int_x86.cc revision e0ccdc0dd166136cd43e5f54201179a4496d33e8
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* This file contains codegen for the X86 ISA */
18
19#include "codegen_x86.h"
20#include "dex/quick/mir_to_lir-inl.h"
21#include "mirror/array.h"
22#include "x86_lir.h"
23
24namespace art {
25
26/*
27 * Compare two 64-bit values
28 *    x = y     return  0
29 *    x < y     return -1
30 *    x > y     return  1
31 */
32void X86Mir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1,
33                            RegLocation rl_src2) {
34  FlushAllRegs();
35  LockCallTemps();  // Prepare for explicit register usage
36  RegStorage r_tmp1 = RegStorage::MakeRegPair(rs_r0, rs_r1);
37  RegStorage r_tmp2 = RegStorage::MakeRegPair(rs_r2, rs_r3);
38  LoadValueDirectWideFixed(rl_src1, r_tmp1);
39  LoadValueDirectWideFixed(rl_src2, r_tmp2);
40  // Compute (r1:r0) = (r1:r0) - (r3:r2)
41  OpRegReg(kOpSub, rs_r0, rs_r2);  // r0 = r0 - r2
42  OpRegReg(kOpSbc, rs_r1, rs_r3);  // r1 = r1 - r3 - CF
43  NewLIR2(kX86Set8R, rs_r2.GetReg(), kX86CondL);  // r2 = (r1:r0) < (r3:r2) ? 1 : 0
44  NewLIR2(kX86Movzx8RR, rs_r2.GetReg(), rs_r2.GetReg());
45  OpReg(kOpNeg, rs_r2);         // r2 = -r2
46  OpRegReg(kOpOr, rs_r0, rs_r1);   // r0 = high | low - sets ZF
47  NewLIR2(kX86Set8R, rs_r0.GetReg(), kX86CondNz);  // r0 = (r1:r0) != (r3:r2) ? 1 : 0
48  NewLIR2(kX86Movzx8RR, r0, r0);
49  OpRegReg(kOpOr, rs_r0, rs_r2);   // r0 = r0 | r2
50  RegLocation rl_result = LocCReturn();
51  StoreValue(rl_dest, rl_result);
52}
53
54X86ConditionCode X86ConditionEncoding(ConditionCode cond) {
55  switch (cond) {
56    case kCondEq: return kX86CondEq;
57    case kCondNe: return kX86CondNe;
58    case kCondCs: return kX86CondC;
59    case kCondCc: return kX86CondNc;
60    case kCondUlt: return kX86CondC;
61    case kCondUge: return kX86CondNc;
62    case kCondMi: return kX86CondS;
63    case kCondPl: return kX86CondNs;
64    case kCondVs: return kX86CondO;
65    case kCondVc: return kX86CondNo;
66    case kCondHi: return kX86CondA;
67    case kCondLs: return kX86CondBe;
68    case kCondGe: return kX86CondGe;
69    case kCondLt: return kX86CondL;
70    case kCondGt: return kX86CondG;
71    case kCondLe: return kX86CondLe;
72    case kCondAl:
73    case kCondNv: LOG(FATAL) << "Should not reach here";
74  }
75  return kX86CondO;
76}
77
78LIR* X86Mir2Lir::OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) {
79  NewLIR2(kX86Cmp32RR, src1.GetReg(), src2.GetReg());
80  X86ConditionCode cc = X86ConditionEncoding(cond);
81  LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ ,
82                        cc);
83  branch->target = target;
84  return branch;
85}
86
87LIR* X86Mir2Lir::OpCmpImmBranch(ConditionCode cond, RegStorage reg,
88                                int check_value, LIR* target) {
89  if ((check_value == 0) && (cond == kCondEq || cond == kCondNe)) {
90    // TODO: when check_value == 0 and reg is rCX, use the jcxz/nz opcode
91    NewLIR2(kX86Test32RR, reg.GetReg(), reg.GetReg());
92  } else {
93    NewLIR2(IS_SIMM8(check_value) ? kX86Cmp32RI8 : kX86Cmp32RI, reg.GetReg(), check_value);
94  }
95  X86ConditionCode cc = X86ConditionEncoding(cond);
96  LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ , cc);
97  branch->target = target;
98  return branch;
99}
100
101LIR* X86Mir2Lir::OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) {
102  // If src or dest is a pair, we'll be using low reg.
103  if (r_dest.IsPair()) {
104    r_dest = r_dest.GetLow();
105  }
106  if (r_src.IsPair()) {
107    r_src = r_src.GetLow();
108  }
109  if (r_dest.IsFloat() || r_src.IsFloat())
110    return OpFpRegCopy(r_dest, r_src);
111  LIR* res = RawLIR(current_dalvik_offset_, r_dest.Is64Bit() ? kX86Mov64RR : kX86Mov32RR,
112                    r_dest.GetReg(), r_src.GetReg());
113  if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
114    res->flags.is_nop = true;
115  }
116  return res;
117}
118
119void X86Mir2Lir::OpRegCopy(RegStorage r_dest, RegStorage r_src) {
120  if (r_dest != r_src) {
121    LIR *res = OpRegCopyNoInsert(r_dest, r_src);
122    AppendLIR(res);
123  }
124}
125
126void X86Mir2Lir::OpRegCopyWide(RegStorage r_dest, RegStorage r_src) {
127  if (r_dest != r_src) {
128    bool dest_fp = r_dest.IsFloat();
129    bool src_fp = r_src.IsFloat();
130    if (dest_fp) {
131      if (src_fp) {
132        OpRegCopy(r_dest, r_src);
133      } else {
134        // TODO: Prevent this from happening in the code. The result is often
135        // unused or could have been loaded more easily from memory.
136        if (!r_src.IsPair()) {
137          DCHECK(!r_dest.IsPair());
138          NewLIR2(kX86MovqxrRR, r_dest.GetReg(), r_src.GetReg());
139        } else {
140          NewLIR2(kX86MovdxrRR, r_dest.GetReg(), r_src.GetLowReg());
141          RegStorage r_tmp = AllocTempDouble();
142          NewLIR2(kX86MovdxrRR, r_tmp.GetReg(), r_src.GetHighReg());
143          NewLIR2(kX86PunpckldqRR, r_dest.GetReg(), r_tmp.GetReg());
144          FreeTemp(r_tmp);
145        }
146      }
147    } else {
148      if (src_fp) {
149        if (!r_dest.IsPair()) {
150          DCHECK(!r_src.IsPair());
151          NewLIR2(kX86MovqrxRR, r_dest.GetReg(), r_src.GetReg());
152        } else {
153          NewLIR2(kX86MovdrxRR, r_dest.GetLowReg(), r_src.GetReg());
154          RegStorage temp_reg = AllocTempDouble();
155          NewLIR2(kX86MovsdRR, temp_reg.GetReg(), r_src.GetReg());
156          NewLIR2(kX86PsrlqRI, temp_reg.GetReg(), 32);
157          NewLIR2(kX86MovdrxRR, r_dest.GetHighReg(), temp_reg.GetReg());
158        }
159      } else {
160        DCHECK_EQ(r_dest.IsPair(), r_src.IsPair());
161        if (!r_src.IsPair()) {
162          // Just copy the register directly.
163          OpRegCopy(r_dest, r_src);
164        } else {
165          // Handle overlap
166          if (r_src.GetHighReg() == r_dest.GetLowReg() &&
167              r_src.GetLowReg() == r_dest.GetHighReg()) {
168            // Deal with cycles.
169            RegStorage temp_reg = AllocTemp();
170            OpRegCopy(temp_reg, r_dest.GetHigh());
171            OpRegCopy(r_dest.GetHigh(), r_dest.GetLow());
172            OpRegCopy(r_dest.GetLow(), temp_reg);
173            FreeTemp(temp_reg);
174          } else if (r_src.GetHighReg() == r_dest.GetLowReg()) {
175            OpRegCopy(r_dest.GetHigh(), r_src.GetHigh());
176            OpRegCopy(r_dest.GetLow(), r_src.GetLow());
177          } else {
178            OpRegCopy(r_dest.GetLow(), r_src.GetLow());
179            OpRegCopy(r_dest.GetHigh(), r_src.GetHigh());
180          }
181        }
182      }
183    }
184  }
185}
186
187void X86Mir2Lir::GenSelect(BasicBlock* bb, MIR* mir) {
188  RegLocation rl_result;
189  RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
190  RegLocation rl_dest = mir_graph_->GetDest(mir);
191  // Avoid using float regs here.
192  RegisterClass src_reg_class = rl_src.ref ? kRefReg : kCoreReg;
193  RegisterClass result_reg_class = rl_dest.ref ? kRefReg : kCoreReg;
194  rl_src = LoadValue(rl_src, src_reg_class);
195  ConditionCode ccode = mir->meta.ccode;
196
197  // The kMirOpSelect has two variants, one for constants and one for moves.
198  const bool is_constant_case = (mir->ssa_rep->num_uses == 1);
199
200  if (is_constant_case) {
201    int true_val = mir->dalvikInsn.vB;
202    int false_val = mir->dalvikInsn.vC;
203    rl_result = EvalLoc(rl_dest, result_reg_class, true);
204
205    /*
206     * For ccode == kCondEq:
207     *
208     * 1) When the true case is zero and result_reg is not same as src_reg:
209     *     xor result_reg, result_reg
210     *     cmp $0, src_reg
211     *     mov t1, $false_case
212     *     cmovnz result_reg, t1
213     * 2) When the false case is zero and result_reg is not same as src_reg:
214     *     xor result_reg, result_reg
215     *     cmp $0, src_reg
216     *     mov t1, $true_case
217     *     cmovz result_reg, t1
218     * 3) All other cases (we do compare first to set eflags):
219     *     cmp $0, src_reg
220     *     mov result_reg, $false_case
221     *     mov t1, $true_case
222     *     cmovz result_reg, t1
223     */
224    // FIXME: depending on how you use registers you could get a false != mismatch when dealing
225    // with different views of the same underlying physical resource (i.e. solo32 vs. solo64).
226    const bool result_reg_same_as_src =
227        (rl_src.location == kLocPhysReg && rl_src.reg.GetReg() == rl_result.reg.GetReg());
228    const bool true_zero_case = (true_val == 0 && false_val != 0 && !result_reg_same_as_src);
229    const bool false_zero_case = (false_val == 0 && true_val != 0 && !result_reg_same_as_src);
230    const bool catch_all_case = !(true_zero_case || false_zero_case);
231
232    if (true_zero_case || false_zero_case) {
233      OpRegReg(kOpXor, rl_result.reg, rl_result.reg);
234    }
235
236    if (true_zero_case || false_zero_case || catch_all_case) {
237      OpRegImm(kOpCmp, rl_src.reg, 0);
238    }
239
240    if (catch_all_case) {
241      OpRegImm(kOpMov, rl_result.reg, false_val);
242    }
243
244    if (true_zero_case || false_zero_case || catch_all_case) {
245      ConditionCode cc = true_zero_case ? NegateComparison(ccode) : ccode;
246      int immediateForTemp = true_zero_case ? false_val : true_val;
247      RegStorage temp1_reg = AllocTypedTemp(false, result_reg_class);
248      OpRegImm(kOpMov, temp1_reg, immediateForTemp);
249
250      OpCondRegReg(kOpCmov, cc, rl_result.reg, temp1_reg);
251
252      FreeTemp(temp1_reg);
253    }
254  } else {
255    RegLocation rl_true = mir_graph_->GetSrc(mir, 1);
256    RegLocation rl_false = mir_graph_->GetSrc(mir, 2);
257    rl_true = LoadValue(rl_true, result_reg_class);
258    rl_false = LoadValue(rl_false, result_reg_class);
259    rl_result = EvalLoc(rl_dest, result_reg_class, true);
260
261    /*
262     * For ccode == kCondEq:
263     *
264     * 1) When true case is already in place:
265     *     cmp $0, src_reg
266     *     cmovnz result_reg, false_reg
267     * 2) When false case is already in place:
268     *     cmp $0, src_reg
269     *     cmovz result_reg, true_reg
270     * 3) When neither cases are in place:
271     *     cmp $0, src_reg
272     *     mov result_reg, false_reg
273     *     cmovz result_reg, true_reg
274     */
275
276    // kMirOpSelect is generated just for conditional cases when comparison is done with zero.
