockCallTemps();  // Prepare for explicit register usage
294  LoadValueDirectWideFixed(rl_src1, r0, r1);
295  LoadValueDirectWideFixed(rl_src2, r2, r3);
296  // Swap operands and condition code to prevent use of zero flag.
297  if (ccode == kCondLe || ccode == kCondGt) {
298    // Compute (r3:r2) = (r3:r2) - (r1:r0)
299    OpRegReg(kOpSub, r2, r0);  // r2 = r2 - r0
300    OpRegReg(kOpSbc, r3, r1);  // r3 = r3 - r1 - CF
301  } else {
302    // Compute (r1:r0) = (r1:r0) - (r3:r2)
303    OpRegReg(kOpSub, r0, r2);  // r0 = r0 - r2
304    OpRegReg(kOpSbc, r1, r3);  // r1 = r1 - r3 - CF
305  }
306  switch (ccode) {
307    case kCondEq:
308    case kCondNe:
309      OpRegReg(kOpOr, r0, r1);  // r0 = r0 | r1
310      break;
311    case kCondLe:
312      ccode = kCondGe;
313      break;
314    case kCondGt:
315      ccode = kCondLt;
316      break;
317    case kCondLt:
318    case kCondGe:
319      break;
320    default:
321      LOG(FATAL) << "Unexpected ccode: " << ccode;
322  }
323  OpCondBranch(ccode, taken);
324}
325
326void X86Mir2Lir::GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
327                                          int64_t val, ConditionCode ccode) {
328  int32_t val_lo = Low32Bits(val);
329  int32_t val_hi = High32Bits(val);
330  LIR* taken = &block_label_list_[bb->taken];
331  LIR* not_taken = &block_label_list_[bb->fall_through];
332  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
333  int32_t low_reg = rl_src1.low_reg;
334  int32_t high_reg = rl_src1.high_reg;
335
336  if (val == 0 && (ccode == kCondEq || ccode == kCondNe)) {
337    int t_reg = AllocTemp();
338    OpRegRegReg(kOpOr, t_reg, low_reg, high_reg);
339    FreeTemp(t_reg);
340    OpCondBranch(ccode, taken);
341    return;
342  }
343
344  OpRegImm(kOpCmp, high_reg, val_hi);
345  switch (ccode) {
346    case kCondEq:
347    case kCondNe:
348      OpCondBranch(kCondNe, (ccode == kCondEq) ? not_taken : taken);
349      break;
350    case kCondLt:
351      OpCondBranch(kCondLt, taken);
352      OpCondBranch(kCondGt, not_taken);
353      ccode = kCondUlt;
354      break;
355    case kCondLe:
356      OpCondBranch(kCondLt, taken);
357      OpCondBranch(kCondGt, not_taken);
358      ccode = kCondLs;
359      break;
360    case kCondGt:
361      OpCondBranch(kCondGt, taken);
362      OpCondBranch(kCondLt, not_taken);
363      ccode = kCondHi;
364      break;
365    case kCondGe:
366      OpCondBranch(kCondGt, taken);
367      OpCondBranch(kCondLt, not_taken);
368      ccode = kCondUge;
369      break;
370    default:
371      LOG(FATAL) << "Unexpected ccode: " << ccode;
372  }
373  OpCmpImmBranch(ccode, low_reg, val_lo, taken);
374}
375
376void X86Mir2Lir::CalculateMagicAndShift(int divisor, int& magic, int& shift) {
377  // It does not make sense to calculate magic and shift for zero divisor.
378  DCHECK_NE(divisor, 0);
379
380  /* According to H.S.Warren's Hacker's Delight Chapter 10 and
381   * T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
382   * The magic number M and shift S can be calculated in the following way:
383   * Let nc be the most positive value of numerator(n) such that nc = kd - 1,
384   * where divisor(d) >=2.
385   * Let nc be the most negative value of numerator(n) such that nc = kd + 1,
386   * where divisor(d) <= -2.
387   * Thus nc can be calculated like:
388   * nc = 2^31 + 2^31 % d - 1, where d >= 2
389   * nc = -2^31 + (2^31 + 1) % d, where d >= 2.
390   *
391   * So the shift p is the smallest p satisfying
392   * 2^p > nc * (d - 2^p % d), where d >= 2
393   * 2^p > nc * (d + 2^p % d), where d <= -2.
394   *
395   * the magic number M is calcuated by
396   * M = (2^p + d - 2^p % d) / d, where d >= 2
397   * M = (2^p - d - 2^p % d) / d, where d <= -2.
398   *
399   * Notice that p is always bigger than or equal to 32, so we just return 32-p as
400   * the shift number S.
401   */
402
403  int32_t p = 31;
404  const uint32_t two31 = 0x80000000U;
405
406  // Initialize the computations.
407  uint32_t abs_d = (divisor >= 0) ? divisor : -divisor;
408  uint32_t tmp = two31 + (static_cast<uint32_t>(divisor) >> 31);
409  uint32_t abs_nc = tmp - 1 - tmp % abs_d;
410  uint32_t quotient1 = two31 / abs_nc;
411  uint32_t remainder1 = two31 % abs_nc;
412  uint32_t quotient2 = two31 / abs_d;
413  uint32_t remainder2 = two31 % abs_d;
414
415  /*
416   * To avoid handling both positive and negative divisor, Hacker's Delight
417   * introduces a method to handle these 2 cases together to avoid duplication.
418   */
419  uint32_t delta;
420  do {
421    p++;
422    quotient1 = 2 * quotient1;
423    remainder1 = 2 * remainder1;
424    if (remainder1 >= abs_nc) {
425      quotient1++;
426      remainder1 = remainder1 - abs_nc;
427    }
428    quotient2 = 2 * quotient2;
429    remainder2 = 2 * remainder2;
430    if (remainder2 >= abs_d) {
431      quotient2++;
432      remainder2 = remainder2 - abs_d;
433    }
434    delta = abs_d - remainder2;
435  } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0));
436
437  magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1);
438  shift = p - 32;
439}
440
441RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, int reg_lo,
442                                     int lit, bool is_div) {
443  LOG(FATAL) << "Unexpected use of GenDivRemLit for x86";
444  return rl_dest;
445}
446
447RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src,
448                                     int imm, bool is_div) {
449  // Use a multiply (and fixup) to perform an int div/rem by a constant.
450
451  // We have to use fixed registers, so flush all the temps.
452  FlushAllRegs();
453  LockCallTemps();  // Prepare for explicit register usage.
454
455  // Assume that the result will be in EDX.
456  RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
457                          r2, INVALID_REG, INVALID_SREG, INVALID_SREG};
458
459  // handle div/rem by 1 special case.
460  if (imm == 1) {
461    if (is_div) {
462      // x / 1 == x.
463      StoreValue(rl_result, rl_src);
464    } else {
465      // x % 1 == 0.
466      LoadConstantNoClobber(r0, 0);
467      // For this case, return the result in EAX.
468      rl_result.low_reg = r0;
469    }
470  } else if (imm == -1) {  // handle 0x80000000 / -1 special case.
471    if (is_div) {
472      LIR *minint_branch = 0;
473      LoadValueDirectFixed(rl_src, r0);
474      OpRegImm(kOpCmp, r0, 0x80000000);
475      minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondEq);
476
477      // for x != MIN_INT, x / -1 == -x.
478      NewLIR1(kX86Neg32R, r0);
479
480      LIR* branch_around = NewLIR1(kX86Jmp8, 0);
481      // The target for cmp/jmp above.
482      minint_branch->target = NewLIR0(kPseudoTargetLabel);
483      // EAX already contains the right value (0x80000000),
484      branch_around->target = NewLIR0(kPseudoTargetLabel);
485    } else {
486      // x % -1 == 0.
487      LoadConstantNoClobber(r0, 0);
488    }
489    // For this case, return the result in EAX.
490    rl_result.low_reg = r0;
491  } else {
492    CHECK(imm <= -2 || imm >= 2);
493    // Use H.S.Warren's Hacker's Delight Chapter 10 and
494    // T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
495    int magic, shift;
496    CalculateMagicAndShift(imm, magic, shift);
497
498    /*
499     * For imm >= 2,
500     *     int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n > 0
501     *     int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1, while n < 0.
502     * For imm <= -2,
503     *     int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1 , while n > 0
504     *     int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n < 0.
505     * We implement this algorithm in the following way:
506     * 1. multiply magic number m and numerator n, get the higher 32bit result in EDX
507     * 2. if imm > 0 and magic < 0, add numerator to EDX
508     *    if imm < 0 and magic > 0, sub numerator from EDX
509     * 3. if S !=0, SAR S bits for EDX
510     * 4. add 1 to EDX if EDX < 0
511     * 5. Thus, EDX is the quotient
512     */
513
514    // Numerator into EAX.
515    int numerator_reg = -1;
516    if (!is_div || (imm > 0 && magic < 0) || (imm < 0 && magic > 0)) {
517      // We will need the value later.
518      if (rl_src.location == kLocPhysReg) {
519        // We can use it directly.
520        DCHECK(rl_src.low_reg != r0 && rl_src.low_reg != r2);
521        numerator_reg = rl_src.low_reg;
522      } else {
523        LoadValueDirectFixed(rl_src, r1);
524        numerator_reg = r1;
525      }
526      OpRegCopy(r0, numerator_reg);
527    } else {
528      // Only need this once.  Just put it into EAX.