277    OpRegImm(kOpCmp, rl_src.reg, 0);
278
279    if (rl_result.reg.GetReg() == rl_true.reg.GetReg()) {
280      OpCondRegReg(kOpCmov, NegateComparison(ccode), rl_result.reg, rl_false.reg);
281    } else if (rl_result.reg.GetReg() == rl_false.reg.GetReg()) {
282      OpCondRegReg(kOpCmov, ccode, rl_result.reg, rl_true.reg);
283    } else {
284      OpRegCopy(rl_result.reg, rl_false.reg);
285      OpCondRegReg(kOpCmov, ccode, rl_result.reg, rl_true.reg);
286    }
287  }
288
289  StoreValue(rl_dest, rl_result);
290}
291
292void X86Mir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) {
293  LIR* taken = &block_label_list_[bb->taken];
294  RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0);
295  RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2);
296  ConditionCode ccode = mir->meta.ccode;
297
298  if (rl_src1.is_const) {
299    std::swap(rl_src1, rl_src2);
300    ccode = FlipComparisonOrder(ccode);
301  }
302  if (rl_src2.is_const) {
303    // Do special compare/branch against simple const operand
304    int64_t val = mir_graph_->ConstantValueWide(rl_src2);
305    GenFusedLongCmpImmBranch(bb, rl_src1, val, ccode);
306    return;
307  }
308
309  FlushAllRegs();
310  LockCallTemps();  // Prepare for explicit register usage
311  RegStorage r_tmp1 = RegStorage::MakeRegPair(rs_r0, rs_r1);
312  RegStorage r_tmp2 = RegStorage::MakeRegPair(rs_r2, rs_r3);
313  LoadValueDirectWideFixed(rl_src1, r_tmp1);
314  LoadValueDirectWideFixed(rl_src2, r_tmp2);
315  // Swap operands and condition code to prevent use of zero flag.
316  if (ccode == kCondLe || ccode == kCondGt) {
317    // Compute (r3:r2) = (r3:r2) - (r1:r0)
318    OpRegReg(kOpSub, rs_r2, rs_r0);  // r2 = r2 - r0
319    OpRegReg(kOpSbc, rs_r3, rs_r1);  // r3 = r3 - r1 - CF
320  } else {
321    // Compute (r1:r0) = (r1:r0) - (r3:r2)
322    OpRegReg(kOpSub, rs_r0, rs_r2);  // r0 = r0 - r2
323    OpRegReg(kOpSbc, rs_r1, rs_r3);  // r1 = r1 - r3 - CF
324  }
325  switch (ccode) {
326    case kCondEq:
327    case kCondNe:
328      OpRegReg(kOpOr, rs_r0, rs_r1);  // r0 = r0 | r1
329      break;
330    case kCondLe:
331      ccode = kCondGe;
332      break;
333    case kCondGt:
334      ccode = kCondLt;
335      break;
336    case kCondLt:
337    case kCondGe:
338      break;
339    default:
340      LOG(FATAL) << "Unexpected ccode: " << ccode;
341  }
342  OpCondBranch(ccode, taken);
343}
344
345void X86Mir2Lir::GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
346                                          int64_t val, ConditionCode ccode) {
347  int32_t val_lo = Low32Bits(val);
348  int32_t val_hi = High32Bits(val);
349  LIR* taken = &block_label_list_[bb->taken];
350  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
351  bool is_equality_test = ccode == kCondEq || ccode == kCondNe;
352  if (is_equality_test && val != 0) {
353    rl_src1 = ForceTempWide(rl_src1);
354  }
355  RegStorage low_reg = rl_src1.reg.GetLow();
356  RegStorage high_reg = rl_src1.reg.GetHigh();
357
358  if (is_equality_test) {
359    // We can simpolify of comparing for ==, != to 0.
360    if (val == 0) {
361      if (IsTemp(low_reg)) {
362        OpRegReg(kOpOr, low_reg, high_reg);
363        // We have now changed it; ignore the old values.
364        Clobber(rl_src1.reg);
365      } else {
366        RegStorage t_reg = AllocTemp();
367        OpRegRegReg(kOpOr, t_reg, low_reg, high_reg);
368        FreeTemp(t_reg);
369      }
370      OpCondBranch(ccode, taken);
371      return;
372    }
373
374    // Need to compute the actual value for ==, !=.
375    OpRegImm(kOpSub, low_reg, val_lo);
376    NewLIR2(kX86Sbb32RI, high_reg.GetReg(), val_hi);
377    OpRegReg(kOpOr, high_reg, low_reg);
378    Clobber(rl_src1.reg);
379  } else if (ccode == kCondLe || ccode == kCondGt) {
380    // Swap operands and condition code to prevent use of zero flag.
381    RegStorage tmp = AllocTypedTempWide(false, kCoreReg);
382    LoadConstantWide(tmp, val);
383    OpRegReg(kOpSub, tmp.GetLow(), low_reg);
384    OpRegReg(kOpSbc, tmp.GetHigh(), high_reg);
385    ccode = (ccode == kCondLe) ? kCondGe : kCondLt;
386    FreeTemp(tmp);
387  } else {
388    // We can use a compare for the low word to set CF.
389    OpRegImm(kOpCmp, low_reg, val_lo);
390    if (IsTemp(high_reg)) {
391      NewLIR2(kX86Sbb32RI, high_reg.GetReg(), val_hi);
392      // We have now changed it; ignore the old values.
393      Clobber(rl_src1.reg);
394    } else {
395      // mov temp_reg, high_reg; sbb temp_reg, high_constant
396      RegStorage t_reg = AllocTemp();
397      OpRegCopy(t_reg, high_reg);
398      NewLIR2(kX86Sbb32RI, t_reg.GetReg(), val_hi);
399      FreeTemp(t_reg);
400    }
401  }
402
403  OpCondBranch(ccode, taken);
404}
405
406void X86Mir2Lir::CalculateMagicAndShift(int divisor, int& magic, int& shift) {
407  // It does not make sense to calculate magic and shift for zero divisor.
408  DCHECK_NE(divisor, 0);
409
410  /* According to H.S.Warren's Hacker's Delight Chapter 10 and
411   * T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
412   * The magic number M and shift S can be calculated in the following way:
413   * Let nc be the most positive value of numerator(n) such that nc = kd - 1,
414   * where divisor(d) >=2.
415   * Let nc be the most negative value of numerator(n) such that nc = kd + 1,
416   * where divisor(d) <= -2.
417   * Thus nc can be calculated like:
418   * nc = 2^31 + 2^31 % d - 1, where d >= 2
419   * nc = -2^31 + (2^31 + 1) % d, where d >= 2.
420   *
421   * So the shift p is the smallest p satisfying
422   * 2^p > nc * (d - 2^p % d), where d >= 2
423   * 2^p > nc * (d + 2^p % d), where d <= -2.
424   *
425   * the magic number M is calcuated by
426   * M = (2^p + d - 2^p % d) / d, where d >= 2
427   * M = (2^p - d - 2^p % d) / d, where d <= -2.
428   *
429   * Notice that p is always bigger than or equal to 32, so we just return 32-p as
430   * the shift number S.
431   */
432
433  int32_t p = 31;
434  const uint32_t two31 = 0x80000000U;
435
436  // Initialize the computations.
437  uint32_t abs_d = (divisor >= 0) ? divisor : -divisor;
438  uint32_t tmp = two31 + (static_cast<uint32_t>(divisor) >> 31);
439  uint32_t abs_nc = tmp - 1 - tmp % abs_d;
440  uint32_t quotient1 = two31 / abs_nc;
441  uint32_t remainder1 = two31 % abs_nc;
442  uint32_t quotient2 = two31 / abs_d;
443  uint32_t remainder2 = two31 % abs_d;
444
445  /*
446   * To avoid handling both positive and negative divisor, Hacker's Delight
447   * introduces a method to handle these 2 cases together to avoid duplication.
448   */
449  uint32_t delta;
450  do {
451    p++;
452    quotient1 = 2 * quotient1;
453    remainder1 = 2 * remainder1;
454    if (remainder1 >= abs_nc) {
455      quotient1++;
456      remainder1 = remainder1 - abs_nc;
457    }
458    quotient2 = 2 * quotient2;
459    remainder2 = 2 * remainder2;
460    if (remainder2 >= abs_d) {
461      quotient2++;
462      remainder2 = remainder2 - abs_d;
463    }
464    delta = abs_d - remainder2;
465  } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0));
466
467  magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1);
468  shift = p - 32;
469}
470
471RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit, bool is_div) {
472  LOG(FATAL) << "Unexpected use of GenDivRemLit for x86";
473  return rl_dest;
474}
475
476RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src,
477                                     int imm, bool is_div) {
478  // Use a multiply (and fixup) to perform an int div/rem by a constant.
479
480  // We have to use fixed registers, so flush all the temps.
481  FlushAllRegs();
482  LockCallTemps();  // Prepare for explicit register usage.
483
484  // Assume that the result will be in EDX.
485  RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, rs_r2, INVALID_SREG, INVALID_SREG};
486
487  // handle div/rem by 1 special case.
488  if (imm == 1) {
489    if (is_div) {
490      // x / 1 == x.
491      StoreValue(rl_result, rl_src);
492    } else {
493      // x % 1 == 0.
494      LoadConstantNoClobber(rs_r0, 0);
495      // For this case, return the result in EAX.
496      rl_result.reg.SetReg(r0);
497    }
498  } else if (imm == -1) {  // handle 0x80000000 / -1 special case.
499    if (is_div) {
500      LIR *minint_branch = 0;
501      LoadValueDirectFixed(rl_src, rs_r0);
502      OpRegImm(kOpCmp, rs_r0, 0x80000000);
503      minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondEq);
504
505      // for x != MIN_INT, x / -1 == -x.
506      NewLIR1(kX86Neg32R, r0);
507
508      LIR* branch_around = NewLIR1(kX86Jmp8, 0);
509      // The target for cmp/jmp above.
510      minint_branch->target = NewLIR0(kPseudoTargetLabel);
511      // EAX already contains the right value (0x80000000),
512      branch_around->target = NewLIR0(kPseudoTargetLabel);
513    } else {
514      // x % -1 == 0.
515      LoadConstantNoClobber(rs_r0, 0);
516    }
517    // For this case, return the result in EAX.
518    rl_result.reg.SetReg(r0);
519  } else {
520    CHECK(imm <= -2 || imm >= 2);
521    // Use H.S.Warren's Hacker's Delight Chapter 10 and
522    // T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
523    int magic, shift;
524    CalculateMagicAndShift(imm, magic, shift);
525
526    /*
527     * For imm >= 2,
528     *     int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n > 0
529     *     int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1, while n < 0.
530     * For imm <= -2,
531     *     int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1 , while n > 0
532     *     int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n < 0.
533     * We implement this algorithm in the following way:
534     * 1. multiply magic number m and numerator n, get the higher 32bit result in EDX
535     * 2. if imm > 0 and magic < 0, add numerator to EDX
536     *    if imm < 0 and magic > 0, sub numerator from EDX
537     * 3. if S !=0, SAR S bits for EDX
538     * 4. add 1 to EDX if EDX < 0
539     * 5. Thus, EDX is the quotient
540     */
541
542    // Numerator into EAX.
543    RegStorage numerator_reg;
544    if (!is_div || (imm > 0 && magic < 0) || (imm < 0 && magic > 0)) {
545      // We will need the value later.
546      if (rl_src.location == kLocPhysReg) {
547        // We can use it directly.
548        DCHECK(rl_src.reg.GetReg() != rs_r0.GetReg() && rl_src.reg.GetReg() != rs_r2.GetReg());
549        numerator_reg = rl_src.reg;
550      } else {
551        numerator_reg = rs_r1;
552        LoadValueDirectFixed(rl_src, numerator_reg);
553      }
554      OpRegCopy(rs_r0, numerator_reg);
555    } else {
556      // Only need this once.  Just put it into EAX.
557      LoadValueDirectFixed(rl_src, rs_r0);
558    }
559
560    // EDX = magic.
561    LoadConstantNoClobber(rs_r2, magic);
562
563    // EDX:EAX = magic & dividend.
564    NewLIR1(kX86Imul32DaR, rs_r2.GetReg());
565
566    if (imm > 0 && magic < 0) {
567      // Add numerator to EDX.
568      DCHECK(numerator_reg.Valid());
569      NewLIR2(kX86Add32RR, rs_r2.GetReg(), numerator_reg.GetReg());
570    } else if (imm < 0 && magic > 0) {
571      DCHECK(numerator_reg.Valid());
572      NewLIR2(kX86Sub32RR, rs_r2.GetReg(), numerator_reg.GetReg());
573    }
574
575    // Do we need the shift?
576    if (shift != 0) {
577      // Shift EDX by 'shift' bits.
578      NewLIR2(kX86Sar32RI, rs_r2.GetReg(), shift);
579    }
580
581    // Add 1 to EDX if EDX < 0.
582
583    // Move EDX to EAX.
584    OpRegCopy(rs_r0, rs_r2);
585
586    // Move sign bit to bit 0, zeroing the rest.
587    NewLIR2(kX86Shr32RI, rs_r2.GetReg(), 31);
588
589    // EDX = EDX + EAX.
590    NewLIR2(kX86Add32RR, rs_r2.GetReg(), rs_r0.GetReg());
591
592    // Quotient is in EDX.
593    if (!is_div) {
594      // We need to compute the remainder.
595      // Remainder is divisor - (quotient * imm).
596      DCHECK(numerator_reg.Valid());
597      OpRegCopy(rs_r0, numerator_reg);
598
599      // EAX = numerator * imm.
600      OpRegRegImm(kOpMul, rs_r2, rs_r2, imm);
601
602      // EDX -= EAX.
603      NewLIR2(kX86Sub32RR, rs_r0.GetReg(), rs_r2.GetReg());
604
605      // For this case, return the result in EAX.
606      rl_result.reg.SetReg(r0);
607    }
608  }
609
610  return rl_result;
611}
612
613RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi,
614                                  bool is_div) {
615  LOG(FATAL) << "Unexpected use of GenDivRem for x86";
616  return rl_dest;
617}
618
619RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
620                                  RegLocation rl_src2, bool is_div, bool check_zero) {
621  // We have to use fixed registers, so flush all the temps.
622  FlushAllRegs();
623  LockCallTemps();  // Prepare for explicit register usage.
624
625  // Load LHS into EAX.
626  LoadValueDirectFixed(rl_src1, rs_r0);
627
628  // Load RHS into EBX.
629  LoadValueDirectFixed(rl_src2, rs_r1);
630
631  // Copy LHS sign bit into EDX.
632  NewLIR0(kx86Cdq32Da);
633
634  if (check_zero) {
635    // Handle division by zero case.
636    GenDivZeroCheck(rs_r1);
637  }
638
639  // Have to catch 0x80000000/-1 case, or we will get an exception!
640  OpRegImm(kOpCmp, rs_r1, -1);
641  LIR *minus_one_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
642
643  // RHS is -1.
644  OpRegImm(kOpCmp, rs_r0, 0x80000000);
645  LIR * minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
646
647  // In 0x80000000/-1 case.
648  if (!is_div) {
649    // For DIV, EAX is already right. For REM, we need EDX 0.
650    LoadConstantNoClobber(rs_r2, 0);
651  }
652  LIR* done = NewLIR1(kX86Jmp8, 0);
653
654  // Expected case.
655  minus_one_branch->target = NewLIR0(kPseudoTargetLabel);
656  minint_branch->target = minus_one_branch->target;
657  NewLIR1(kX86Idivmod32DaR, rs_r1.GetReg());
658  done->target = NewLIR0(kPseudoTargetLabel);
659
660  // Result is in EAX for div and EDX for rem.
661  RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, rs_r0, INVALID_SREG, INVALID_SREG};
662  if (!is_div) {
663    rl_result.reg.SetReg(r2);
664  }
665  return rl_result;
666}
667
668bool X86Mir2Lir::GenInlinedMinMaxInt(CallInfo* info, bool is_min) {
669  DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
670
671  // Get the two arguments to the invoke and place them in GP registers.
672  RegLocation rl_src1 = info->args[0];
673  RegLocation rl_src2 = info->args[1];
674  rl_src1 = LoadValue(rl_src1, kCoreReg);
675  rl_src2 = LoadValue(rl_src2, kCoreReg);
676
677  RegLocation rl_dest = InlineTarget(info);
678  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
679
680  /*
681   * If the result register is the same as the second element, then we need to be careful.
682   * The reason is that the first copy will inadvertently clobber the second element with
683   * the first one thus yielding the wrong result. Thus we do a swap in that case.
684   */
685  if (rl_result.reg.GetReg() == rl_src2.reg.GetReg()) {
686    std::swap(rl_src1, rl_src2);
687  }
688
689  // Pick the first integer as min/max.
690  OpRegCopy(rl_result.reg, rl_src1.reg);
691
692  // If the integers are both in the same register, then there is nothing else to do
693  // because they are equal and we have already moved one into the result.
694  if (rl_src1.reg.GetReg() != rl_src2.reg.GetReg()) {
695    // It is possible we didn't pick correctly so do the actual comparison now.
696    OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg);
697
698    // Conditionally move the other integer into the destination register.
699    ConditionCode condition_code = is_min ? kCondGt : kCondLt;
700    OpCondRegReg(kOpCmov, condition_code, rl_result.reg, rl_src2.reg);
701  }
702
703  StoreValue(rl_dest, rl_result);
704  return true;
705}
706
707bool X86Mir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) {
708  RegLocation rl_src_address = info->args[0];  // long address
709  rl_src_address = NarrowRegLoc(rl_src_address);  // ignore high half in info->args[1]
710  RegLocation rl_dest = size == k64 ? InlineTargetWide(info) : InlineTarget(info);
711  RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
712  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
713  // Unaligned access is allowed on x86.
714  LoadBaseDisp(rl_address.reg, 0, rl_result.reg, size);
715  if (size == k64) {
716    StoreValueWide(rl_dest, rl_result);
717  } else {
718    DCHECK(size == kSignedByte || size == kSignedHalf || size == k32);
719    StoreValue(rl_dest, rl_result);
720  }
721  return true;
722}
723
724bool X86Mir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) {
725  RegLocation rl_src_address = info->args[0];  // long address
726  rl_src_address = NarrowRegLoc(rl_src_address);  // ignore high half in info->args[1]
727  RegLocation rl_src_value = info->args[2];  // [size] value
728  RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
729  if (size == k64) {
730    // Unaligned access is allowed on x86.
731    RegLocation rl_value = LoadValueWide(rl_src_value, kCoreReg);
732    StoreBaseDisp(rl_address.reg, 0, rl_value.reg, size);
733  } else {
734    DCHECK(size == kSignedByte || size == kSignedHalf || size == k32);
735    // Unaligned access is allowed on x86.
736    RegLocation rl_value = LoadValue(rl_src_value, kCoreReg);
737    StoreBaseDisp(rl_address.reg, 0, rl_value.reg, size);
738  }
739  return true;
740}
741
742void X86Mir2Lir::OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale, int offset) {
743  NewLIR5(kX86Lea32RA, r_base.GetReg(), reg1.GetReg(), reg2.GetReg(), scale, offset);
744}
745
746void X86Mir2Lir::OpTlsCmp(ThreadOffset<4> offset, int val) {
747  DCHECK_EQ(kX86, cu_->instruction_set);
748  NewLIR2(kX86Cmp16TI8, offset.Int32Value(), val);
749}
750
751void X86Mir2Lir::OpTlsCmp(ThreadOffset<8> offset, int val) {
752  DCHECK_EQ(kX86_64, cu_->instruction_set);
753  NewLIR2(kX86Cmp16TI8, offset.Int32Value(), val);
754}
755
756static bool IsInReg(X86Mir2Lir *pMir2Lir, const RegLocation &rl, RegStorage reg) {
757  return rl.reg.Valid() && rl.reg.GetReg() == reg.GetReg() && (pMir2Lir->IsLive(reg) || rl.home);
758}
759
760bool X86Mir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) {
761  DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
762  // Unused - RegLocation rl_src_unsafe = info->args[0];
763  RegLocation rl_src_obj = info->args[1];  // Object - known non-null
764  RegLocation rl_src_offset = info->args[2];  // long low
765  rl_src_offset = NarrowRegLoc(rl_src_offset);  // ignore high half in info->args[3]
766  RegLocation rl_src_expected = info->args[4];  // int, long or Object
767  // If is_long, high half is in info->args[5]
768  RegLocation rl_src_new_value = info->args[is_long ? 6 : 5];  // int, long or Object
769  // If is_long, high half is in info->args[7]
770
771  if (is_long) {
772    // TODO: avoid unnecessary loads of SI and DI when the values are in registers.
773    // TODO: CFI support.
774    FlushAllRegs();
775    LockCallTemps();
776    RegStorage r_tmp1 = RegStorage::MakeRegPair(rs_rAX, rs_rDX);
777    RegStorage r_tmp2 = RegStorage::MakeRegPair(rs_rBX, rs_rCX);
778    LoadValueDirectWideFixed(rl_src_expected, r_tmp1);
779    LoadValueDirectWideFixed(rl_src_new_value, r_tmp2);
780    NewLIR1(kX86Push32R, rs_rDI.GetReg());
781    MarkTemp(rs_rDI);
782    LockTemp(rs_rDI);
783    NewLIR1(kX86Push32R, rs_rSI.GetReg());
784    MarkTemp(rs_rSI);
785    LockTemp(rs_rSI);
786    const int push_offset = 4 /* push edi */ + 4 /* push esi */;
787    int srcObjSp = IsInReg(this, rl_src_obj, rs_rSI) ? 0
788                : (IsInReg(this, rl_src_obj, rs_rDI) ? 4
789                : (SRegOffset(rl_src_obj.s_reg_low) + push_offset));
790    // FIXME: needs 64-bit update.
791    LoadWordDisp(TargetReg(kSp), srcObjSp, rs_rDI);
792    int srcOffsetSp = IsInReg(this, rl_src_offset, rs_rSI) ? 0
793                   : (IsInReg(this, rl_src_offset, rs_rDI) ? 4
794                   : (SRegOffset(rl_src_offset.s_reg_low) + push_offset));
795    LoadWordDisp(TargetReg(kSp), srcOffsetSp, rs_rSI);
796    NewLIR4(kX86LockCmpxchg8bA, rs_rDI.GetReg(), rs_rSI.GetReg(), 0, 0);
797
798    // After a store we need to insert barrier in case of potential load. Since the
799    // locked cmpxchg has full barrier semantics, only a scheduling barrier will be generated.
800    GenMemBarrier(kStoreLoad);
801
802    FreeTemp(rs_rSI);
803    UnmarkTemp(rs_rSI);
804    NewLIR1(kX86Pop32R, rs_rSI.GetReg());
805    FreeTemp(rs_rDI);
806    UnmarkTemp(rs_rDI);
807    NewLIR1(kX86Pop32R, rs_rDI.GetReg());
808    FreeCallTemps();
809  } else {
810    // EAX must hold expected for CMPXCHG. Neither rl_new_value, nor r_ptr may be in EAX.
811    FlushReg(rs_r0);
812    Clobber(rs_r0);
813    LockTemp(rs_r0);
814
815    RegLocation rl_object = LoadValue(rl_src_obj, kRefReg);
816    RegLocation rl_new_value = LoadValue(rl_src_new_value);
817
818    if (is_object && !mir_graph_->IsConstantNullRef(rl_new_value)) {
819      // Mark card for object assuming new value is stored.
820      FreeTemp(rs_r0);  // Temporarily release EAX for MarkGCCard().
821      MarkGCCard(rl_new_value.reg, rl_object.reg);
822      LockTemp(rs_r0);
823    }
824
825    RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
826    LoadValueDirect(rl_src_expected, rs_r0);
827    NewLIR5(kX86LockCmpxchgAR, rl_object.reg.GetReg(), rl_offset.reg.GetReg(), 0, 0, rl_new_value.reg.GetReg());
828
829    // After a store we need to insert barrier in case of potential load. Since the
830    // locked cmpxchg has full barrier semantics, only a scheduling barrier will be generated.
831    GenMemBarrier(kStoreLoad);
832
833    FreeTemp(rs_r0);
834  }
835
836  // Convert ZF to boolean
837  RegLocation rl_dest = InlineTarget(info);  // boolean place for result
838  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
839  NewLIR2(kX86Set8R, rl_result.reg.GetReg(), kX86CondZ);
840  NewLIR2(kX86Movzx8RR, rl_result.reg.GetReg(), rl_result.reg.GetReg());
841  StoreValue(rl_dest, rl_result);
842  return true;
843}
844
845LIR* X86Mir2Lir::OpPcRelLoad(RegStorage reg, LIR* target) {
846  CHECK(base_of_code_ != nullptr);
847
848  // Address the start of the method
849  RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
850  if (rl_method.wide) {
851    LoadValueDirectWideFixed(rl_method, reg);
852  } else {
853    LoadValueDirectFixed(rl_method, reg);
854  }
855  store_method_addr_used_ = true;
856
857  // Load the proper value from the literal area.
858  // We don't know the proper offset for the value, so pick one that will force
859  // 4 byte offset.  We will fix this up in the assembler later to have the right
860  // value.
861  LIR *res = RawLIR(current_dalvik_offset_, kX86Mov32RM, reg.GetReg(), reg.GetReg(), 256,
862                    0, 0, target);
863  res->target = target;
864  res->flags.fixup = kFixupLoad;
865  SetMemRefType(res, true, kLiteral);
866  store_method_addr_used_ = true;
867  return res;
868}
869
870LIR* X86Mir2Lir::OpVldm(RegStorage r_base, int count) {
871  LOG(FATAL) << "Unexpected use of OpVldm for x86";
872  return NULL;
873}
874
875LIR* X86Mir2Lir::OpVstm(RegStorage r_base, int count) {
876  LOG(FATAL) << "Unexpected use of OpVstm for x86";
877  return NULL;
878}
879
880void X86Mir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src,
881                                               RegLocation rl_result, int lit,
882                                               int first_bit, int second_bit) {
883  RegStorage t_reg = AllocTemp();
884  OpRegRegImm(kOpLsl, t_reg, rl_src.reg, second_bit - first_bit);
885  OpRegRegReg(kOpAdd, rl_result.reg, rl_src.reg, t_reg);
886  FreeTemp(t_reg);
887  if (first_bit != 0) {
888    OpRegRegImm(kOpLsl, rl_result.reg, rl_result.reg, first_bit);
889  }
890}
891
892void X86Mir2Lir::GenDivZeroCheckWide(RegStorage reg) {
893  DCHECK(reg.IsPair());  // TODO: allow 64BitSolo.
894  // We are not supposed to clobber the incoming storage, so allocate a temporary.