529      LoadValueDirectFixed(rl_src, r0);
530    }
531
532    // EDX = magic.
533    LoadConstantNoClobber(r2, magic);
534
535    // EDX:EAX = magic & dividend.
536    NewLIR1(kX86Imul32DaR, r2);
537
538    if (imm > 0 && magic < 0) {
539      // Add numerator to EDX.
540      DCHECK_NE(numerator_reg, -1);
541      NewLIR2(kX86Add32RR, r2, numerator_reg);
542    } else if (imm < 0 && magic > 0) {
543      DCHECK_NE(numerator_reg, -1);
544      NewLIR2(kX86Sub32RR, r2, numerator_reg);
545    }
546
547    // Do we need the shift?
548    if (shift != 0) {
549      // Shift EDX by 'shift' bits.
550      NewLIR2(kX86Sar32RI, r2, shift);
551    }
552
553    // Add 1 to EDX if EDX < 0.
554
555    // Move EDX to EAX.
556    OpRegCopy(r0, r2);
557
558    // Move sign bit to bit 0, zeroing the rest.
559    NewLIR2(kX86Shr32RI, r2, 31);
560
561    // EDX = EDX + EAX.
562    NewLIR2(kX86Add32RR, r2, r0);
563
564    // Quotient is in EDX.
565    if (!is_div) {
566      // We need to compute the remainder.
567      // Remainder is divisor - (quotient * imm).
568      DCHECK_NE(numerator_reg, -1);
569      OpRegCopy(r0, numerator_reg);
570
571      // EAX = numerator * imm.
572      OpRegRegImm(kOpMul, r2, r2, imm);
573
574      // EDX -= EAX.
575      NewLIR2(kX86Sub32RR, r0, r2);
576
577      // For this case, return the result in EAX.
578      rl_result.low_reg = r0;
579    }
580  }
581
582  return rl_result;
583}
584
585RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, int reg_lo,
586                                  int reg_hi, bool is_div) {
587  LOG(FATAL) << "Unexpected use of GenDivRem for x86";
588  return rl_dest;
589}
590
591RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
592                                  RegLocation rl_src2, bool is_div, bool check_zero) {
593  // We have to use fixed registers, so flush all the temps.
594  FlushAllRegs();
595  LockCallTemps();  // Prepare for explicit register usage.
596
597  // Load LHS into EAX.
598  LoadValueDirectFixed(rl_src1, r0);
599
600  // Load RHS into EBX.
601  LoadValueDirectFixed(rl_src2, r1);
602
603  // Copy LHS sign bit into EDX.
604  NewLIR0(kx86Cdq32Da);
605
606  if (check_zero) {
607    // Handle division by zero case.
608    GenImmedCheck(kCondEq, r1, 0, kThrowDivZero);
609  }
610
611  // Have to catch 0x80000000/-1 case, or we will get an exception!
612  OpRegImm(kOpCmp, r1, -1);
613  LIR *minus_one_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
614
615  // RHS is -1.
616  OpRegImm(kOpCmp, r0, 0x80000000);
617  LIR * minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
618
619  // In 0x80000000/-1 case.
620  if (!is_div) {
621    // For DIV, EAX is already right. For REM, we need EDX 0.
622    LoadConstantNoClobber(r2, 0);
623  }
624  LIR* done = NewLIR1(kX86Jmp8, 0);
625
626  // Expected case.
627  minus_one_branch->target = NewLIR0(kPseudoTargetLabel);
628  minint_branch->target = minus_one_branch->target;
629  NewLIR1(kX86Idivmod32DaR, r1);
630  done->target = NewLIR0(kPseudoTargetLabel);
631
632  // Result is in EAX for div and EDX for rem.
633  RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
634                          r0, INVALID_REG, INVALID_SREG, INVALID_SREG};
635  if (!is_div) {
636    rl_result.low_reg = r2;
637  }
638  return rl_result;
639}
640
641bool X86Mir2Lir::GenInlinedMinMaxInt(CallInfo* info, bool is_min) {
642  DCHECK_EQ(cu_->instruction_set, kX86);
643
644  // Get the two arguments to the invoke and place them in GP registers.
645  RegLocation rl_src1 = info->args[0];
646  RegLocation rl_src2 = info->args[1];
647  rl_src1 = LoadValue(rl_src1, kCoreReg);
648  rl_src2 = LoadValue(rl_src2, kCoreReg);
649
650  RegLocation rl_dest = InlineTarget(info);
651  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
652
653  /*
654   * If the result register is the same as the second element, then we need to be careful.
655   * The reason is that the first copy will inadvertently clobber the second element with
656   * the first one thus yielding the wrong result. Thus we do a swap in that case.
657   */
658  if (rl_result.low_reg == rl_src2.low_reg) {
659    std::swap(rl_src1, rl_src2);
660  }
661
662  // Pick the first integer as min/max.
663  OpRegCopy(rl_result.low_reg, rl_src1.low_reg);
664
665  // If the integers are both in the same register, then there is nothing else to do
666  // because they are equal and we have already moved one into the result.
667  if (rl_src1.low_reg != rl_src2.low_reg) {
668    // It is possible we didn't pick correctly so do the actual comparison now.
669    OpRegReg(kOpCmp, rl_src1.low_reg, rl_src2.low_reg);
670
671    // Conditionally move the other integer into the destination register.
672    ConditionCode condition_code = is_min ? kCondGt : kCondLt;
673    OpCondRegReg(kOpCmov, condition_code, rl_result.low_reg, rl_src2.low_reg);
674  }
675
676  StoreValue(rl_dest, rl_result);
677  return true;
678}
679
680bool X86Mir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) {
681  RegLocation rl_src_address = info->args[0];  // long address
682  rl_src_address.wide = 0;  // ignore high half in info->args[1]
683  RegLocation rl_dest = size == kLong ? InlineTargetWide(info) : InlineTarget(info);
684  RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
685  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
686  if (size == kLong) {
687    // Unaligned access is allowed on x86.
688    LoadBaseDispWide(rl_address.low_reg, 0, rl_result.low_reg, rl_result.high_reg, INVALID_SREG);
689    StoreValueWide(rl_dest, rl_result);
690  } else {
691    DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord);
692    // Unaligned access is allowed on x86.
693    LoadBaseDisp(rl_address.low_reg, 0, rl_result.low_reg, size, INVALID_SREG);
694    StoreValue(rl_dest, rl_result);
695  }
696  return true;
697}
698
699bool X86Mir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) {
700  RegLocation rl_src_address = info->args[0];  // long address
701  rl_src_address.wide = 0;  // ignore high half in info->args[1]
702  RegLocation rl_src_value = info->args[2];  // [size] value
703  RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
704  if (size == kLong) {
705    // Unaligned access is allowed on x86.
706    RegLocation rl_value = LoadValueWide(rl_src_value, kCoreReg);
707    StoreBaseDispWide(rl_address.low_reg, 0, rl_value.low_reg, rl_value.high_reg);
708  } else {
709    DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord);
710    // Unaligned access is allowed on x86.
711    RegLocation rl_value = LoadValue(rl_src_value, kCoreReg);
712    StoreBaseDisp(rl_address.low_reg, 0, rl_value.low_reg, size);
713  }
714  return true;
715}
716
717void X86Mir2Lir::OpLea(int rBase, int reg1, int reg2, int scale, int offset) {
718  NewLIR5(kX86Lea32RA, rBase, reg1, reg2, scale, offset);
719}
720
721void X86Mir2Lir::OpTlsCmp(ThreadOffset offset, int val) {
722  NewLIR2(kX86Cmp16TI8, offset.Int32Value(), val);
723}
724
725bool X86Mir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) {
726  DCHECK_EQ(cu_->instruction_set, kX86);
727  // Unused - RegLocation rl_src_unsafe = info->args[0];
728  RegLocation rl_src_obj = info->args[1];  // Object - known non-null
729  RegLocation rl_src_offset = info->args[2];  // long low
730  rl_src_offset.wide = 0;  // ignore high half in info->args[3]
731  RegLocation rl_src_expected = info->args[4];  // int, long or Object
732  // If is_long, high half is in info->args[5]
733  RegLocation rl_src_new_value = info->args[is_long ? 6 : 5];  // int, long or Object
734  // If is_long, high half is in info->args[7]
735
736  if (is_long) {
737    FlushAllRegs();
738    LockCallTemps();
739    LoadValueDirectWideFixed(rl_src_expected, rAX, rDX);
740    LoadValueDirectWideFixed(rl_src_new_value, rBX, rCX);
741    NewLIR1(kX86Push32R, rDI);
742    MarkTemp(rDI);
743    LockTemp(rDI);
744    NewLIR1(kX86Push32R, rSI);
745    MarkTemp(rSI);
746    LockTemp(rSI);
747    const int push_offset = 4 /* push edi */ + 4 /* push esi */;
748    LoadWordDisp(TargetReg(kSp), SRegOffset(rl_src_obj.s_reg_low) + push_offset, rDI);
749    LoadWordDisp(TargetReg(kSp), SRegOffset(rl_src_offset.s_reg_low) + push_offset, rSI);
750    NewLIR4(kX86LockCmpxchg8bA, rDI, rSI, 0, 0);
751    FreeTemp(rSI);
752    UnmarkTemp(rSI);
753    NewLIR1(kX86Pop32R, rSI);
754    FreeTemp(rDI);
755    UnmarkTemp(rDI);
756    NewLIR1(kX86Pop32R, rDI);
757    FreeCallTemps();
758  } else {
759    // EAX must hold expected for CMPXCHG. Neither rl_new_value, nor r_ptr may be in EAX.