895  RegStorage t_reg = AllocTemp();
896
897  // Doing an OR is a quick way to check if both registers are zero. This will set the flags.
898  OpRegRegReg(kOpOr, t_reg, reg.GetLow(), reg.GetHigh());
899
900  // In case of zero, throw ArithmeticException.
901  GenDivZeroCheck(kCondEq);
902
903  // The temp is no longer needed so free it at this time.
904  FreeTemp(t_reg);
905}
906
907void X86Mir2Lir::GenArrayBoundsCheck(RegStorage index,
908                                     RegStorage array_base,
909                                     int len_offset) {
910  class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
911   public:
912    ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch,
913                             RegStorage index, RegStorage array_base, int32_t len_offset)
914        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
915          index_(index), array_base_(array_base), len_offset_(len_offset) {
916    }
917
918    void Compile() OVERRIDE {
919      m2l_->ResetRegPool();
920      m2l_->ResetDefTracking();
921      GenerateTargetLabel(kPseudoThrowTarget);
922
923      RegStorage new_index = index_;
924      // Move index out of kArg1, either directly to kArg0, or to kArg2.
925      if (index_.GetReg() == m2l_->TargetReg(kArg1).GetReg()) {
926        if (array_base_.GetReg() == m2l_->TargetReg(kArg0).GetReg()) {
927          m2l_->OpRegCopy(m2l_->TargetReg(kArg2), index_);
928          new_index = m2l_->TargetReg(kArg2);
929        } else {
930          m2l_->OpRegCopy(m2l_->TargetReg(kArg0), index_);
931          new_index = m2l_->TargetReg(kArg0);
932        }
933      }
934      // Load array length to kArg1.
935      m2l_->OpRegMem(kOpMov, m2l_->TargetReg(kArg1), array_base_, len_offset_);
936      if (Is64BitInstructionSet(cu_->instruction_set)) {
937        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(8, pThrowArrayBounds),
938                                      new_index, m2l_->TargetReg(kArg1), true);
939      } else {
940        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pThrowArrayBounds),
941                                      new_index, m2l_->TargetReg(kArg1), true);
942      }
943    }
944
945   private:
946    const RegStorage index_;
947    const RegStorage array_base_;
948    const int32_t len_offset_;
949  };
950
951  OpRegMem(kOpCmp, index, array_base, len_offset);
952  LIR* branch = OpCondBranch(kCondUge, nullptr);
953  AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch,
954                                                    index, array_base, len_offset));
955}
956
957void X86Mir2Lir::GenArrayBoundsCheck(int32_t index,
958                                     RegStorage array_base,
959                                     int32_t len_offset) {
960  class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
961   public:
962    ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch,
963                             int32_t index, RegStorage array_base, int32_t len_offset)
964        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
965          index_(index), array_base_(array_base), len_offset_(len_offset) {
966    }
967
968    void Compile() OVERRIDE {
969      m2l_->ResetRegPool();
970      m2l_->ResetDefTracking();
971      GenerateTargetLabel(kPseudoThrowTarget);
972
973      // Load array length to kArg1.
974      m2l_->OpRegMem(kOpMov, m2l_->TargetReg(kArg1), array_base_, len_offset_);
975      m2l_->LoadConstant(m2l_->TargetReg(kArg0), index_);
976      if (Is64BitInstructionSet(cu_->instruction_set)) {
977        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(8, pThrowArrayBounds),
978                                      m2l_->TargetReg(kArg0), m2l_->TargetReg(kArg1), true);
979      } else {
980        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pThrowArrayBounds),
981                                      m2l_->TargetReg(kArg0), m2l_->TargetReg(kArg1), true);
982      }
983    }
984
985   private:
986    const int32_t index_;
987    const RegStorage array_base_;
988    const int32_t len_offset_;
989  };
990
991  NewLIR3(IS_SIMM8(index) ? kX86Cmp32MI8 : kX86Cmp32MI, array_base.GetReg(), len_offset, index);
992  LIR* branch = OpCondBranch(kCondLs, nullptr);
993  AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch,
994                                                    index, array_base, len_offset));
995}
996
997// Test suspend flag, return target of taken suspend branch
998LIR* X86Mir2Lir::OpTestSuspend(LIR* target) {
999  if (Is64BitInstructionSet(cu_->instruction_set)) {
1000    OpTlsCmp(Thread::ThreadFlagsOffset<8>(), 0);
1001  } else {
1002    OpTlsCmp(Thread::ThreadFlagsOffset<4>(), 0);
1003  }
1004  return OpCondBranch((target == NULL) ? kCondNe : kCondEq, target);
1005}
1006
1007// Decrement register and branch on condition
1008LIR* X86Mir2Lir::OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) {
1009  OpRegImm(kOpSub, reg, 1);
1010  return OpCondBranch(c_code, target);
1011}
1012
1013bool X86Mir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
1014                                    RegLocation rl_src, RegLocation rl_dest, int lit) {
1015  LOG(FATAL) << "Unexpected use of smallLiteralDive in x86";
1016  return false;
1017}
1018
1019bool X86Mir2Lir::EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) {
1020  LOG(FATAL) << "Unexpected use of easyMultiply in x86";
1021  return false;
1022}
1023
1024LIR* X86Mir2Lir::OpIT(ConditionCode cond, const char* guide) {
1025  LOG(FATAL) << "Unexpected use of OpIT in x86";
1026  return NULL;
1027}
1028
1029void X86Mir2Lir::OpEndIT(LIR* it) {
1030  LOG(FATAL) << "Unexpected use of OpEndIT in x86";
1031}
1032
1033void X86Mir2Lir::GenImulRegImm(RegStorage dest, RegStorage src, int val) {
1034  switch (val) {
1035    case 0:
1036      NewLIR2(kX86Xor32RR, dest.GetReg(), dest.GetReg());
1037      break;
1038    case 1:
1039      OpRegCopy(dest, src);
1040      break;
1041    default:
1042      OpRegRegImm(kOpMul, dest, src, val);
1043      break;
1044  }
1045}
1046
1047void X86Mir2Lir::GenImulMemImm(RegStorage dest, int sreg, int displacement, int val) {
1048  LIR *m;
1049  switch (val) {
1050    case 0:
1051      NewLIR2(kX86Xor32RR, dest.GetReg(), dest.GetReg());
1052      break;
1053    case 1:
1054      LoadBaseDisp(rs_rX86_SP, displacement, dest, k32);
1055      break;
1056    default:
1057      m = NewLIR4(IS_SIMM8(val) ? kX86Imul32RMI8 : kX86Imul32RMI, dest.GetReg(),
1058                  rs_rX86_SP.GetReg(), displacement, val);
1059      AnnotateDalvikRegAccess(m, displacement >> 2, true /* is_load */, true /* is_64bit */);
1060      break;
1061  }
1062}
1063
1064void X86Mir2Lir::GenMulLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1065                            RegLocation rl_src2) {
1066  if (rl_src1.is_const) {
1067    std::swap(rl_src1, rl_src2);
1068  }
1069  // Are we multiplying by a constant?
1070  if (rl_src2.is_const) {
1071    // Do special compare/branch against simple const operand
1072    int64_t val = mir_graph_->ConstantValueWide(rl_src2);
1073    if (val == 0) {
1074      RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1075      OpRegReg(kOpXor, rl_result.reg.GetLow(), rl_result.reg.GetLow());
1076      OpRegReg(kOpXor, rl_result.reg.GetHigh(), rl_result.reg.GetHigh());
1077      StoreValueWide(rl_dest, rl_result);
1078      return;
1079    } else if (val == 1) {
1080      StoreValueWide(rl_dest, rl_src1);
1081      return;
1082    } else if (val == 2) {
1083      GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src1, rl_src1);
1084      return;
1085    } else if (IsPowerOfTwo(val)) {
1086      int shift_amount = LowestSetBit(val);
1087      if (!BadOverlap(rl_src1, rl_dest)) {
1088        rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1089        RegLocation rl_result = GenShiftImmOpLong(Instruction::SHL_LONG, rl_dest,
1090                                                  rl_src1, shift_amount);
1091        StoreValueWide(rl_dest, rl_result);
1092        return;
1093      }
1094    }
1095
1096    // Okay, just bite the bullet and do it.
1097    int32_t val_lo = Low32Bits(val);
1098    int32_t val_hi = High32Bits(val);
1099    FlushAllRegs();
1100    LockCallTemps();  // Prepare for explicit register usage.
1101    rl_src1 = UpdateLocWideTyped(rl_src1, kCoreReg);
1102    bool src1_in_reg = rl_src1.location == kLocPhysReg;
1103    int displacement = SRegOffset(rl_src1.s_reg_low);
1104
1105    // ECX <- 1H * 2L
1106    // EAX <- 1L * 2H
1107    if (src1_in_reg) {
1108      GenImulRegImm(rs_r1, rl_src1.reg.GetHigh(), val_lo);
1109      GenImulRegImm(rs_r0, rl_src1.reg.GetLow(), val_hi);
1110    } else {
1111      GenImulMemImm(rs_r1, GetSRegHi(rl_src1.s_reg_low), displacement + HIWORD_OFFSET, val_lo);
1112      GenImulMemImm(rs_r0, rl_src1.s_reg_low, displacement + LOWORD_OFFSET, val_hi);
1113    }
1114
1115    // ECX <- ECX + EAX  (2H * 1L) + (1H * 2L)
1116    NewLIR2(kX86Add32RR, rs_r1.GetReg(), rs_r0.GetReg());
1117
1118    // EAX <- 2L
1119    LoadConstantNoClobber(rs_r0, val_lo);
1120
1121    // EDX:EAX <- 2L * 1L (double precision)
1122    if (src1_in_reg) {
1123      NewLIR1(kX86Mul32DaR, rl_src1.reg.GetLowReg());
1124    } else {
1125      LIR *m = NewLIR2(kX86Mul32DaM, rs_rX86_SP.GetReg(), displacement + LOWORD_OFFSET);
1126      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1127                              true /* is_load */, true /* is_64bit */);
1128    }
1129
1130    // EDX <- EDX + ECX (add high words)
1131    NewLIR2(kX86Add32RR, rs_r2.GetReg(), rs_r1.GetReg());
1132
1133    // Result is EDX:EAX
1134    RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1,
1135                             RegStorage::MakeRegPair(rs_r0, rs_r2), INVALID_SREG, INVALID_SREG};
1136    StoreValueWide(rl_dest, rl_result);
1137    return;
1138  }
1139
1140  // Nope.  Do it the hard way
1141  // Check for V*V.  We can eliminate a multiply in that case, as 2L*1H == 2H*1L.
1142  bool is_square = mir_graph_->SRegToVReg(rl_src1.s_reg_low) ==
1143                   mir_graph_->SRegToVReg(rl_src2.s_reg_low);
1144
1145  FlushAllRegs();
1146  LockCallTemps();  // Prepare for explicit register usage.
1147  rl_src1 = UpdateLocWideTyped(rl_src1, kCoreReg);
1148  rl_src2 = UpdateLocWideTyped(rl_src2, kCoreReg);
1149
1150  // At this point, the VRs are in their home locations.
1151  bool src1_in_reg = rl_src1.location == kLocPhysReg;
1152  bool src2_in_reg = rl_src2.location == kLocPhysReg;
1153
1154  // ECX <- 1H
1155  if (src1_in_reg) {
1156    NewLIR2(kX86Mov32RR, rs_r1.GetReg(), rl_src1.reg.GetHighReg());
1157  } else {
1158    LoadBaseDisp(rs_rX86_SP, SRegOffset(rl_src1.s_reg_low) + HIWORD_OFFSET, rs_r1, k32);
1159  }
1160
1161  if (is_square) {
1162    // Take advantage of the fact that the values are the same.