760    FlushReg(r0);
761    LockTemp(r0);
762
763    // Release store semantics, get the barrier out of the way.  TODO: revisit
764    GenMemBarrier(kStoreLoad);
765
766    RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg);
767    RegLocation rl_new_value = LoadValue(rl_src_new_value, kCoreReg);
768
769    if (is_object && !mir_graph_->IsConstantNullRef(rl_new_value)) {
770      // Mark card for object assuming new value is stored.
771      FreeTemp(r0);  // Temporarily release EAX for MarkGCCard().
772      MarkGCCard(rl_new_value.low_reg, rl_object.low_reg);
773      LockTemp(r0);
774    }
775
776    RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
777    LoadValueDirect(rl_src_expected, r0);
778    NewLIR5(kX86LockCmpxchgAR, rl_object.low_reg, rl_offset.low_reg, 0, 0, rl_new_value.low_reg);
779
780    FreeTemp(r0);
781  }
782
783  // Convert ZF to boolean
784  RegLocation rl_dest = InlineTarget(info);  // boolean place for result
785  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
786  NewLIR2(kX86Set8R, rl_result.low_reg, kX86CondZ);
787  NewLIR2(kX86Movzx8RR, rl_result.low_reg, rl_result.low_reg);
788  StoreValue(rl_dest, rl_result);
789  return true;
790}
791
792LIR* X86Mir2Lir::OpPcRelLoad(int reg, LIR* target) {
793  CHECK(base_of_code_ != nullptr);
794
795  // Address the start of the method
796  RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
797  LoadValueDirectFixed(rl_method, reg);
798  store_method_addr_used_ = true;
799
800  // Load the proper value from the literal area.
801  // We don't know the proper offset for the value, so pick one that will force
802  // 4 byte offset.  We will fix this up in the assembler later to have the right
803  // value.
804  LIR *res = RawLIR(current_dalvik_offset_, kX86Mov32RM, reg, reg, 256, 0, 0, target);
805  res->target = target;
806  res->flags.fixup = kFixupLoad;
807  SetMemRefType(res, true, kLiteral);
808  store_method_addr_used_ = true;
809  return res;
810}
811
812LIR* X86Mir2Lir::OpVldm(int rBase, int count) {
813  LOG(FATAL) << "Unexpected use of OpVldm for x86";
814  return NULL;
815}
816
817LIR* X86Mir2Lir::OpVstm(int rBase, int count) {
818  LOG(FATAL) << "Unexpected use of OpVstm for x86";
819  return NULL;
820}
821
822void X86Mir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src,
823                                               RegLocation rl_result, int lit,
824                                               int first_bit, int second_bit) {
825  int t_reg = AllocTemp();
826  OpRegRegImm(kOpLsl, t_reg, rl_src.low_reg, second_bit - first_bit);
827  OpRegRegReg(kOpAdd, rl_result.low_reg, rl_src.low_reg, t_reg);
828  FreeTemp(t_reg);
829  if (first_bit != 0) {
830    OpRegRegImm(kOpLsl, rl_result.low_reg, rl_result.low_reg, first_bit);
831  }
832}
833
834void X86Mir2Lir::GenDivZeroCheck(int reg_lo, int reg_hi) {
835  // We are not supposed to clobber either of the provided registers, so allocate
836  // a temporary to use for the check.
837  int t_reg = AllocTemp();
838
839  // Doing an OR is a quick way to check if both registers are zero. This will set the flags.
840  OpRegRegReg(kOpOr, t_reg, reg_lo, reg_hi);
841
842  // In case of zero, throw ArithmeticException.
843  GenCheck(kCondEq, kThrowDivZero);
844
845  // The temp is no longer needed so free it at this time.
846  FreeTemp(t_reg);
847}
848
849// Test suspend flag, return target of taken suspend branch
850LIR* X86Mir2Lir::OpTestSuspend(LIR* target) {
851  OpTlsCmp(Thread::ThreadFlagsOffset(), 0);
852  return OpCondBranch((target == NULL) ? kCondNe : kCondEq, target);
853}
854
855// Decrement register and branch on condition
856LIR* X86Mir2Lir::OpDecAndBranch(ConditionCode c_code, int reg, LIR* target) {
857  OpRegImm(kOpSub, reg, 1);
858  return OpCondBranch(c_code, target);
859}
860
861bool X86Mir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
862                                    RegLocation rl_src, RegLocation rl_dest, int lit) {
863  LOG(FATAL) << "Unexpected use of smallLiteralDive in x86";
864  return false;
865}
866
867LIR* X86Mir2Lir::OpIT(ConditionCode cond, const char* guide) {
868  LOG(FATAL) << "Unexpected use of OpIT in x86";
869  return NULL;
870}
871
872void X86Mir2Lir::GenImulRegImm(int dest, int src, int val) {
873  switch (val) {
874    case 0:
875      NewLIR2(kX86Xor32RR, dest, dest);
876      break;
877    case 1:
878      OpRegCopy(dest, src);
879      break;
880    default:
881      OpRegRegImm(kOpMul, dest, src, val);
882      break;
883  }
884}
885
886void X86Mir2Lir::GenImulMemImm(int dest, int sreg, int displacement, int val) {
887  LIR *m;
888  switch (val) {
889    case 0:
890      NewLIR2(kX86Xor32RR, dest, dest);
891      break;
892    case 1:
893      LoadBaseDisp(rX86_SP, displacement, dest, kWord, sreg);
894      break;
895    default:
896      m = NewLIR4(IS_SIMM8(val) ? kX86Imul32RMI8 : kX86Imul32RMI, dest, rX86_SP,
897                  displacement, val);
898      AnnotateDalvikRegAccess(m, displacement >> 2, true /* is_load */, true /* is_64bit */);
899      break;
900  }
901}
902
903void X86Mir2Lir::GenMulLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
904                            RegLocation rl_src2) {
905  if (rl_src1.is_const) {
906    std::swap(rl_src1, rl_src2);
907  }
908  // Are we multiplying by a constant?
909  if (rl_src2.is_const) {
910    // Do special compare/branch against simple const operand
911    int64_t val = mir_graph_->ConstantValueWide(rl_src2);
912    if (val == 0) {
913      RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
914      OpRegReg(kOpXor, rl_result.low_reg, rl_result.low_reg);
915      OpRegReg(kOpXor, rl_result.high_reg, rl_result.high_reg);
916      StoreValueWide(rl_dest, rl_result);
917      return;
918    } else if (val == 1) {
919      rl_src1 = EvalLocWide(rl_src1, kCoreReg, true);
920      StoreValueWide(rl_dest, rl_src1);
921      return;
922    } else if (val == 2) {
923      GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src1, rl_src1);
924      return;
925    } else if (IsPowerOfTwo(val)) {
926      int shift_amount = LowestSetBit(val);
927      if (!BadOverlap(rl_src1, rl_dest)) {
928        rl_src1 = LoadValueWide(rl_src1, kCoreReg);
929        RegLocation rl_result = GenShiftImmOpLong(Instruction::SHL_LONG, rl_dest,
930                                                  rl_src1, shift_amount);
931        StoreValueWide(rl_dest, rl_result);
932        return;
933      }
934    }
935
936    // Okay, just bite the bullet and do it.
937    int32_t val_lo = Low32Bits(val);
938    int32_t val_hi = High32Bits(val);
939    FlushAllRegs();
940    LockCallTemps();  // Prepare for explicit register usage.
941    rl_src1 = UpdateLocWide(rl_src1);
942    bool src1_in_reg = rl_src1.location == kLocPhysReg;
943    int displacement = SRegOffset(rl_src1.s_reg_low);
944
945    // ECX <- 1H * 2L
946    // EAX <- 1L * 2H
947    if (src1_in_reg) {
948      GenImulRegImm(r1, rl_src1.high_reg, val_lo);
949      GenImulRegImm(r0, rl_src1.low_reg, val_hi);
950    } else {
951      GenImulMemImm(r1, GetSRegHi(rl_src1.s_reg_low), displacement + HIWORD_OFFSET, val_lo);
952      GenImulMemImm(r0, rl_src1.s_reg_low, displacement + LOWORD_OFFSET, val_hi);
953    }
954
955    // ECX <- ECX + EAX  (2H * 1L) + (1H * 2L)
956    NewLIR2(kX86Add32RR, r1, r0);
957
958    // EAX <- 2L
959    LoadConstantNoClobber(r0, val_lo);
960
961    // EDX:EAX <- 2L * 1L (double precision)
962    if (src1_in_reg) {
963      NewLIR1(kX86Mul32DaR, rl_src1.low_reg);
964    } else {
965      LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET);
966      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
967                              true /* is_load */, true /* is_64bit */);
968    }
969
970    // EDX <- EDX + ECX (add high words)
971    NewLIR2(kX86Add32RR, r2, r1);
972
973    // Result is EDX:EAX
974    RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed, r0, r2,
975                             INVALID_SREG, INVALID_SREG};
976    StoreValueWide(rl_dest, rl_result);
977    return;
978  }
979
980  // Nope.  Do it the hard way
981  // Check for V*V.  We can eliminate a multiply in that case, as 2L*1H == 2H*1L.
982  bool is_square = mir_graph_->SRegToVReg(rl_src1.s_reg_low) ==
983                   mir_graph_->SRegToVReg(rl_src2.s_reg_low);
984
985  FlushAllRegs();
986  LockCallTemps();  // Prepare for explicit register usage.
987  rl_src1 = UpdateLocWide(rl_src1);
988  rl_src2 = UpdateLocWide(rl_src2);
989
990  // At this point, the VRs are in their home locations.
991  bool src1_in_reg = rl_src1.location == kLocPhysReg;
992  bool src2_in_reg = rl_src2.location == kLocPhysReg;
993
994  // ECX <- 1H
995  if (src1_in_reg) {
996    NewLIR2(kX86Mov32RR, r1, rl_src1.high_reg);
997  } else {
998    LoadBaseDisp(rX86_SP, SRegOffset(rl_src1.s_reg_low) + HIWORD_OFFSET, r1,
999                 kWord, GetSRegHi(rl_src1.s_reg_low));
1000  }
1001
1002  if (is_square) {
1003    // Take advantage of the fact that the values are the same.
1004    // ECX <- ECX * 2L  (1H * 2L)
1005    if (src2_in_reg) {
1006      NewLIR2(kX86Imul32RR, r1, rl_src2.low_reg);
1007    } else {
1008      int displacement = SRegOffset(rl_src2.s_reg_low);
1009      LIR *m = NewLIR3(kX86Imul32RM, r1, rX86_SP, displacement + LOWORD_OFFSET);
1010      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1011                              true /* is_load */, true /* is_64bit */);
1012    }
1013
1014    // ECX <- 2*ECX (2H * 1L) + (1H * 2L)
1015    NewLIR2(kX86Add32RR, r1, r1);
1016  } else {
1017    // EAX <- 2H
1018    if (src2_in_reg) {
1019      NewLIR2(kX86Mov32RR, r0, rl_src2.high_reg);
1020    } else {
1021      LoadBaseDisp(rX86_SP, SRegOffset(rl_src2.s_reg_low) + HIWORD_OFFSET, r0,
1022                   kWord, GetSRegHi(rl_src2.s_reg_low));
1023    }
1024
1025    // EAX <- EAX * 1L  (2H * 1L)
1026    if (src1_in_reg) {
1027      NewLIR2(kX86Imul32RR, r0, rl_src1.low_reg);
1028    } else {
1029      int displacement = SRegOffset(rl_src1.s_reg_low);
1030      LIR *m = NewLIR3(kX86Imul32RM, r0, rX86_SP, displacement + LOWORD_OFFSET);
1031      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1032                              true /* is_load */, true /* is_64bit */);
1033    }
1034
1035    // ECX <- ECX * 2L  (1H * 2L)
1036    if (src2_in_reg) {
1037      NewLIR2(kX86Imul32RR, r1, rl_src2.low_reg);
1038    } else {
1039      int displacement = SRegOffset(rl_src2.s_reg_low);
1040      LIR *m = NewLIR3(kX86Imul32RM, r1, rX86_SP, displacement + LOWORD_OFFSET);
1041      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1042                              true /* is_load */, true /* is_64bit */);
1043    }
1044
1045    // ECX <- ECX + EAX  (2H * 1L) + (1H * 2L)
1046    NewLIR2(kX86Add32RR, r1, r0);
1047  }
1048
1049  // EAX <- 2L
1050  if (src2_in_reg) {
1051    NewLIR2(kX86Mov32RR, r0, rl_src2.low_reg);
1052  } else {
1053    LoadBaseDisp(rX86_SP, SRegOffset(rl_src2.s_reg_low) + LOWORD_OFFSET, r0,
1054                 kWord, rl_src2.s_reg_low);
1055  }
1056
1057  // EDX:EAX <- 2L * 1L (double precision)
1058  if (src1_in_reg) {
1059    NewLIR1(kX86Mul32DaR, rl_src1.low_reg);
1060  } else {
1061    int displacement = SRegOffset(rl_src1.s_reg_low);
1062    LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET);
1063    AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1064                            true /* is_load */, true /* is_64bit */);
1065  }
1066
1067  // EDX <- EDX + ECX (add high words)
1068  NewLIR2(kX86Add32RR, r2, r1);
1069
1070  // Result is EDX:EAX
1071  RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed, r0, r2,
1072                           INVALID_SREG, INVALID_SREG};
1073  StoreValueWide(rl_dest, rl_result);
1074}
1075
1076void X86Mir2Lir::GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src,
1077                                   Instruction::Code op) {
1078  DCHECK_EQ(rl_dest.location, kLocPhysReg);
1079  X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1080  if (rl_src.location == kLocPhysReg) {
1081    // Both operands are in registers.
1082    if (rl_dest.low_reg == rl_src.high_reg) {
1083      // The registers are the same, so we would clobber it before the use.
1084      int temp_reg = AllocTemp();
1085      OpRegCopy(temp_reg, rl_dest.low_reg);
1086      rl_src.high_reg = temp_reg;
1087    }
1088    NewLIR2(x86op, rl_dest.low_reg, rl_src.low_reg);
1089
1090    x86op = GetOpcode(op, rl_dest, rl_src, true);
1091    NewLIR2(x86op, rl_dest.high_reg, rl_src.high_reg);
1092    FreeTemp(rl_src.low_reg);
1093    FreeTemp(rl_src.high_reg);
1094    return;
1095  }
1096
1097  // RHS is in memory.
1098  DCHECK((rl_src.location == kLocDalvikFrame) ||
1099         (rl_src.location == kLocCompilerTemp));
1100  int rBase = TargetReg(kSp);
1101  int displacement = SRegOffset(rl_src.s_reg_low);
1102
1103  LIR *lir = NewLIR3(x86op, rl_dest.low_reg, rBase, displacement + LOWORD_OFFSET);
1104  AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1105                          true /* is_load */, true /* is64bit */);
1106  x86op = GetOpcode(op, rl_dest, rl_src, true);
1107  lir = NewLIR3(x86op, rl_dest.high_reg, rBase, displacement + HIWORD_OFFSET);
1108  AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1109                          true /* is_load */, true /* is64bit */);
1110}
1111
1112void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1113  rl_dest = UpdateLocWide(rl_dest);
1114  if (rl_dest.location == kLocPhysReg) {
1115    // Ensure we are in a register pair
1116    RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1117
1118    rl_src = UpdateLocWide(rl_src);
1119    GenLongRegOrMemOp(rl_result, rl_src, op);
1120    StoreFinalValueWide(rl_dest, rl_result);
1121    return;
1122  }
1123
1124  // It wasn't in registers, so it better be in memory.
1125  DCHECK((rl_dest.location == kLocDalvikFrame) ||
1126         (rl_dest.location == kLocCompilerTemp));
1127  rl_src = LoadValueWide(rl_src, kCoreReg);
1128
1129  // Operate directly into memory.
1130  X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1131  int rBase = TargetReg(kSp);
1132  int displacement = SRegOffset(rl_dest.s_reg_low);
1133
1134  LIR *lir = NewLIR3(x86op, rBase, displacement + LOWORD_OFFSET, rl_src.low_reg);
1135  AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1136                          false /* is_load */, true /* is64bit */);
1137  x86op = GetOpcode(op, rl_dest, rl_src, true);
1138  lir = NewLIR3(x86op, rBase, displacement + HIWORD_OFFSET, rl_src.high_reg);
1139  AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1140                          false /* is_load */, true /* is64bit */);
1141  FreeTemp(rl_src.low_reg);
1142  FreeTemp(rl_src.high_reg);
1143}
1144
1145void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src1,
1146                              RegLocation rl_src2, Instruction::Code op,
1147                              bool is_commutative) {
1148  // Is this really a 2 operand operation?
1149  switch (op) {
1150    case Instruction::ADD_LONG_2ADDR:
1151    case Instruction::SUB_LONG_2ADDR:
1152    case Instruction::AND_LONG_2ADDR:
1153    case Instruction::OR_LONG_2ADDR:
1154    case Instruction::XOR_LONG_2ADDR:
1155      GenLongArith(rl_dest, rl_src2, op);
1156      return;
1157    default:
1158      break;
1159  }
1160
1161  if (rl_dest.location == kLocPhysReg) {
1162    RegLocation rl_result = LoadValueWide(rl_src1, kCoreReg);
1163
1164    // We are about to clobber the LHS, so it needs to be a temp.
1165    rl_result = ForceTempWide(rl_result);
1166
1167    // Perform the operation using the RHS.
1168    rl_src2 = UpdateLocWide(rl_src2);
1169    GenLongRegOrMemOp(rl_result, rl_src2, op);
1170
1171    // And now record that the result is in the temp.
1172    StoreFinalValueWide(rl_dest, rl_result);
1173    return;
1174  }
1175
1176  // It wasn't in registers, so it better be in memory.
1177  DCHECK((rl_dest.location == kLocDalvikFrame) ||
1178         (rl_dest.location == kLocCompilerTemp));
1179  rl_src1 = UpdateLocWide(rl_src1);
1180  rl_src2 = UpdateLocWide(rl_src2);
1181
1182  // Get one of the source operands into temporary register.
1183  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1184  if (IsTemp(rl_src1.low_reg) && IsTemp(rl_src1.high_reg)) {
1185    GenLongRegOrMemOp(rl_src1, rl_src2, op);
1186  } else if (is_commutative) {
1187    rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1188    // We need at least one of them to be a temporary.