1163    // ECX <- ECX * 2L  (1H * 2L)
1164    if (src2_in_reg) {
1165      NewLIR2(kX86Imul32RR, rs_r1.GetReg(), rl_src2.reg.GetLowReg());
1166    } else {
1167      int displacement = SRegOffset(rl_src2.s_reg_low);
1168      LIR *m = NewLIR3(kX86Imul32RM, rs_r1.GetReg(), rs_rX86_SP.GetReg(),
1169                       displacement + LOWORD_OFFSET);
1170      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1171                              true /* is_load */, true /* is_64bit */);
1172    }
1173
1174    // ECX <- 2*ECX (2H * 1L) + (1H * 2L)
1175    NewLIR2(kX86Add32RR, rs_r1.GetReg(), rs_r1.GetReg());
1176  } else {
1177    // EAX <- 2H
1178    if (src2_in_reg) {
1179      NewLIR2(kX86Mov32RR, rs_r0.GetReg(), rl_src2.reg.GetHighReg());
1180    } else {
1181      LoadBaseDisp(rs_rX86_SP, SRegOffset(rl_src2.s_reg_low) + HIWORD_OFFSET, rs_r0, k32);
1182    }
1183
1184    // EAX <- EAX * 1L  (2H * 1L)
1185    if (src1_in_reg) {
1186      NewLIR2(kX86Imul32RR, rs_r0.GetReg(), rl_src1.reg.GetLowReg());
1187    } else {
1188      int displacement = SRegOffset(rl_src1.s_reg_low);
1189      LIR *m = NewLIR3(kX86Imul32RM, rs_r0.GetReg(), rs_rX86_SP.GetReg(),
1190                       displacement + LOWORD_OFFSET);
1191      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1192                              true /* is_load */, true /* is_64bit */);
1193    }
1194
1195    // ECX <- ECX * 2L  (1H * 2L)
1196    if (src2_in_reg) {
1197      NewLIR2(kX86Imul32RR, rs_r1.GetReg(), rl_src2.reg.GetLowReg());
1198    } else {
1199      int displacement = SRegOffset(rl_src2.s_reg_low);
1200      LIR *m = NewLIR3(kX86Imul32RM, rs_r1.GetReg(), rs_rX86_SP.GetReg(),
1201                       displacement + LOWORD_OFFSET);
1202      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1203                              true /* is_load */, true /* is_64bit */);
1204    }
1205
1206    // ECX <- ECX + EAX  (2H * 1L) + (1H * 2L)
1207    NewLIR2(kX86Add32RR, rs_r1.GetReg(), rs_r0.GetReg());
1208  }
1209
1210  // EAX <- 2L
1211  if (src2_in_reg) {
1212    NewLIR2(kX86Mov32RR, rs_r0.GetReg(), rl_src2.reg.GetLowReg());
1213  } else {
1214    LoadBaseDisp(rs_rX86_SP, SRegOffset(rl_src2.s_reg_low) + LOWORD_OFFSET, rs_r0, k32);
1215  }
1216
1217  // EDX:EAX <- 2L * 1L (double precision)
1218  if (src1_in_reg) {
1219    NewLIR1(kX86Mul32DaR, rl_src1.reg.GetLowReg());
1220  } else {
1221    int displacement = SRegOffset(rl_src1.s_reg_low);
1222    LIR *m = NewLIR2(kX86Mul32DaM, rs_rX86_SP.GetReg(), displacement + LOWORD_OFFSET);
1223    AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1224                            true /* is_load */, true /* is_64bit */);
1225  }
1226
1227  // EDX <- EDX + ECX (add high words)
1228  NewLIR2(kX86Add32RR, rs_r2.GetReg(), rs_r1.GetReg());
1229
1230  // Result is EDX:EAX
1231  RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1,
1232                           RegStorage::MakeRegPair(rs_r0, rs_r2), INVALID_SREG, INVALID_SREG};
1233  StoreValueWide(rl_dest, rl_result);
1234}
1235
1236void X86Mir2Lir::GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src,
1237                                   Instruction::Code op) {
1238  DCHECK_EQ(rl_dest.location, kLocPhysReg);
1239  X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1240  if (rl_src.location == kLocPhysReg) {
1241    // Both operands are in registers.
1242    // But we must ensure that rl_src is in pair
1243    rl_src = LoadValueWide(rl_src, kCoreReg);
1244    if (rl_dest.reg.GetLowReg() == rl_src.reg.GetHighReg()) {
1245      // The registers are the same, so we would clobber it before the use.
1246      RegStorage temp_reg = AllocTemp();
1247      OpRegCopy(temp_reg, rl_dest.reg);
1248      rl_src.reg.SetHighReg(temp_reg.GetReg());
1249    }
1250    NewLIR2(x86op, rl_dest.reg.GetLowReg(), rl_src.reg.GetLowReg());
1251
1252    x86op = GetOpcode(op, rl_dest, rl_src, true);
1253    NewLIR2(x86op, rl_dest.reg.GetHighReg(), rl_src.reg.GetHighReg());
1254    FreeTemp(rl_src.reg);
1255    return;
1256  }
1257
1258  // RHS is in memory.
1259  DCHECK((rl_src.location == kLocDalvikFrame) ||
1260         (rl_src.location == kLocCompilerTemp));
1261  int r_base = TargetReg(kSp).GetReg();
1262  int displacement = SRegOffset(rl_src.s_reg_low);
1263
1264  LIR *lir = NewLIR3(x86op, rl_dest.reg.GetLowReg(), r_base, displacement + LOWORD_OFFSET);
1265  AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1266                          true /* is_load */, true /* is64bit */);
1267  x86op = GetOpcode(op, rl_dest, rl_src, true);
1268  lir = NewLIR3(x86op, rl_dest.reg.GetHighReg(), r_base, displacement + HIWORD_OFFSET);
1269  AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1270                          true /* is_load */, true /* is64bit */);
1271}
1272
1273void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1274  rl_dest = UpdateLocWideTyped(rl_dest, kCoreReg);
1275  if (rl_dest.location == kLocPhysReg) {
1276    // Ensure we are in a register pair
1277    RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1278
1279    rl_src = UpdateLocWideTyped(rl_src, kCoreReg);
1280    GenLongRegOrMemOp(rl_result, rl_src, op);
1281    StoreFinalValueWide(rl_dest, rl_result);
1282    return;
1283  }
1284
1285  // It wasn't in registers, so it better be in memory.
1286  DCHECK((rl_dest.location == kLocDalvikFrame) ||
1287         (rl_dest.location == kLocCompilerTemp));
1288  rl_src = LoadValueWide(rl_src, kCoreReg);
1289
1290  // Operate directly into memory.
1291  X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1292  int r_base = TargetReg(kSp).GetReg();
1293  int displacement = SRegOffset(rl_dest.s_reg_low);
1294
1295  LIR *lir = NewLIR3(x86op, r_base, displacement + LOWORD_OFFSET, rl_src.reg.GetLowReg());
1296  AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1297                          true /* is_load */, true /* is64bit */);
1298  AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1299                          false /* is_load */, true /* is64bit */);
1300  x86op = GetOpcode(op, rl_dest, rl_src, true);
1301  lir = NewLIR3(x86op, r_base, displacement + HIWORD_OFFSET, rl_src.reg.GetHighReg());
1302  AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1303                          true /* is_load */, true /* is64bit */);
1304  AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1305                          false /* is_load */, true /* is64bit */);
1306  FreeTemp(rl_src.reg);
1307}
1308
1309void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src1,
1310                              RegLocation rl_src2, Instruction::Code op,
1311                              bool is_commutative) {
1312  // Is this really a 2 operand operation?
1313  switch (op) {
1314    case Instruction::ADD_LONG_2ADDR:
1315    case Instruction::SUB_LONG_2ADDR:
1316    case Instruction::AND_LONG_2ADDR:
1317    case Instruction::OR_LONG_2ADDR:
1318    case Instruction::XOR_LONG_2ADDR:
1319      if (GenerateTwoOperandInstructions()) {
1320        GenLongArith(rl_dest, rl_src2, op);
1321        return;
1322      }
1323      break;
1324
1325    default:
1326      break;
1327  }
1328
1329  if (rl_dest.location == kLocPhysReg) {
1330    RegLocation rl_result = LoadValueWide(rl_src1, kCoreReg);
1331
1332    // We are about to clobber the LHS, so it needs to be a temp.
1333    rl_result = ForceTempWide(rl_result);
1334
1335    // Perform the operation using the RHS.
1336    rl_src2 = UpdateLocWideTyped(rl_src2, kCoreReg);
1337    GenLongRegOrMemOp(rl_result, rl_src2, op);
1338
1339    // And now record that the result is in the temp.
1340    StoreFinalValueWide(rl_dest, rl_result);
1341    return;
1342  }
1343
1344  // It wasn't in registers, so it better be in memory.
1345  DCHECK((rl_dest.location == kLocDalvikFrame) ||
1346         (rl_dest.location == kLocCompilerTemp));
1347  rl_src1 = UpdateLocWideTyped(rl_src1, kCoreReg);
1348  rl_src2 = UpdateLocWideTyped(rl_src2, kCoreReg);
1349
1350  // Get one of the source operands into temporary register.
1351  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1352  if (IsTemp(rl_src1.reg.GetLow()) && IsTemp(rl_src1.reg.GetHigh())) {
1353    GenLongRegOrMemOp(rl_src1, rl_src2, op);
1354  } else if (is_commutative) {
1355    rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1356    // We need at least one of them to be a temporary.
1357    if (!(IsTemp(rl_src2.reg.GetLow()) && IsTemp(rl_src2.reg.GetHigh()))) {
1358      rl_src1 = ForceTempWide(rl_src1);
1359      GenLongRegOrMemOp(rl_src1, rl_src2, op);
1360    } else {
1361      GenLongRegOrMemOp(rl_src2, rl_src1, op);
1362      StoreFinalValueWide(rl_dest, rl_src2);
1363      return;
1364    }
1365  } else {
1366    // Need LHS to be the temp.
1367    rl_src1 = ForceTempWide(rl_src1);
1368    GenLongRegOrMemOp(rl_src1, rl_src2, op);
1369  }
1370
1371  StoreFinalValueWide(rl_dest, rl_src1);
1372}
1373
1374void X86Mir2Lir::GenAddLong(Instruction::Code opcode, RegLocation rl_dest,
1375                            RegLocation rl_src1, RegLocation rl_src2) {
1376  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1377}
1378
1379void X86Mir2Lir::GenSubLong(Instruction::Code opcode, RegLocation rl_dest,
1380                            RegLocation rl_src1, RegLocation rl_src2) {
1381  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, false);
1382}
1383
1384void X86Mir2Lir::GenAndLong(Instruction::Code opcode, RegLocation rl_dest,
1385                            RegLocation rl_src1, RegLocation rl_src2) {
1386  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1387}
1388
1389void X86Mir2Lir::GenOrLong(Instruction::Code opcode, RegLocation rl_dest,
1390                           RegLocation rl_src1, RegLocation rl_src2) {
1391  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1392}
1393
1394void X86Mir2Lir::GenXorLong(Instruction::Code opcode, RegLocation rl_dest,
1395                            RegLocation rl_src1, RegLocation rl_src2) {
1396  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1397}
1398
1399void X86Mir2Lir::GenNotLong(RegLocation rl_dest, RegLocation rl_src) {
1400  LOG(FATAL) << "Unexpected use GenNotLong()";
1401}
1402
1403void X86Mir2Lir::GenDivRemLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1404                           RegLocation rl_src2, bool is_div) {
1405  LOG(FATAL) << "Unexpected use GenDivRemLong()";
1406}
1407
1408void X86Mir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) {
1409  rl_src = LoadValueWide(rl_src, kCoreReg);
1410  RegLocation rl_result = ForceTempWide(rl_src);
1411  if (((rl_dest.location == kLocPhysReg) && (rl_src.location == kLocPhysReg)) &&
1412      ((rl_dest.reg.GetLowReg() == rl_src.reg.GetHighReg()))) {
1413    // The registers are the same, so we would clobber it before the use.