1189    if (!(IsTemp(rl_src2.low_reg) && IsTemp(rl_src2.high_reg))) {
1190      rl_src1 = ForceTempWide(rl_src1);
1191    }
1192    GenLongRegOrMemOp(rl_src1, rl_src2, op);
1193  } else {
1194    // Need LHS to be the temp.
1195    rl_src1 = ForceTempWide(rl_src1);
1196    GenLongRegOrMemOp(rl_src1, rl_src2, op);
1197  }
1198
1199  StoreFinalValueWide(rl_dest, rl_src1);
1200}
1201
1202void X86Mir2Lir::GenAddLong(Instruction::Code opcode, RegLocation rl_dest,
1203                            RegLocation rl_src1, RegLocation rl_src2) {
1204  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1205}
1206
1207void X86Mir2Lir::GenSubLong(Instruction::Code opcode, RegLocation rl_dest,
1208                            RegLocation rl_src1, RegLocation rl_src2) {
1209  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, false);
1210}
1211
1212void X86Mir2Lir::GenAndLong(Instruction::Code opcode, RegLocation rl_dest,
1213                            RegLocation rl_src1, RegLocation rl_src2) {
1214  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1215}
1216
1217void X86Mir2Lir::GenOrLong(Instruction::Code opcode, RegLocation rl_dest,
1218                           RegLocation rl_src1, RegLocation rl_src2) {
1219  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1220}
1221
1222void X86Mir2Lir::GenXorLong(Instruction::Code opcode, RegLocation rl_dest,
1223                            RegLocation rl_src1, RegLocation rl_src2) {
1224  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1225}
1226
1227void X86Mir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) {
1228  rl_src = LoadValueWide(rl_src, kCoreReg);
1229  RegLocation rl_result = ForceTempWide(rl_src);
1230  if (rl_dest.low_reg == rl_src.high_reg) {
1231    // The registers are the same, so we would clobber it before the use.
1232    int temp_reg = AllocTemp();
1233    OpRegCopy(temp_reg, rl_result.low_reg);
1234    rl_result.high_reg = temp_reg;
1235  }
1236  OpRegReg(kOpNeg, rl_result.low_reg, rl_result.low_reg);    // rLow = -rLow
1237  OpRegImm(kOpAdc, rl_result.high_reg, 0);                   // rHigh = rHigh + CF
1238  OpRegReg(kOpNeg, rl_result.high_reg, rl_result.high_reg);  // rHigh = -rHigh
1239  StoreValueWide(rl_dest, rl_result);
1240}
1241
1242void X86Mir2Lir::OpRegThreadMem(OpKind op, int r_dest, ThreadOffset thread_offset) {
1243  X86OpCode opcode = kX86Bkpt;
1244  switch (op) {
1245  case kOpCmp: opcode = kX86Cmp32RT;  break;
1246  case kOpMov: opcode = kX86Mov32RT;  break;
1247  default:
1248    LOG(FATAL) << "Bad opcode: " << op;
1249    break;
1250  }
1251  NewLIR2(opcode, r_dest, thread_offset.Int32Value());
1252}
1253
1254/*
1255 * Generate array load
1256 */
1257void X86Mir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
1258                             RegLocation rl_index, RegLocation rl_dest, int scale) {
1259  RegisterClass reg_class = oat_reg_class_by_size(size);
1260  int len_offset = mirror::Array::LengthOffset().Int32Value();
1261  RegLocation rl_result;
1262  rl_array = LoadValue(rl_array, kCoreReg);
1263
1264  int data_offset;
1265  if (size == kLong || size == kDouble) {
1266    data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1267  } else {
1268    data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1269  }
1270
1271  bool constant_index = rl_index.is_const;
1272  int32_t constant_index_value = 0;
1273  if (!constant_index) {
1274    rl_index = LoadValue(rl_index, kCoreReg);
1275  } else {
1276    constant_index_value = mir_graph_->ConstantValue(rl_index);
1277    // If index is constant, just fold it into the data offset
1278    data_offset += constant_index_value << scale;
1279    // treat as non array below
1280    rl_index.low_reg = INVALID_REG;
1281  }
1282
1283  /* null object? */
1284  GenNullCheck(rl_array.s_reg_low, rl_array.low_reg, opt_flags);
1285
1286  if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
1287    if (constant_index) {
1288      GenMemImmedCheck(kCondLs, rl_array.low_reg, len_offset,
1289                       constant_index_value, kThrowConstantArrayBounds);
1290    } else {
1291      GenRegMemCheck(kCondUge, rl_index.low_reg, rl_array.low_reg,
1292                     len_offset, kThrowArrayBounds);
1293    }
1294  }
1295  rl_result = EvalLoc(rl_dest, reg_class, true);
1296  if ((size == kLong) || (size == kDouble)) {
1297    LoadBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, rl_result.low_reg,
1298                        rl_result.high_reg, size, INVALID_SREG);
1299    StoreValueWide(rl_dest, rl_result);
1300  } else {
1301    LoadBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale,
1302                        data_offset, rl_result.low_reg, INVALID_REG, size,
1303                        INVALID_SREG);
1304    StoreValue(rl_dest, rl_result);
1305  }
1306}
1307
1308/*
1309 * Generate array store
1310 *
1311 */
1312void X86Mir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
1313                             RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) {
1314  RegisterClass reg_class = oat_reg_class_by_size(size);
1315  int len_offset = mirror::Array::LengthOffset().Int32Value();
1316  int data_offset;
1317
1318  if (size == kLong || size == kDouble) {
1319    data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1320  } else {
1321    data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1322  }
1323
1324  rl_array = LoadValue(rl_array, kCoreReg);
1325  bool constant_index = rl_index.is_const;
1326  int32_t constant_index_value = 0;
1327  if (!constant_index) {
1328    rl_index = LoadValue(rl_index, kCoreReg);
1329  } else {
1330    // If index is constant, just fold it into the data offset
1331    constant_index_value = mir_graph_->ConstantValue(rl_index);
1332    data_offset += constant_index_value << scale;
1333    // treat as non array below
1334    rl_index.low_reg = INVALID_REG;
1335  }
1336
1337  /* null object? */
1338  GenNullCheck(rl_array.s_reg_low, rl_array.low_reg, opt_flags);
1339
1340  if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
1341    if (constant_index) {
1342      GenMemImmedCheck(kCondLs, rl_array.low_reg, len_offset,
1343                       constant_index_value, kThrowConstantArrayBounds);
1344    } else {
1345      GenRegMemCheck(kCondUge, rl_index.low_reg, rl_array.low_reg,
1346                     len_offset, kThrowArrayBounds);
1347    }
1348  }
1349  if ((size == kLong) || (size == kDouble)) {
1350    rl_src = LoadValueWide(rl_src, reg_class);
1351  } else {
1352    rl_src = LoadValue(rl_src, reg_class);
1353  }
1354  // If the src reg can't be byte accessed, move it to a temp first.
1355  if ((size == kSignedByte || size == kUnsignedByte) && rl_src.low_reg >= 4) {
1356    int temp = AllocTemp();
1357    OpRegCopy(temp, rl_src.low_reg);
1358    StoreBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, temp,
1359                         INVALID_REG, size, INVALID_SREG);
1360  } else {
1361    StoreBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, rl_src.low_reg,
1362                         rl_src.high_reg, size, INVALID_SREG);
1363  }
1364  if (card_mark) {
1365    // Free rl_index if its a temp. Ensures there are 2 free regs for card mark.
1366    if (!constant_index) {
1367      FreeTemp(rl_index.low_reg);
1368    }
1369    MarkGCCard(rl_src.low_reg, rl_array.low_reg);
1370  }
1371}
1372
1373RegLocation X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1374                                          RegLocation rl_src, int shift_amount) {
1375  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1376  switch (opcode) {
1377    case Instruction::SHL_LONG:
1378    case Instruction::SHL_LONG_2ADDR:
1379      DCHECK_NE(shift_amount, 1);  // Prevent a double store from happening.
1380      if (shift_amount == 32) {
1381        OpRegCopy(rl_result.high_reg, rl_src.low_reg);
1382        LoadConstant(rl_result.low_reg, 0);
1383      } else if (shift_amount > 31) {
1384        OpRegCopy(rl_result.high_reg, rl_src.low_reg);
1385        FreeTemp(rl_src.high_reg);
1386        NewLIR2(kX86Sal32RI, rl_result.high_reg, shift_amount - 32);
1387        LoadConstant(rl_result.low_reg, 0);
1388      } else {
1389        OpRegCopy(rl_result.low_reg, rl_src.low_reg);
1390        OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1391        NewLIR3(kX86Shld32RRI, rl_result.high_reg, rl_result.low_reg, shift_amount);
1392        NewLIR2(kX86Sal32RI, rl_result.low_reg, shift_amount);
1393      }
1394      break;
1395    case Instruction::SHR_LONG:
1396    case Instruction::SHR_LONG_2ADDR:
1397      if (shift_amount == 32) {
1398        OpRegCopy(rl_result.low_reg, rl_src.high_reg);
1399        OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1400        NewLIR2(kX86Sar32RI, rl_result.high_reg, 31);
1401      } else if (shift_amount > 31) {
1402        OpRegCopy(rl_result.low_reg, rl_src.high_reg);
1403        OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1404        NewLIR2(kX86Sar32RI, rl_result.low_reg, shift_amount - 32);
1405        NewLIR2(kX86Sar32RI, rl_result.high_reg, 31);
1406      } else {
1407        OpRegCopy(rl_result.low_reg, rl_src.low_reg);
1408        OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1409        NewLIR3(kX86Shrd32RRI, rl_result.low_reg, rl_result.high_reg, shift_amount);
1410        NewLIR2(kX86Sar32RI, rl_result.high_reg, shift_amount);
1411      }
1412      break;
1413    case Instruction::USHR_LONG:
1414    case Instruction::USHR_LONG_2ADDR:
1415      if (shift_amount == 32) {
1416        OpRegCopy(rl_result.low_reg, rl_src.high_reg);
1417        LoadConstant(rl_result.high_reg, 0);
1418      } else if (shift_amount > 31) {
1419        OpRegCopy(rl_result.low_reg, rl_src.high_reg);
1420        NewLIR2(kX86Shr32RI, rl_result.low_reg, shift_amount - 32);
1421        LoadConstant(rl_result.high_reg, 0);
1422      } else {
1423        OpRegCopy(rl_result.low_reg, rl_src.low_reg);
1424        OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1425        NewLIR3(kX86Shrd32RRI, rl_result.low_reg, rl_result.high_reg, shift_amount);
1426        NewLIR2(kX86Shr32RI, rl_result.high_reg, shift_amount);
1427      }
1428      break;
1429    default:
1430      LOG(FATAL) << "Unexpected case";
1431  }
1432  return rl_result;
1433}
1434
1435void X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1436                                   RegLocation rl_src, RegLocation rl_shift) {
1437  // Per spec, we only care about low 6 bits of shift amount.
1438  int shift_amount = mir_graph_->ConstantValue(rl_shift) & 0x3f;
1439  if (shift_amount == 0) {
1440    rl_src = LoadValueWide(rl_src, kCoreReg);
1441    StoreValueWide(rl_dest, rl_src);
1442    return;
1443  } else if (shift_amount == 1 &&
1444            (opcode ==  Instruction::SHL_LONG || opcode == Instruction::SHL_LONG_2ADDR)) {
1445    // Need to handle this here to avoid calling StoreValueWide twice.
1446    GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src, rl_src);
1447    return;
1448  }
1449  if (BadOverlap(rl_src, rl_dest)) {
1450    GenShiftOpLong(opcode, rl_dest, rl_src, rl_shift);
1451    return;
1452  }
1453  rl_src = LoadValueWide(rl_src, kCoreReg);
1454  RegLocation rl_result = GenShiftImmOpLong(opcode, rl_dest, rl_src, shift_amount);
1455  StoreValueWide(rl_dest, rl_result);
1456}
1457
1458void X86Mir2Lir::GenArithImmOpLong(Instruction::Code opcode,
1459                                   RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
1460  switch (opcode) {
1461    case Instruction::ADD_LONG:
1462    case Instruction::AND_LONG:
1463    case Instruction::OR_LONG:
1464    case Instruction::XOR_LONG:
1465      if (rl_src2.is_const) {
1466        GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1467      } else {
1468        DCHECK(rl_src1.is_const);
1469        GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1470      }
1471      break;
1472    case Instruction::SUB_LONG:
1473    case Instruction::SUB_LONG_2ADDR:
1474      if (rl_src2.is_const) {
1475        GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1476      } else {
1477        GenSubLong(opcode, rl_dest, rl_src1, rl_src2);
1478      }
1479      break;
1480    case Instruction::ADD_LONG_2ADDR:
1481    case Instruction::OR_LONG_2ADDR:
1482    case Instruction::XOR_LONG_2ADDR:
1483    case Instruction::AND_LONG_2ADDR:
1484      if (rl_src2.is_const) {
1485        GenLongImm(rl_dest, rl_src2, opcode);
1486      } else {
1487        DCHECK(rl_src1.is_const);
1488        GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1489      }
1490      break;
1491    default:
1492      // Default - bail to non-const handler.
1493      GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
1494      break;
1495  }
1496}
1497
1498bool X86Mir2Lir::IsNoOp(Instruction::Code op, int32_t value) {
1499  switch (op) {
1500    case Instruction::AND_LONG_2ADDR:
1501    case Instruction::AND_LONG:
1502      return value == -1;
1503    case Instruction::OR_LONG:
1504    case Instruction::OR_LONG_2ADDR:
1505    case Instruction::XOR_LONG:
1506    case Instruction::XOR_LONG_2ADDR:
1507      return value == 0;
1508    default:
1509      return false;
1510  }
1511}
1512
1513X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
1514                                bool is_high_op) {
1515  bool rhs_in_mem = rhs.location != kLocPhysReg;
1516  bool dest_in_mem = dest.location != kLocPhysReg;
1517  DCHECK(!rhs_in_mem || !dest_in_mem);
1518  switch (op) {
1519    case Instruction::ADD_LONG:
1520    case Instruction::ADD_LONG_2ADDR:
1521      if (dest_in_mem) {
1522        return is_high_op ? kX86Adc32MR : kX86Add32MR;
1523      } else if (rhs_in_mem) {
1524        return is_high_op ? kX86Adc32RM : kX86Add32RM;
1525      }
1526      return is_high_op ? kX86Adc32RR : kX86Add32RR;
1527    case Instruction::SUB_LONG:
1528    case Instruction::SUB_LONG_2ADDR:
1529      if (dest_in_mem) {
1530        return is_high_op ? kX86Sbb32MR : kX86Sub32MR;
1531      } else if (rhs_in_mem) {
1532        return is_high_op ? kX86Sbb32RM : kX86Sub32RM;
1533      }
1534      return is_high_op ? kX86Sbb32RR : kX86Sub32RR;
1535    case Instruction::AND_LONG_2ADDR:
1536    case Instruction::AND_LONG:
1537      if (dest_in_mem) {
1538        return kX86And32MR;
1539      }
1540      return rhs_in_mem ? kX86And32RM : kX86And32RR;
1541    case Instruction::OR_LONG:
1542    case Instruction::OR_LONG_2ADDR:
1543      if (dest_in_mem) {
1544        return kX86Or32MR;
1545      }
1546      return rhs_in_mem ? kX86Or32RM : kX86Or32RR;
1547    case Instruction::XOR_LONG:
1548    case Instruction::XOR_LONG_2ADDR:
1549      if (dest_in_mem) {
1550        return kX86Xor32MR;
1551      }
1552      return rhs_in_mem ? kX86Xor32RM : kX86Xor32RR;
1553    default:
1554      LOG(FATAL) << "Unexpected opcode: " << op;
1555      return kX86Add32RR;
1556  }
1557}
1558
1559X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op,
1560                                int32_t value) {
1561  bool in_mem = loc.location != kLocPhysReg;
1562  bool byte_imm = IS_SIMM8(value);
1563  DCHECK(in_mem || !IsFpReg(loc.low_reg));
1564  switch (op) {
1565    case Instruction::ADD_LONG:
1566    case Instruction::ADD_LONG_2ADDR:
1567      if (byte_imm) {
1568        if (in_mem) {
1569          return is_high_op ? kX86Adc32MI8 : kX86Add32MI8;
1570        }
1571        return is_high_op ? kX86Adc32RI8 : kX86Add32RI8;
1572      }
1573      if (in_mem) {
1574        return is_high_op ? kX86Adc32MI : kX86Add32MI;
1575      }
1576      return is_high_op ? kX86Adc32RI : kX86Add32RI;
1577    case Instruction::SUB_LONG:
1578    case Instruction::SUB_LONG_2ADDR:
1579      if (byte_imm) {
1580        if (in_mem) {
1581          return is_high_op ? kX86Sbb32MI8 : kX86Sub32MI8;
1582        }
1583        return is_high_op ? kX86Sbb32RI8 : kX86Sub32RI8;
1584      }
1585      if (in_mem) {
1586        return is_high_op ? kX86Sbb32MI : kX86Sub32MI;
1587      }
1588      return is_high_op ? kX86Sbb32RI : kX86Sub32RI;
1589    case Instruction::AND_LONG_2ADDR:
1590    case Instruction::AND_LONG:
1591      if (byte_imm) {
1592        return in_mem ? kX86And32MI8 : kX86And32RI8;
1593      }
1594      return in_mem ? kX86And32MI : kX86And32RI;
1595    case Instruction::OR_LONG:
1596    case Instruction::OR_LONG_2ADDR:
1597      if (byte_imm) {
1598        return in_mem ? kX86Or32MI8 : kX86Or32RI8;
1599      }
1600      return in_mem ? kX86Or32MI : kX86Or32RI;
1601    case Instruction::XOR_LONG:
1602    case Instruction::XOR_LONG_2ADDR:
1603      if (byte_imm) {
1604        return in_mem ? kX86Xor32MI8 : kX86Xor32RI8;
1605      }
1606      return in_mem ? kX86Xor32MI : kX86Xor32RI;
1607    default:
1608      LOG(FATAL) << "Unexpected opcode: " << op;
1609      return kX86Add32MI;
1610  }
1611}
1612
1613void X86Mir2Lir::GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1614  DCHECK(rl_src.is_const);
1615  int64_t val = mir_graph_->ConstantValueWide(rl_src);
1616  int32_t val_lo = Low32Bits(val);
1617  int32_t val_hi = High32Bits(val);
1618  rl_dest = UpdateLocWide(rl_dest);
1619
1620  // Can we just do this into memory?