1414    RegStorage temp_reg = AllocTemp();
1415    OpRegCopy(temp_reg, rl_result.reg);
1416    rl_result.reg.SetHighReg(temp_reg.GetReg());
1417  }
1418  OpRegReg(kOpNeg, rl_result.reg.GetLow(), rl_result.reg.GetLow());    // rLow = -rLow
1419  OpRegImm(kOpAdc, rl_result.reg.GetHigh(), 0);                   // rHigh = rHigh + CF
1420  OpRegReg(kOpNeg, rl_result.reg.GetHigh(), rl_result.reg.GetHigh());  // rHigh = -rHigh
1421  StoreValueWide(rl_dest, rl_result);
1422}
1423
1424void X86Mir2Lir::OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<4> thread_offset) {
1425  DCHECK_EQ(kX86, cu_->instruction_set);
1426  X86OpCode opcode = kX86Bkpt;
1427  switch (op) {
1428  case kOpCmp: opcode = kX86Cmp32RT;  break;
1429  case kOpMov: opcode = kX86Mov32RT;  break;
1430  default:
1431    LOG(FATAL) << "Bad opcode: " << op;
1432    break;
1433  }
1434  NewLIR2(opcode, r_dest.GetReg(), thread_offset.Int32Value());
1435}
1436
1437void X86Mir2Lir::OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<8> thread_offset) {
1438  DCHECK_EQ(kX86_64, cu_->instruction_set);
1439  X86OpCode opcode = kX86Bkpt;
1440  if (Gen64Bit() && r_dest.Is64BitSolo()) {
1441    switch (op) {
1442    case kOpCmp: opcode = kX86Cmp64RT;  break;
1443    case kOpMov: opcode = kX86Mov64RT;  break;
1444    default:
1445      LOG(FATAL) << "Bad opcode(OpRegThreadMem 64): " << op;
1446      break;
1447    }
1448  } else {
1449    switch (op) {
1450    case kOpCmp: opcode = kX86Cmp32RT;  break;
1451    case kOpMov: opcode = kX86Mov32RT;  break;
1452    default:
1453      LOG(FATAL) << "Bad opcode: " << op;
1454      break;
1455    }
1456  }
1457  NewLIR2(opcode, r_dest.GetReg(), thread_offset.Int32Value());
1458}
1459
1460/*
1461 * Generate array load
1462 */
1463void X86Mir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
1464                             RegLocation rl_index, RegLocation rl_dest, int scale) {
1465  RegisterClass reg_class = RegClassBySize(size);
1466  int len_offset = mirror::Array::LengthOffset().Int32Value();
1467  RegLocation rl_result;
1468  rl_array = LoadValue(rl_array, kRefReg);
1469
1470  int data_offset;
1471  if (size == k64 || size == kDouble) {
1472    data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1473  } else {
1474    data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1475  }
1476
1477  bool constant_index = rl_index.is_const;
1478  int32_t constant_index_value = 0;
1479  if (!constant_index) {
1480    rl_index = LoadValue(rl_index, kCoreReg);
1481  } else {
1482    constant_index_value = mir_graph_->ConstantValue(rl_index);
1483    // If index is constant, just fold it into the data offset
1484    data_offset += constant_index_value << scale;
1485    // treat as non array below
1486    rl_index.reg = RegStorage::InvalidReg();
1487  }
1488
1489  /* null object? */
1490  GenNullCheck(rl_array.reg, opt_flags);
1491
1492  if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
1493    if (constant_index) {
1494      GenArrayBoundsCheck(constant_index_value, rl_array.reg, len_offset);
1495    } else {
1496      GenArrayBoundsCheck(rl_index.reg, rl_array.reg, len_offset);
1497    }
1498  }
1499  rl_result = EvalLoc(rl_dest, reg_class, true);
1500  LoadBaseIndexedDisp(rl_array.reg, rl_index.reg, scale, data_offset, rl_result.reg, size);
1501  if ((size == k64) || (size == kDouble)) {
1502    StoreValueWide(rl_dest, rl_result);
1503  } else {
1504    StoreValue(rl_dest, rl_result);
1505  }
1506}
1507
1508/*
1509 * Generate array store
1510 *
1511 */
1512void X86Mir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
1513                             RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) {
1514  RegisterClass reg_class = RegClassBySize(size);
1515  int len_offset = mirror::Array::LengthOffset().Int32Value();
1516  int data_offset;
1517
1518  if (size == k64 || size == kDouble) {
1519    data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1520  } else {
1521    data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1522  }
1523
1524  rl_array = LoadValue(rl_array, kRefReg);
1525  bool constant_index = rl_index.is_const;
1526  int32_t constant_index_value = 0;
1527  if (!constant_index) {
1528    rl_index = LoadValue(rl_index, kCoreReg);
1529  } else {
1530    // If index is constant, just fold it into the data offset
1531    constant_index_value = mir_graph_->ConstantValue(rl_index);
1532    data_offset += constant_index_value << scale;
1533    // treat as non array below
1534    rl_index.reg = RegStorage::InvalidReg();
1535  }
1536
1537  /* null object? */
1538  GenNullCheck(rl_array.reg, opt_flags);
1539
1540  if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
1541    if (constant_index) {
1542      GenArrayBoundsCheck(constant_index_value, rl_array.reg, len_offset);
1543    } else {
1544      GenArrayBoundsCheck(rl_index.reg, rl_array.reg, len_offset);
1545    }
1546  }
1547  if ((size == k64) || (size == kDouble)) {
1548    rl_src = LoadValueWide(rl_src, reg_class);
1549  } else {
1550    rl_src = LoadValue(rl_src, reg_class);
1551  }
1552  // If the src reg can't be byte accessed, move it to a temp first.
1553  if ((size == kSignedByte || size == kUnsignedByte) &&
1554      rl_src.reg.GetRegNum() >= rs_rX86_SP.GetRegNum()) {
1555    RegStorage temp = AllocTemp();
1556    OpRegCopy(temp, rl_src.reg);
1557    StoreBaseIndexedDisp(rl_array.reg, rl_index.reg, scale, data_offset, temp, size);
1558  } else {
1559    StoreBaseIndexedDisp(rl_array.reg, rl_index.reg, scale, data_offset, rl_src.reg, size);
1560  }
1561  if (card_mark) {
1562    // Free rl_index if its a temp. Ensures there are 2 free regs for card mark.
1563    if (!constant_index) {
1564      FreeTemp(rl_index.reg);
1565    }
1566    MarkGCCard(rl_src.reg, rl_array.reg);
1567  }
1568}
1569
1570RegLocation X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1571                                          RegLocation rl_src, int shift_amount) {
1572  RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1573  switch (opcode) {
1574    case Instruction::SHL_LONG:
1575    case Instruction::SHL_LONG_2ADDR:
1576      DCHECK_NE(shift_amount, 1);  // Prevent a double store from happening.
1577      if (shift_amount == 32) {
1578        OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetLow());
1579        LoadConstant(rl_result.reg.GetLow(), 0);
1580      } else if (shift_amount > 31) {
1581        OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetLow());
1582        NewLIR2(kX86Sal32RI, rl_result.reg.GetHighReg(), shift_amount - 32);
1583        LoadConstant(rl_result.reg.GetLow(), 0);
1584      } else {
1585        OpRegCopy(rl_result.reg, rl_src.reg);
1586        OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1587        NewLIR3(kX86Shld32RRI, rl_result.reg.GetHighReg(), rl_result.reg.GetLowReg(), shift_amount);
1588        NewLIR2(kX86Sal32RI, rl_result.reg.GetLowReg(), shift_amount);
1589      }
1590      break;
1591    case Instruction::SHR_LONG:
1592    case Instruction::SHR_LONG_2ADDR:
1593      if (shift_amount == 32) {
1594        OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
1595        OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1596        NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), 31);
1597      } else if (shift_amount > 31) {
1598        OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
1599        OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1600        NewLIR2(kX86Sar32RI, rl_result.reg.GetLowReg(), shift_amount - 32);
1601        NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), 31);
1602      } else {
1603        OpRegCopy(rl_result.reg, rl_src.reg);
1604        OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1605        NewLIR3(kX86Shrd32RRI, rl_result.reg.GetLowReg(), rl_result.reg.GetHighReg(), shift_amount);
1606        NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), shift_amount);
1607      }
1608      break;
1609    case Instruction::USHR_LONG:
1610    case Instruction::USHR_LONG_2ADDR:
1611      if (shift_amount == 32) {
1612        OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
1613        LoadConstant(rl_result.reg.GetHigh(), 0);
1614      } else if (shift_amount > 31) {
1615        OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
1616        NewLIR2(kX86Shr32RI, rl_result.reg.GetLowReg(), shift_amount - 32);
1617        LoadConstant(rl_result.reg.GetHigh(), 0);
1618      } else {
1619        OpRegCopy(rl_result.reg, rl_src.reg);
1620        OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1621        NewLIR3(kX86Shrd32RRI, rl_result.reg.GetLowReg(), rl_result.reg.GetHighReg(), shift_amount);
1622        NewLIR2(kX86Shr32RI, rl_result.reg.GetHighReg(), shift_amount);
1623      }
1624      break;
1625    default:
1626      LOG(FATAL) << "Unexpected case";
1627  }
1628  return rl_result;
1629}
1630
1631void X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1632                                   RegLocation rl_src, RegLocation rl_shift) {
1633  // Per spec, we only care about low 6 bits of shift amount.
1634  int shift_amount = mir_graph_->ConstantValue(rl_shift) & 0x3f;
1635  if (shift_amount == 0) {
1636    rl_src = LoadValueWide(rl_src, kCoreReg);
1637    StoreValueWide(rl_dest, rl_src);
1638    return;
1639  } else if (shift_amount == 1 &&
1640            (opcode ==  Instruction::SHL_LONG || opcode == Instruction::SHL_LONG_2ADDR)) {
1641    // Need to handle this here to avoid calling StoreValueWide twice.
1642    GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src, rl_src);
1643    return;
1644  }
1645  if (BadOverlap(rl_src, rl_dest)) {
1646    GenShiftOpLong(opcode, rl_dest, rl_src, rl_shift);
1647    return;
1648  }
1649  rl_src = LoadValueWide(rl_src, kCoreReg);
1650  RegLocation rl_result = GenShiftImmOpLong(opcode, rl_dest, rl_src, shift_amount);
1651  StoreValueWide(rl_dest, rl_result);
1652}
1653
1654void X86Mir2Lir::GenArithImmOpLong(Instruction::Code opcode,
1655                                   RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
1656  switch (opcode) {
1657    case Instruction::ADD_LONG:
1658    case Instruction::AND_LONG:
1659    case Instruction::OR_LONG:
1660    case Instruction::XOR_LONG:
1661      if (rl_src2.is_const) {
1662        GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1663      } else {
1664        DCHECK(rl_src1.is_const);
1665        GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1666      }
1667      break;
1668    case Instruction::SUB_LONG:
1669    case Instruction::SUB_LONG_2ADDR:
1670      if (rl_src2.is_const) {
1671        GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1672      } else {
1673        GenSubLong(opcode, rl_dest, rl_src1, rl_src2);
1674      }
1675      break;
1676    case Instruction::ADD_LONG_2ADDR:
1677    case Instruction::OR_LONG_2ADDR:
1678    case Instruction::XOR_LONG_2ADDR:
1679    case Instruction::AND_LONG_2ADDR:
1680      if (rl_src2.is_const) {
1681        if (GenerateTwoOperandInstructions()) {
1682          GenLongImm(rl_dest, rl_src2, opcode);
1683        } else {
1684          GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1685        }
1686      } else {
1687        DCHECK(rl_src1.is_const);
1688        GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1689      }
1690      break;
1691    default:
1692      // Default - bail to non-const handler.