1621  if ((rl_dest.location == kLocDalvikFrame) ||
1622      (rl_dest.location == kLocCompilerTemp)) {
1623    int rBase = TargetReg(kSp);
1624    int displacement = SRegOffset(rl_dest.s_reg_low);
1625
1626    if (!IsNoOp(op, val_lo)) {
1627      X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
1628      LIR *lir = NewLIR3(x86op, rBase, displacement + LOWORD_OFFSET, val_lo);
1629      AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1630                              false /* is_load */, true /* is64bit */);
1631    }
1632    if (!IsNoOp(op, val_hi)) {
1633      X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
1634      LIR *lir = NewLIR3(x86op, rBase, displacement + HIWORD_OFFSET, val_hi);
1635      AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1636                                false /* is_load */, true /* is64bit */);
1637    }
1638    return;
1639  }
1640
1641  RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1642  DCHECK_EQ(rl_result.location, kLocPhysReg);
1643  DCHECK(!IsFpReg(rl_result.low_reg));
1644
1645  if (!IsNoOp(op, val_lo)) {
1646    X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
1647    NewLIR2(x86op, rl_result.low_reg, val_lo);
1648  }
1649  if (!IsNoOp(op, val_hi)) {
1650    X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
1651    NewLIR2(x86op, rl_result.high_reg, val_hi);
1652  }
1653  StoreValueWide(rl_dest, rl_result);
1654}
1655
1656void X86Mir2Lir::GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1,
1657                                RegLocation rl_src2, Instruction::Code op) {
1658  DCHECK(rl_src2.is_const);
1659  int64_t val = mir_graph_->ConstantValueWide(rl_src2);
1660  int32_t val_lo = Low32Bits(val);
1661  int32_t val_hi = High32Bits(val);
1662  rl_dest = UpdateLocWide(rl_dest);
1663  rl_src1 = UpdateLocWide(rl_src1);
1664
1665  // Can we do this directly into the destination registers?
1666  if (rl_dest.location == kLocPhysReg && rl_src1.location == kLocPhysReg &&
1667      rl_dest.low_reg == rl_src1.low_reg && rl_dest.high_reg == rl_src1.high_reg &&
1668      !IsFpReg(rl_dest.low_reg)) {
1669    if (!IsNoOp(op, val_lo)) {
1670      X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
1671      NewLIR2(x86op, rl_dest.low_reg, val_lo);
1672    }
1673    if (!IsNoOp(op, val_hi)) {
1674      X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
1675      NewLIR2(x86op, rl_dest.high_reg, val_hi);
1676    }
1677    return;
1678  }
1679
1680  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1681  DCHECK_EQ(rl_src1.location, kLocPhysReg);
1682
1683  // We need the values to be in a temporary
1684  RegLocation rl_result = ForceTempWide(rl_src1);
1685  if (!IsNoOp(op, val_lo)) {
1686    X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
1687    NewLIR2(x86op, rl_result.low_reg, val_lo);
1688  }
1689  if (!IsNoOp(op, val_hi)) {
1690    X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
1691    NewLIR2(x86op, rl_result.high_reg, val_hi);
1692  }
1693
1694  StoreFinalValueWide(rl_dest, rl_result);
1695}
1696
1697// For final classes there are no sub-classes to check and so we can answer the instance-of
1698// question with simple comparisons. Use compares to memory and SETEQ to optimize for x86.
1699void X86Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1700                                    RegLocation rl_dest, RegLocation rl_src) {
1701  RegLocation object = LoadValue(rl_src, kCoreReg);
1702  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1703  int result_reg = rl_result.low_reg;
1704
1705  // SETcc only works with EAX..EDX.
1706  if (result_reg == object.low_reg || result_reg >= 4) {
1707    result_reg = AllocTypedTemp(false, kCoreReg);
1708    DCHECK_LT(result_reg, 4);
1709  }
1710
1711  // Assume that there is no match.
1712  LoadConstant(result_reg, 0);
1713  LIR* null_branchover = OpCmpImmBranch(kCondEq, object.low_reg, 0, NULL);
1714
1715  int check_class = AllocTypedTemp(false, kCoreReg);
1716
1717  // If Method* is already in a register, we can save a copy.
1718  RegLocation rl_method = mir_graph_->GetMethodLoc();
1719  int32_t offset_of_type = mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() +
1720    (sizeof(mirror::Class*) * type_idx);
1721
1722  if (rl_method.location == kLocPhysReg) {
1723    if (use_declaring_class) {
1724      LoadWordDisp(rl_method.low_reg,
1725                   mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1726                   check_class);
1727    } else {
1728      LoadWordDisp(rl_method.low_reg,
1729                   mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1730                   check_class);
1731      LoadWordDisp(check_class, offset_of_type, check_class);
1732    }
1733  } else {
1734    LoadCurrMethodDirect(check_class);
1735    if (use_declaring_class) {
1736      LoadWordDisp(check_class,
1737                   mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1738                   check_class);
1739    } else {
1740      LoadWordDisp(check_class,
1741                   mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1742                   check_class);
1743      LoadWordDisp(check_class, offset_of_type, check_class);
1744    }
1745  }
1746
1747  // Compare the computed class to the class in the object.
1748  DCHECK_EQ(object.location, kLocPhysReg);
1749  OpRegMem(kOpCmp, check_class, object.low_reg,
1750           mirror::Object::ClassOffset().Int32Value());
1751
1752  // Set the low byte of the result to 0 or 1 from the compare condition code.
1753  NewLIR2(kX86Set8R, result_reg, kX86CondEq);
1754
1755  LIR* target = NewLIR0(kPseudoTargetLabel);
1756  null_branchover->target = target;
1757  FreeTemp(check_class);
1758  if (IsTemp(result_reg)) {
1759    OpRegCopy(rl_result.low_reg, result_reg);
1760    FreeTemp(result_reg);
1761  }
1762  StoreValue(rl_dest, rl_result);
1763}
1764
1765void X86Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1766                                            bool type_known_abstract, bool use_declaring_class,
1767                                            bool can_assume_type_is_in_dex_cache,
1768                                            uint32_t type_idx, RegLocation rl_dest,
1769                                            RegLocation rl_src) {
1770  FlushAllRegs();
1771  // May generate a call - use explicit registers.
1772  LockCallTemps();
1773  LoadCurrMethodDirect(TargetReg(kArg1));  // kArg1 gets current Method*.
1774  int class_reg = TargetReg(kArg2);  // kArg2 will hold the Class*.
1775  // Reference must end up in kArg0.
1776  if (needs_access_check) {
1777    // Check we have access to type_idx and if not throw IllegalAccessError,
1778    // Caller function returns Class* in kArg0.
1779    CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccess),
1780                         type_idx, true);
1781    OpRegCopy(class_reg, TargetReg(kRet0));
1782    LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1783  } else if (use_declaring_class) {
1784    LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1785    LoadWordDisp(TargetReg(kArg1),
1786                 mirror::ArtMethod::DeclaringClassOffset().Int32Value(), class_reg);
1787  } else {
1788    // Load dex cache entry into class_reg (kArg2).
1789    LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1790    LoadWordDisp(TargetReg(kArg1),
1791                 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), class_reg);
1792    int32_t offset_of_type =
1793        mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*)
1794        * type_idx);
1795    LoadWordDisp(class_reg, offset_of_type, class_reg);
1796    if (!can_assume_type_is_in_dex_cache) {
1797      // Need to test presence of type in dex cache at runtime.
1798      LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL);
1799      // Type is not resolved. Call out to helper, which will return resolved type in kRet0/kArg0.
1800      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeType), type_idx, true);
1801      OpRegCopy(TargetReg(kArg2), TargetReg(kRet0));  // Align usage with fast path.
1802      LoadValueDirectFixed(rl_src, TargetReg(kArg0));  /* Reload Ref. */
1803      // Rejoin code paths
1804      LIR* hop_target = NewLIR0(kPseudoTargetLabel);
1805      hop_branch->target = hop_target;
1806    }
1807  }
1808  /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result. */
1809  RegLocation rl_result = GetReturn(false);
1810
1811  // SETcc only works with EAX..EDX.
1812  DCHECK_LT(rl_result.low_reg, 4);
1813
1814  // Is the class NULL?
1815  LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL);
1816
1817  /* Load object->klass_. */
1818  DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1819  LoadWordDisp(TargetReg(kArg0),  mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1));
1820  /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class. */
1821  LIR* branchover = nullptr;
1822  if (type_known_final) {
1823    // Ensure top 3 bytes of result are 0.
1824    LoadConstant(rl_result.low_reg, 0);
1825    OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2));
1826    // Set the low byte of the result to 0 or 1 from the compare condition code.
1827    NewLIR2(kX86Set8R, rl_result.low_reg, kX86CondEq);
1828  } else {
1829    if (!type_known_abstract) {
1830      LoadConstant(rl_result.low_reg, 1);     // Assume result succeeds.
1831      branchover = OpCmpBranch(kCondEq, TargetReg(kArg1), TargetReg(kArg2), NULL);
1832    }
1833    OpRegCopy(TargetReg(kArg0), TargetReg(kArg2));
1834    OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(pInstanceofNonTrivial));
1835  }
1836  // TODO: only clobber when type isn't final?