1693      GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
1694      break;
1695  }
1696}
1697
1698bool X86Mir2Lir::IsNoOp(Instruction::Code op, int32_t value) {
1699  switch (op) {
1700    case Instruction::AND_LONG_2ADDR:
1701    case Instruction::AND_LONG:
1702      return value == -1;
1703    case Instruction::OR_LONG:
1704    case Instruction::OR_LONG_2ADDR:
1705    case Instruction::XOR_LONG:
1706    case Instruction::XOR_LONG_2ADDR:
1707      return value == 0;
1708    default:
1709      return false;
1710  }
1711}
1712
1713X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
1714                                bool is_high_op) {
1715  bool rhs_in_mem = rhs.location != kLocPhysReg;
1716  bool dest_in_mem = dest.location != kLocPhysReg;
1717  bool is64Bit = Gen64Bit();
1718  DCHECK(!rhs_in_mem || !dest_in_mem);
1719  switch (op) {
1720    case Instruction::ADD_LONG:
1721    case Instruction::ADD_LONG_2ADDR:
1722      if (dest_in_mem) {
1723        return is64Bit ? kX86Add64MR : is_high_op ? kX86Adc32MR : kX86Add32MR;
1724      } else if (rhs_in_mem) {
1725        return is64Bit ? kX86Add64RM : is_high_op ? kX86Adc32RM : kX86Add32RM;
1726      }
1727      return is64Bit ? kX86Add64RR : is_high_op ? kX86Adc32RR : kX86Add32RR;
1728    case Instruction::SUB_LONG:
1729    case Instruction::SUB_LONG_2ADDR:
1730      if (dest_in_mem) {
1731        return is64Bit ? kX86Sub64MR : is_high_op ? kX86Sbb32MR : kX86Sub32MR;
1732      } else if (rhs_in_mem) {
1733        return is64Bit ? kX86Sub64RM : is_high_op ? kX86Sbb32RM : kX86Sub32RM;
1734      }
1735      return is64Bit ? kX86Sub64RR : is_high_op ? kX86Sbb32RR : kX86Sub32RR;
1736    case Instruction::AND_LONG_2ADDR:
1737    case Instruction::AND_LONG:
1738      if (dest_in_mem) {
1739        return is64Bit ? kX86And64MR : kX86And32MR;
1740      }
1741      if (is64Bit) {
1742        return rhs_in_mem ? kX86And64RM : kX86And64RR;
1743      }
1744      return rhs_in_mem ? kX86And32RM : kX86And32RR;
1745    case Instruction::OR_LONG:
1746    case Instruction::OR_LONG_2ADDR:
1747      if (dest_in_mem) {
1748        return is64Bit ? kX86Or64MR : kX86Or32MR;
1749      }
1750      if (is64Bit) {
1751        return rhs_in_mem ? kX86Or64RM : kX86Or64RR;
1752      }
1753      return rhs_in_mem ? kX86Or32RM : kX86Or32RR;
1754    case Instruction::XOR_LONG:
1755    case Instruction::XOR_LONG_2ADDR:
1756      if (dest_in_mem) {
1757        return is64Bit ? kX86Xor64MR : kX86Xor32MR;
1758      }
1759      if (is64Bit) {
1760        return rhs_in_mem ? kX86Xor64RM : kX86Xor64RR;
1761      }
1762      return rhs_in_mem ? kX86Xor32RM : kX86Xor32RR;
1763    default:
1764      LOG(FATAL) << "Unexpected opcode: " << op;
1765      return kX86Add32RR;
1766  }
1767}
1768
1769X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op,
1770                                int32_t value) {
1771  bool in_mem = loc.location != kLocPhysReg;
1772  bool is64Bit = Gen64Bit();
1773  bool byte_imm = IS_SIMM8(value);
1774  DCHECK(in_mem || !loc.reg.IsFloat());
1775  switch (op) {
1776    case Instruction::ADD_LONG:
1777    case Instruction::ADD_LONG_2ADDR:
1778      if (byte_imm) {
1779        if (in_mem) {
1780          return is64Bit ? kX86Add64MI8 : is_high_op ? kX86Adc32MI8 : kX86Add32MI8;
1781        }
1782        return is64Bit ? kX86Add64RI8 : is_high_op ? kX86Adc32RI8 : kX86Add32RI8;
1783      }
1784      if (in_mem) {
1785        return is64Bit ? kX86Add64MI : is_high_op ? kX86Adc32MI : kX86Add32MI;
1786      }
1787      return is64Bit ? kX86Add64RI : is_high_op ? kX86Adc32RI : kX86Add32RI;
1788    case Instruction::SUB_LONG:
1789    case Instruction::SUB_LONG_2ADDR:
1790      if (byte_imm) {
1791        if (in_mem) {
1792          return is64Bit ? kX86Sub64MI8 : is_high_op ? kX86Sbb32MI8 : kX86Sub32MI8;
1793        }
1794        return is64Bit ? kX86Sub64RI8 : is_high_op ? kX86Sbb32RI8 : kX86Sub32RI8;
1795      }
1796      if (in_mem) {
1797        return is64Bit ? kX86Sub64MI : is_high_op ? kX86Sbb32MI : kX86Sub32MI;
1798      }
1799      return is64Bit ? kX86Sub64RI : is_high_op ? kX86Sbb32RI : kX86Sub32RI;
1800    case Instruction::AND_LONG_2ADDR:
1801    case Instruction::AND_LONG:
1802      if (byte_imm) {
1803        if (is64Bit) {
1804          return in_mem ? kX86And64MI8 : kX86And64RI8;
1805        }
1806        return in_mem ? kX86And32MI8 : kX86And32RI8;
1807      }
1808      if (is64Bit) {
1809        return in_mem ? kX86And64MI : kX86And64RI;
1810      }
1811      return in_mem ? kX86And32MI : kX86And32RI;
1812    case Instruction::OR_LONG:
1813    case Instruction::OR_LONG_2ADDR:
1814      if (byte_imm) {
1815        if (is64Bit) {
1816          return in_mem ? kX86Or64MI8 : kX86Or64RI8;
1817        }
1818        return in_mem ? kX86Or32MI8 : kX86Or32RI8;
1819      }
1820      if (is64Bit) {
1821        return in_mem ? kX86Or64MI : kX86Or64RI;
1822      }
1823      return in_mem ? kX86Or32MI : kX86Or32RI;
1824    case Instruction::XOR_LONG:
1825    case Instruction::XOR_LONG_2ADDR:
1826      if (byte_imm) {
1827        if (is64Bit) {
1828          return in_mem ? kX86Xor64MI8 : kX86Xor64RI8;
1829        }
1830        return in_mem ? kX86Xor32MI8 : kX86Xor32RI8;
1831      }
1832      if (is64Bit) {
1833        return in_mem ? kX86Xor64MI : kX86Xor64RI;
1834      }
1835      return in_mem ? kX86Xor32MI : kX86Xor32RI;
1836    default:
1837      LOG(FATAL) << "Unexpected opcode: " << op;
1838      return kX86Add32MI;
1839  }
1840}
1841
1842void X86Mir2Lir::GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1843  DCHECK(rl_src.is_const);
1844  int64_t val = mir_graph_->ConstantValueWide(rl_src);
1845  int32_t val_lo = Low32Bits(val);
1846  int32_t val_hi = High32Bits(val);
1847  rl_dest = UpdateLocWideTyped(rl_dest, kCoreReg);
1848
1849  // Can we just do this into memory?
1850  if ((rl_dest.location == kLocDalvikFrame) ||
1851      (rl_dest.location == kLocCompilerTemp)) {
1852    int r_base = TargetReg(kSp).GetReg();
1853    int displacement = SRegOffset(rl_dest.s_reg_low);
1854
1855    if (!IsNoOp(op, val_lo)) {
1856      X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
1857      LIR *lir = NewLIR3(x86op, r_base, displacement + LOWORD_OFFSET, val_lo);
1858      AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1859                              true /* is_load */, true /* is64bit */);
1860      AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1861                              false /* is_load */, true /* is64bit */);
1862    }
1863    if (!IsNoOp(op, val_hi)) {
1864      X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
1865      LIR *lir = NewLIR3(x86op, r_base, displacement + HIWORD_OFFSET, val_hi);
1866      AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1867                                true /* is_load */, true /* is64bit */);
1868      AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1869                                false /* is_load */, true /* is64bit */);
1870    }
1871    return;
1872  }
1873
1874  RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1875  DCHECK_EQ(rl_result.location, kLocPhysReg);
1876  DCHECK(!rl_result.reg.IsFloat());
1877
1878  if (!IsNoOp(op, val_lo)) {
1879    X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
1880    NewLIR2(x86op, rl_result.reg.GetLowReg(), val_lo);
1881  }
1882  if (!IsNoOp(op, val_hi)) {
1883    X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
1884    NewLIR2(x86op, rl_result.reg.GetHighReg(), val_hi);
1885  }
1886  StoreValueWide(rl_dest, rl_result);
1887}
1888
1889void X86Mir2Lir::GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1,
1890                                RegLocation rl_src2, Instruction::Code op) {
1891  DCHECK(rl_src2.is_const);
1892  int64_t val = mir_graph_->ConstantValueWide(rl_src2);
1893  int32_t val_lo = Low32Bits(val);
1894  int32_t val_hi = High32Bits(val);
1895  rl_dest = UpdateLocWideTyped(rl_dest, kCoreReg);
1896  rl_src1 = UpdateLocWideTyped(rl_src1, kCoreReg);
1897
1898  // Can we do this directly into the destination registers?
1899  if (rl_dest.location == kLocPhysReg && rl_src1.location == kLocPhysReg &&
1900      rl_dest.reg.GetLowReg() == rl_src1.reg.GetLowReg() &&
1901      rl_dest.reg.GetHighReg() == rl_src1.reg.GetHighReg() && !rl_dest.reg.IsFloat()) {
1902    if (!IsNoOp(op, val_lo)) {
1903      X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
1904      NewLIR2(x86op, rl_dest.reg.GetLowReg(), val_lo);
1905    }
1906    if (!IsNoOp(op, val_hi)) {
1907      X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
1908      NewLIR2(x86op, rl_dest.reg.GetHighReg(), val_hi);
1909    }
1910
1911    StoreFinalValueWide(rl_dest, rl_dest);
1912    return;
1913  }
1914
1915  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1916  DCHECK_EQ(rl_src1.location, kLocPhysReg);
1917
1918  // We need the values to be in a temporary
1919  RegLocation rl_result = ForceTempWide(rl_src1);
1920  if (!IsNoOp(op, val_lo)) {
1921    X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
1922    NewLIR2(x86op, rl_result.reg.GetLowReg(), val_lo);
1923  }
1924  if (!IsNoOp(op, val_hi)) {
1925    X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
1926    NewLIR2(x86op, rl_result.reg.GetHighReg(), val_hi);
1927  }
1928
1929  StoreFinalValueWide(rl_dest, rl_result);
1930}
1931
1932// For final classes there are no sub-classes to check and so we can answer the instance-of
1933// question with simple comparisons. Use compares to memory and SETEQ to optimize for x86.
1934void X86Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1935                                    RegLocation rl_dest, RegLocation rl_src) {
1936  RegLocation object = LoadValue(rl_src, kRefReg);
1937  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1938  RegStorage result_reg = rl_result.reg;
1939
1940  // SETcc only works with EAX..EDX.
1941  if (result_reg == object.reg || result_reg.GetRegNum() >= rs_rX86_SP.GetRegNum()) {
1942    result_reg = AllocateByteRegister();
1943    DCHECK_LT(result_reg.GetRegNum(), rs_rX86_SP.GetRegNum());
1944  }
1945
1946  // Assume that there is no match.
1947  LoadConstant(result_reg, 0);
1948  LIR* null_branchover = OpCmpImmBranch(kCondEq, object.reg, 0, NULL);
1949
1950  RegStorage check_class = AllocTypedTemp(false, kRefReg);
1951
1952  // If Method* is already in a register, we can save a copy.
1953  RegLocation rl_method = mir_graph_->GetMethodLoc();
1954  int32_t offset_of_type = mirror::Array::DataOffset(sizeof(mirror::HeapReference<mirror::Class*>)).Int32Value() +
1955    (sizeof(mirror::HeapReference<mirror::Class*>) * type_idx);
1956
1957  if (rl_method.location == kLocPhysReg) {
1958    if (use_declaring_class) {
1959      LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1960                   check_class);
1961    } else {
1962      LoadRefDisp(rl_method.reg, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1963                   check_class);
1964      LoadRefDisp(check_class, offset_of_type, check_class);
1965    }
1966  } else {
1967    LoadCurrMethodDirect(check_class);
1968    if (use_declaring_class) {
1969      LoadRefDisp(check_class, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1970                   check_class);
1971    } else {
1972      LoadRefDisp(check_class, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1973                   check_class);
1974      LoadRefDisp(check_class, offset_of_type, check_class);
1975    }
1976  }
1977
1978  // Compare the computed class to the class in the object.
1979  DCHECK_EQ(object.location, kLocPhysReg);
1980  OpRegMem(kOpCmp, check_class, object.reg, mirror::Object::ClassOffset().Int32Value());
1981
1982  // Set the low byte of the result to 0 or 1 from the compare condition code.
1983  NewLIR2(kX86Set8R, result_reg.GetReg(), kX86CondEq);
1984
1985  LIR* target = NewLIR0(kPseudoTargetLabel);
1986  null_branchover->target = target;
1987  FreeTemp(check_class);
1988  if (IsTemp(result_reg)) {
1989    OpRegCopy(rl_result.reg, result_reg);
1990    FreeTemp(result_reg);
1991  }
1992  StoreValue(rl_dest, rl_result);
1993}
1994
1995void X86Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1996                                            bool type_known_abstract, bool use_declaring_class,
1997                                            bool can_assume_type_is_in_dex_cache,
1998                                            uint32_t type_idx, RegLocation rl_dest,
1999                                            RegLocation rl_src) {
2000  FlushAllRegs();
2001  // May generate a call - use explicit registers.
2002  LockCallTemps();
2003  LoadCurrMethodDirect(TargetReg(kArg1));  // kArg1 gets current Method*.
2004  RegStorage class_reg = TargetReg(kArg2);  // kArg2 will hold the Class*.
2005  // Reference must end up in kArg0.
2006  if (needs_access_check) {
2007    // Check we have access to type_idx and if not throw IllegalAccessError,
2008    // Caller function returns Class* in kArg0.
2009    if (Is64BitInstructionSet(cu_->instruction_set)) {
2010      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(8, pInitializeTypeAndVerifyAccess),
2011                           type_idx, true);
2012    } else {
2013      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeTypeAndVerifyAccess),
2014                           type_idx, true);
2015    }
2016    OpRegCopy(class_reg, TargetReg(kRet0));
2017    LoadValueDirectFixed(rl_src, TargetReg(kArg0));
2018  } else if (use_declaring_class) {
2019    LoadValueDirectFixed(rl_src, TargetReg(kArg0));
2020    LoadRefDisp(TargetReg(kArg1), mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
2021                 class_reg);
2022  } else {
2023    // Load dex cache entry into class_reg (kArg2).
2024    LoadValueDirectFixed(rl_src, TargetReg(kArg0));
2025    LoadRefDisp(TargetReg(kArg1), mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
2026                 class_reg);
2027    int32_t offset_of_type =
2028        mirror::Array::DataOffset(sizeof(mirror::HeapReference<mirror::Class*>)).Int32Value() +
2029        (sizeof(mirror::HeapReference<mirror::Class*>) * type_idx);
2030    LoadRefDisp(class_reg, offset_of_type, class_reg);
2031    if (!can_assume_type_is_in_dex_cache) {
2032      // Need to test presence of type in dex cache at runtime.
2033      LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL);
2034      // Type is not resolved. Call out to helper, which will return resolved type in kRet0/kArg0.
2035      if (Is64BitInstructionSet(cu_->instruction_set)) {
2036        CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(8, pInitializeType), type_idx, true);
2037      } else {
2038        CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeType), type_idx, true);
2039      }
2040      OpRegCopy(TargetReg(kArg2), TargetReg(kRet0));  // Align usage with fast path.
2041      LoadValueDirectFixed(rl_src, TargetReg(kArg0));  /* Reload Ref. */
2042      // Rejoin code paths
2043      LIR* hop_target = NewLIR0(kPseudoTargetLabel);
2044      hop_branch->target = hop_target;
2045    }
2046  }
2047  /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result. */
2048  RegLocation rl_result = GetReturn(kRefReg);
2049
2050  // SETcc only works with EAX..EDX.
2051  DCHECK_LT(rl_result.reg.GetRegNum(), 4);
2052
2053  // Is the class NULL?
2054  LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL);
2055
2056  /* Load object->klass_. */
2057  DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
2058  LoadRefDisp(TargetReg(kArg0),  mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1));
2059  /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class. */
2060  LIR* branchover = nullptr;
2061  if (type_known_final) {
2062    // Ensure top 3 bytes of result are 0.
2063    LoadConstant(rl_result.reg, 0);
2064    OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2));
2065    // Set the low byte of the result to 0 or 1 from the compare condition code.
2066    NewLIR2(kX86Set8R, rl_result.reg.GetReg(), kX86CondEq);
2067  } else {
2068    if (!type_known_abstract) {
2069      LoadConstant(rl_result.reg, 1);     // Assume result succeeds.
2070      branchover = OpCmpBranch(kCondEq, TargetReg(kArg1), TargetReg(kArg2), NULL);
2071    }
2072    OpRegCopy(TargetReg(kArg0), TargetReg(kArg2));
2073    if (Is64BitInstructionSet(cu_->instruction_set)) {
2074      OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(8, pInstanceofNonTrivial));
2075    } else {
2076      OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(4, pInstanceofNonTrivial));
2077    }
2078  }
2079  // TODO: only clobber when type isn't final?
2080  ClobberCallerSave();
2081  /* Branch targets here. */
2082  LIR* target = NewLIR0(kPseudoTargetLabel);
2083  StoreValue(rl_dest, rl_result);
2084  branch1->target = target;
2085  if (branchover != nullptr) {
2086    branchover->target = target;
2087  }
2088}
2089
2090void X86Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
2091                            RegLocation rl_lhs, RegLocation rl_rhs) {
2092  OpKind op = kOpBkpt;
2093  bool is_div_rem = false;
2094  bool unary = false;
2095  bool shift_op = false;
2096  bool is_two_addr = false;
2097  RegLocation rl_result;
2098  switch (opcode) {
2099    case Instruction::NEG_INT:
2100      op = kOpNeg;
2101      unary = true;
2102      break;
2103    case Instruction::NOT_INT:
2104      op = kOpMvn;
2105      unary = true;
2106      break;
2107    case Instruction::ADD_INT_2ADDR:
2108      is_two_addr = true;
2109      // Fallthrough
2110    case Instruction::ADD_INT:
2111      op = kOpAdd;
2112      break;
2113    case Instruction::SUB_INT_2ADDR:
2114      is_two_addr = true;
2115      // Fallthrough
2116    case Instruction::SUB_INT:
2117      op = kOpSub;
2118      break;
2119    case Instruction::MUL_INT_2ADDR:
2120      is_two_addr = true;
2121      // Fallthrough
2122    case Instruction::MUL_INT:
2123      op = kOpMul;
2124      break;
2125    case Instruction::DIV_INT_2ADDR:
2126      is_two_addr = true;
2127      // Fallthrough
2128    case Instruction::DIV_INT:
2129      op = kOpDiv;
2130      is_div_rem = true;
2131      break;
2132    /* NOTE: returns in kArg1 */
2133    case Instruction::REM_INT_2ADDR:
2134      is_two_addr = true;
2135      // Fallthrough
2136    case Instruction::REM_INT:
2137      op = kOpRem;
2138      is_div_rem = true;
2139      break;
2140    case Instruction::AND_INT_2ADDR:
2141      is_two_addr = true;
2142      // Fallthrough
2143    case Instruction::AND_INT:
2144      op = kOpAnd;
2145      break;
2146    case Instruction::OR_INT_2ADDR:
2147      is_two_addr = true;
2148      // Fallthrough
2149    case Instruction::OR_INT:
2150      op = kOpOr;
2151      break;
2152    case Instruction::XOR_INT_2ADDR:
2153      is_two_addr = true;
2154      // Fallthrough
2155    case Instruction::XOR_INT:
2156      op = kOpXor;
2157      break;
2158    case Instruction::SHL_INT_2ADDR:
2159      is_two_addr = true;
2160      // Fallthrough
2161    case Instruction::SHL_INT:
2162      shift_op = true;
2163      op = kOpLsl;
2164      break;
2165    case Instruction::SHR_INT_2ADDR:
2166      is_two_addr = true;
2167      // Fallthrough
2168    case Instruction::SHR_INT:
2169      shift_op = true;
2170      op = kOpAsr;
2171      break;
2172    case Instruction::USHR_INT_2ADDR:
2173      is_two_addr = true;
2174      // Fallthrough
2175    case Instruction::USHR_INT:
2176      shift_op = true;
2177      op = kOpLsr;
2178      break;
2179    default:
2180      LOG(FATAL) << "Invalid word arith op: " << opcode;
2181  }
2182
2183  // Can we convert to a two address instruction?
2184  if (!is_two_addr &&
2185        (mir_graph_->SRegToVReg(rl_dest.s_reg_low) ==
2186         mir_graph_->SRegToVReg(rl_lhs.s_reg_low))) {
2187    is_two_addr = true;
2188  }
2189
2190  if (!GenerateTwoOperandInstructions()) {
2191    is_two_addr = false;
2192  }
2193
2194  // Get the div/rem stuff out of the way.
2195  if (is_div_rem) {
2196    rl_result = GenDivRem(rl_dest, rl_lhs, rl_rhs, op == kOpDiv, true);
2197    StoreValue(rl_dest, rl_result);
2198    return;
2199  }
2200
2201  if (unary) {
2202    rl_lhs = LoadValue(rl_lhs, kCoreReg);
2203    rl_result = UpdateLocTyped(rl_dest, kCoreReg);
2204    rl_result = EvalLoc(rl_dest, kCoreReg, true);
2205    OpRegReg(op, rl_result.reg, rl_lhs.reg);
2206  } else {
2207    if (shift_op) {
2208      // X86 doesn't require masking and must use ECX.
2209      RegStorage t_reg = TargetReg(kCount);  // rCX
2210      LoadValueDirectFixed(rl_rhs, t_reg);
2211      if (is_two_addr) {
2212        // Can we do this directly into memory?
2213        rl_result = UpdateLocTyped(rl_dest, kCoreReg);
2214        rl_rhs = LoadValue(rl_rhs, kCoreReg);
2215        if (rl_result.location != kLocPhysReg) {
2216          // Okay, we can do this into memory
2217          OpMemReg(op, rl_result, t_reg.GetReg());
2218          FreeTemp(t_reg);
2219          return;
2220        } else if (!rl_result.reg.IsFloat()) {
2221          // Can do this directly into the result register
2222          OpRegReg(op, rl_result.reg, t_reg);
2223          FreeTemp(t_reg);
2224          StoreFinalValue(rl_dest, rl_result);
2225          return;
2226        }
2227      }
2228      // Three address form, or we can't do directly.
2229      rl_lhs = LoadValue(rl_lhs, kCoreReg);
2230      rl_result = EvalLoc(rl_dest, kCoreReg, true);
2231      OpRegRegReg(op, rl_result.reg, rl_lhs.reg, t_reg);
2232      FreeTemp(t_reg);
2233    } else {
2234      // Multiply is 3 operand only (sort of).
2235      if (is_two_addr && op != kOpMul) {
2236        // Can we do this directly into memory?
2237        rl_result = UpdateLocTyped(rl_dest, kCoreReg);
2238        if (rl_result.location == kLocPhysReg) {
2239          // Ensure res is in a core reg
2240          rl_result = EvalLoc(rl_dest, kCoreReg, true);
2241          // Can we do this from memory directly?
2242          rl_rhs = UpdateLocTyped(rl_rhs, kCoreReg);
2243          if (rl_rhs.location != kLocPhysReg) {
2244            OpRegMem(op, rl_result.reg, rl_rhs);
2245            StoreFinalValue(rl_dest, rl_result);
2246            return;
2247          } else if (!rl_rhs.reg.IsFloat()) {
2248            OpRegReg(op, rl_result.reg, rl_rhs.reg);
2249            StoreFinalValue(rl_dest, rl_result);
2250            return;
2251          }
2252        }
2253        rl_rhs = LoadValue(rl_rhs, kCoreReg);
2254        // It might happen rl_rhs and rl_dest are the same VR
2255        // in this case rl_dest is in reg after LoadValue while
2256        // rl_result is not updated yet, so do this
2257        rl_result = UpdateLocTyped(rl_dest, kCoreReg);
2258        if (rl_result.location != kLocPhysReg) {
2259          // Okay, we can do this into memory.
2260          OpMemReg(op, rl_result, rl_rhs.reg.GetReg());
2261          return;
2262        } else if (!rl_result.reg.IsFloat()) {
2263          // Can do this directly into the result register.
2264          OpRegReg(op, rl_result.reg, rl_rhs.reg);
2265          StoreFinalValue(rl_dest, rl_result);
2266          return;
2267        } else {
2268          rl_lhs = LoadValue(rl_lhs, kCoreReg);
2269          rl_result = EvalLoc(rl_dest, kCoreReg, true);
2270          OpRegRegReg(op, rl_result.reg, rl_lhs.reg, rl_rhs.reg);
2271        }
2272      } else {
2273        // Try to use reg/memory instructions.
2274        rl_lhs = UpdateLocTyped(rl_lhs, kCoreReg);
2275        rl_rhs = UpdateLocTyped(rl_rhs, kCoreReg);
2276        // We can't optimize with FP registers.
2277        if (!IsOperationSafeWithoutTemps(rl_lhs, rl_rhs)) {
2278          // Something is difficult, so fall back to the standard case.
2279          rl_lhs = LoadValue(rl_lhs, kCoreReg);
2280          rl_rhs = LoadValue(rl_rhs, kCoreReg);
2281          rl_result = EvalLoc(rl_dest, kCoreReg, true);
2282          OpRegRegReg(op, rl_result.reg, rl_lhs.reg, rl_rhs.reg);
2283        } else {
2284          // We can optimize by moving to result and using memory operands.
2285          if (rl_rhs.location != kLocPhysReg) {
2286            // Force LHS into result.
2287            // We should be careful with order here
2288            // If rl_dest and rl_lhs points to the same VR we should load first
2289            // If the are different we should find a register first for dest
2290            if (mir_graph_->SRegToVReg(rl_dest.s_reg_low) == mir_graph_->SRegToVReg(rl_lhs.s_reg_low)) {
2291              rl_lhs = LoadValue(rl_lhs, kCoreReg);
2292              rl_result = EvalLoc(rl_dest, kCoreReg, true);
2293              // No-op if these are the same.
2294              OpRegCopy(rl_result.reg, rl_lhs.reg);
2295            } else {
2296              rl_result = EvalLoc(rl_dest, kCoreReg, true);
2297              LoadValueDirect(rl_lhs, rl_result.reg);
2298            }
2299            OpRegMem(op, rl_result.reg, rl_rhs);
2300          } else if (rl_lhs.location != kLocPhysReg) {
2301            // RHS is in a register; LHS is in memory.
2302            if (op != kOpSub) {
2303              // Force RHS into result and operate on memory.
2304              rl_result = EvalLoc(rl_dest, kCoreReg, true);
2305              OpRegCopy(rl_result.reg, rl_rhs.reg);
2306              OpRegMem(op, rl_result.reg, rl_lhs);
2307            } else {
2308              // Subtraction isn't commutative.
2309              rl_lhs = LoadValue(rl_lhs, kCoreReg);
2310              rl_rhs = LoadValue(rl_rhs, kCoreReg);
2311              rl_result = EvalLoc(rl_dest, kCoreReg, true);
2312              OpRegRegReg(op, rl_result.reg, rl_lhs.reg, rl_rhs.reg);
2313            }
2314          } else {
2315            // Both are in registers.
2316            rl_lhs = LoadValue(rl_lhs, kCoreReg);
2317            rl_rhs = LoadValue(rl_rhs, kCoreReg);
2318            rl_result = EvalLoc(rl_dest, kCoreReg, true);
2319            OpRegRegReg(op, rl_result.reg, rl_lhs.reg, rl_rhs.reg);
2320          }
2321        }
2322      }
2323    }
2324  }
2325  StoreValue(rl_dest, rl_result);
2326}
2327
2328bool X86Mir2Lir::IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs) {
2329  // If we have non-core registers, then we can't do good things.
2330  if (rl_lhs.location == kLocPhysReg && rl_lhs.reg.IsFloat()) {
2331    return false;
2332  }
2333  if (rl_rhs.location == kLocPhysReg && rl_rhs.reg.IsFloat()) {
2334    return false;
2335  }
2336
2337  // Everything will be fine :-).
2338  return true;
2339}
2340}  // namespace art
2341