1837  ClobberCallerSave();
1838  /* Branch targets here. */
1839  LIR* target = NewLIR0(kPseudoTargetLabel);
1840  StoreValue(rl_dest, rl_result);
1841  branch1->target = target;
1842  if (branchover != nullptr) {
1843    branchover->target = target;
1844  }
1845}
1846
1847void X86Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
1848                            RegLocation rl_lhs, RegLocation rl_rhs) {
1849  OpKind op = kOpBkpt;
1850  bool is_div_rem = false;
1851  bool unary = false;
1852  bool shift_op = false;
1853  bool is_two_addr = false;
1854  RegLocation rl_result;
1855  switch (opcode) {
1856    case Instruction::NEG_INT:
1857      op = kOpNeg;
1858      unary = true;
1859      break;
1860    case Instruction::NOT_INT:
1861      op = kOpMvn;
1862      unary = true;
1863      break;
1864    case Instruction::ADD_INT_2ADDR:
1865      is_two_addr = true;
1866      // Fallthrough
1867    case Instruction::ADD_INT:
1868      op = kOpAdd;
1869      break;
1870    case Instruction::SUB_INT_2ADDR:
1871      is_two_addr = true;
1872      // Fallthrough
1873    case Instruction::SUB_INT:
1874      op = kOpSub;
1875      break;
1876    case Instruction::MUL_INT_2ADDR:
1877      is_two_addr = true;
1878      // Fallthrough
1879    case Instruction::MUL_INT:
1880      op = kOpMul;
1881      break;
1882    case Instruction::DIV_INT_2ADDR:
1883      is_two_addr = true;
1884      // Fallthrough
1885    case Instruction::DIV_INT:
1886      op = kOpDiv;
1887      is_div_rem = true;
1888      break;
1889    /* NOTE: returns in kArg1 */
1890    case Instruction::REM_INT_2ADDR:
1891      is_two_addr = true;
1892      // Fallthrough
1893    case Instruction::REM_INT:
1894      op = kOpRem;
1895      is_div_rem = true;
1896      break;
1897    case Instruction::AND_INT_2ADDR:
1898      is_two_addr = true;
1899      // Fallthrough
1900    case Instruction::AND_INT:
1901      op = kOpAnd;
1902      break;
1903    case Instruction::OR_INT_2ADDR:
1904      is_two_addr = true;
1905      // Fallthrough
1906    case Instruction::OR_INT:
1907      op = kOpOr;
1908      break;
1909    case Instruction::XOR_INT_2ADDR:
1910      is_two_addr = true;
1911      // Fallthrough
1912    case Instruction::XOR_INT:
1913      op = kOpXor;
1914      break;
1915    case Instruction::SHL_INT_2ADDR:
1916      is_two_addr = true;
1917      // Fallthrough
1918    case Instruction::SHL_INT:
1919      shift_op = true;
1920      op = kOpLsl;
1921      break;
1922    case Instruction::SHR_INT_2ADDR:
1923      is_two_addr = true;
1924      // Fallthrough
1925    case Instruction::SHR_INT:
1926      shift_op = true;
1927      op = kOpAsr;
1928      break;
1929    case Instruction::USHR_INT_2ADDR:
1930      is_two_addr = true;
1931      // Fallthrough
1932    case Instruction::USHR_INT:
1933      shift_op = true;
1934      op = kOpLsr;
1935      break;
1936    default:
1937      LOG(FATAL) << "Invalid word arith op: " << opcode;
1938  }
1939
1940    // Can we convert to a two address instruction?
1941  if (!is_two_addr &&
1942        (mir_graph_->SRegToVReg(rl_dest.s_reg_low) ==
1943         mir_graph_->SRegToVReg(rl_lhs.s_reg_low))) {
1944      is_two_addr = true;
1945    }
1946
1947  // Get the div/rem stuff out of the way.
1948  if (is_div_rem) {
1949    rl_result = GenDivRem(rl_dest, rl_lhs, rl_rhs, op == kOpDiv, true);
1950    StoreValue(rl_dest, rl_result);
1951    return;
1952  }
1953
1954  if (unary) {
1955    rl_lhs = LoadValue(rl_lhs, kCoreReg);
1956    rl_result = UpdateLoc(rl_dest);
1957    rl_result = EvalLoc(rl_dest, kCoreReg, true);
1958    OpRegReg(op, rl_result.low_reg, rl_lhs.low_reg);
1959  } else {
1960    if (shift_op) {
1961      // X86 doesn't require masking and must use ECX.
1962      int t_reg = TargetReg(kCount);  // rCX
1963      LoadValueDirectFixed(rl_rhs, t_reg);
1964      if (is_two_addr) {
1965        // Can we do this directly into memory?
1966        rl_result = UpdateLoc(rl_dest);
1967        rl_rhs = LoadValue(rl_rhs, kCoreReg);
1968        if (rl_result.location != kLocPhysReg) {
1969          // Okay, we can do this into memory
1970          OpMemReg(op, rl_result, t_reg);
1971          FreeTemp(t_reg);
1972          return;
1973        } else if (!IsFpReg(rl_result.low_reg)) {
1974          // Can do this directly into the result register
1975          OpRegReg(op, rl_result.low_reg, t_reg);
1976          FreeTemp(t_reg);
1977          StoreFinalValue(rl_dest, rl_result);
1978          return;
1979        }
1980      }
1981      // Three address form, or we can't do directly.
1982      rl_lhs = LoadValue(rl_lhs, kCoreReg);
1983      rl_result = EvalLoc(rl_dest, kCoreReg, true);
1984      OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, t_reg);
1985      FreeTemp(t_reg);
1986    } else {
1987      // Multiply is 3 operand only (sort of).
1988      if (is_two_addr && op != kOpMul) {
1989        // Can we do this directly into memory?
1990        rl_result = UpdateLoc(rl_dest);
1991        if (rl_result.location == kLocPhysReg) {
1992          // Can we do this from memory directly?
1993          rl_rhs = UpdateLoc(rl_rhs);
1994          if (rl_rhs.location != kLocPhysReg) {
1995            OpRegMem(op, rl_result.low_reg, rl_rhs);
1996            StoreFinalValue(rl_dest, rl_result);
1997            return;
1998          } else if (!IsFpReg(rl_rhs.low_reg)) {
1999            OpRegReg(op, rl_result.low_reg, rl_rhs.low_reg);
2000            StoreFinalValue(rl_dest, rl_result);
2001            return;
2002          }
2003        }
2004        rl_rhs = LoadValue(rl_rhs, kCoreReg);
2005        if (rl_result.location != kLocPhysReg) {
2006          // Okay, we can do this into memory.
2007          OpMemReg(op, rl_result, rl_rhs.low_reg);
2008          return;
2009        } else if (!IsFpReg(rl_result.low_reg)) {
2010          // Can do this directly into the result register.
2011          OpRegReg(op, rl_result.low_reg, rl_rhs.low_reg);
2012          StoreFinalValue(rl_dest, rl_result);
2013          return;
2014        } else {
2015          rl_lhs = LoadValue(rl_lhs, kCoreReg);
2016          rl_result = EvalLoc(rl_dest, kCoreReg, true);
2017          OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg);
2018        }
2019      } else {
2020        // Try to use reg/memory instructions.
2021        rl_lhs = UpdateLoc(rl_lhs);
2022        rl_rhs = UpdateLoc(rl_rhs);
2023        // We can't optimize with FP registers.
2024        if (!IsOperationSafeWithoutTemps(rl_lhs, rl_rhs)) {
2025          // Something is difficult, so fall back to the standard case.
2026          rl_lhs = LoadValue(rl_lhs, kCoreReg);
2027          rl_rhs = LoadValue(rl_rhs, kCoreReg);
2028          rl_result = EvalLoc(rl_dest, kCoreReg, true);
2029          OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg);
2030        } else {
2031          // We can optimize by moving to result and using memory operands.
2032          if (rl_rhs.location != kLocPhysReg) {
2033            // Force LHS into result.
2034            rl_result = EvalLoc(rl_dest, kCoreReg, true);
2035            LoadValueDirect(rl_lhs, rl_result.low_reg);
2036            OpRegMem(op, rl_result.low_reg, rl_rhs);
2037          } else if (rl_lhs.location != kLocPhysReg) {
2038            // RHS is in a register; LHS is in memory.
2039            if (op != kOpSub) {
2040              // Force RHS into result and operate on memory.
2041              rl_result = EvalLoc(rl_dest, kCoreReg, true);
2042              OpRegCopy(rl_result.low_reg, rl_rhs.low_reg);
2043              OpRegMem(op, rl_result.low_reg, rl_lhs);
2044            } else {
2045              // Subtraction isn't commutative.
2046              rl_lhs = LoadValue(rl_lhs, kCoreReg);
2047              rl_rhs = LoadValue(rl_rhs, kCoreReg);
2048              rl_result = EvalLoc(rl_dest, kCoreReg, true);
2049              OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg);
2050            }
2051          } else {
2052            // Both are in registers.
2053            rl_lhs = LoadValue(rl_lhs, kCoreReg);
2054            rl_rhs = LoadValue(rl_rhs, kCoreReg);
2055            rl_result = EvalLoc(rl_dest, kCoreReg, true);
2056            OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg);
2057          }
2058        }
2059      }
2060    }
2061  }
2062  StoreValue(rl_dest, rl_result);
2063}
2064
2065bool X86Mir2Lir::IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs) {
2066  // If we have non-core registers, then we can't do good things.
2067  if (rl_lhs.location == kLocPhysReg && IsFpReg(rl_lhs.low_reg)) {
2068    return false;
2069  }
2070  if (rl_rhs.location == kLocPhysReg && IsFpReg(rl_rhs.low_reg)) {
2071    return false;
2072  }
2073
2074  // Everything will be fine :-).
2075  return true;
2076}
2077}  // namespace art
2078