utility_x86.cc revision 2689fbad6b5ec1ae8f8c8791a80c6fd3cf24144d
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "codegen_x86.h"
18#include "dex/quick/mir_to_lir-inl.h"
19#include "dex/dataflow_iterator-inl.h"
20#include "x86_lir.h"
21#include "dex/quick/dex_file_method_inliner.h"
22#include "dex/quick/dex_file_to_method_inliner_map.h"
23
24namespace art {
25
26/* This file contains codegen for the X86 ISA */
27
28LIR* X86Mir2Lir::OpFpRegCopy(RegStorage r_dest, RegStorage r_src) {
29  int opcode;
30  /* must be both DOUBLE or both not DOUBLE */
31  DCHECK(r_dest.IsFloat() || r_src.IsFloat());
32  DCHECK_EQ(r_dest.IsDouble(), r_src.IsDouble());
33  if (r_dest.IsDouble()) {
34    opcode = kX86MovsdRR;
35  } else {
36    if (r_dest.IsSingle()) {
37      if (r_src.IsSingle()) {
38        opcode = kX86MovssRR;
39      } else {  // Fpr <- Gpr
40        opcode = kX86MovdxrRR;
41      }
42    } else {  // Gpr <- Fpr
43      DCHECK(r_src.IsSingle()) << "Raw: 0x" << std::hex << r_src.GetRawBits();
44      opcode = kX86MovdrxRR;
45    }
46  }
47  DCHECK_NE((EncodingMap[opcode].flags & IS_BINARY_OP), 0ULL);
48  LIR* res = RawLIR(current_dalvik_offset_, opcode, r_dest.GetReg(), r_src.GetReg());
49  if (r_dest == r_src) {
50    res->flags.is_nop = true;
51  }
52  return res;
53}
54
55bool X86Mir2Lir::InexpensiveConstantInt(int32_t value) {
56  return true;
57}
58
59bool X86Mir2Lir::InexpensiveConstantFloat(int32_t value) {
60  return false;
61}
62
63bool X86Mir2Lir::InexpensiveConstantLong(int64_t value) {
64  return true;
65}
66
67bool X86Mir2Lir::InexpensiveConstantDouble(int64_t value) {
68  return value == 0;
69}
70
71/*
72 * Load a immediate using a shortcut if possible; otherwise
73 * grab from the per-translation literal pool.  If target is
74 * a high register, build constant into a low register and copy.
75 *
76 * No additional register clobbering operation performed. Use this version when
77 * 1) r_dest is freshly returned from AllocTemp or
78 * 2) The codegen is under fixed register usage
79 */
80LIR* X86Mir2Lir::LoadConstantNoClobber(RegStorage r_dest, int value) {
81  RegStorage r_dest_save = r_dest;
82  if (r_dest.IsFloat()) {
83    if (value == 0) {
84      return NewLIR2(kX86XorpsRR, r_dest.GetReg(), r_dest.GetReg());
85    }
86    r_dest = AllocTemp();
87  }
88
89  LIR *res;
90  if (value == 0) {
91    res = NewLIR2(kX86Xor32RR, r_dest.GetReg(), r_dest.GetReg());
92  } else {
93    // Note, there is no byte immediate form of a 32 bit immediate move.
94    // 64-bit immediate is not supported by LIR structure
95    res = NewLIR2(kX86Mov32RI, r_dest.GetReg(), value);
96  }
97
98  if (r_dest_save.IsFloat()) {
99    NewLIR2(kX86MovdxrRR, r_dest_save.GetReg(), r_dest.GetReg());
100    FreeTemp(r_dest);
101  }
102
103  return res;
104}
105
106LIR* X86Mir2Lir::OpUnconditionalBranch(LIR* target) {
107  LIR* res = NewLIR1(kX86Jmp8, 0 /* offset to be patched during assembly*/);
108  res->target = target;
109  return res;
110}
111
112LIR* X86Mir2Lir::OpCondBranch(ConditionCode cc, LIR* target) {
113  LIR* branch = NewLIR2(kX86Jcc8, 0 /* offset to be patched */,
114                        X86ConditionEncoding(cc));
115  branch->target = target;
116  return branch;
117}
118
119LIR* X86Mir2Lir::OpReg(OpKind op, RegStorage r_dest_src) {
120  X86OpCode opcode = kX86Bkpt;
121  switch (op) {
122    case kOpNeg: opcode = r_dest_src.Is64Bit() ? kX86Neg64R : kX86Neg32R; break;
123    case kOpNot: opcode = r_dest_src.Is64Bit() ? kX86Not64R : kX86Not32R; break;
124    case kOpRev: opcode = kX86Bswap32R; break;
125    case kOpBlx: opcode = kX86CallR; break;
126    default:
127      LOG(FATAL) << "Bad case in OpReg " << op;
128  }
129  return NewLIR1(opcode, r_dest_src.GetReg());
130}
131
132LIR* X86Mir2Lir::OpRegImm(OpKind op, RegStorage r_dest_src1, int value) {
133  X86OpCode opcode = kX86Bkpt;
134  bool byte_imm = IS_SIMM8(value);
135  DCHECK(!r_dest_src1.IsFloat());
136  if (r_dest_src1.Is64Bit()) {
137    switch (op) {
138      case kOpAdd: opcode = byte_imm ? kX86Add64RI8 : kX86Add64RI; break;
139      case kOpSub: opcode = byte_imm ? kX86Sub64RI8 : kX86Sub64RI; break;
140      case kOpLsl: opcode = kX86Sal64RI; break;
141      case kOpLsr: opcode = kX86Shr64RI; break;
142      case kOpAsr: opcode = kX86Sar64RI; break;
143      case kOpCmp: opcode = byte_imm ? kX86Cmp64RI8 : kX86Cmp64RI; break;
144      default:
145        LOG(FATAL) << "Bad case in OpRegImm (64-bit) " << op;
146    }
147  } else {
148    switch (op) {
149      case kOpLsl: opcode = kX86Sal32RI; break;
150      case kOpLsr: opcode = kX86Shr32RI; break;
151      case kOpAsr: opcode = kX86Sar32RI; break;
152      case kOpAdd: opcode = byte_imm ? kX86Add32RI8 : kX86Add32RI; break;
153      case kOpOr:  opcode = byte_imm ? kX86Or32RI8  : kX86Or32RI;  break;
154      case kOpAdc: opcode = byte_imm ? kX86Adc32RI8 : kX86Adc32RI; break;
155      // case kOpSbb: opcode = kX86Sbb32RI; break;
156      case kOpAnd: opcode = byte_imm ? kX86And32RI8 : kX86And32RI; break;
157      case kOpSub: opcode = byte_imm ? kX86Sub32RI8 : kX86Sub32RI; break;
158      case kOpXor: opcode = byte_imm ? kX86Xor32RI8 : kX86Xor32RI; break;
159      case kOpCmp: opcode = byte_imm ? kX86Cmp32RI8 : kX86Cmp32RI; break;
160      case kOpMov:
161        /*
162         * Moving the constant zero into register can be specialized as an xor of the register.
163         * However, that sets eflags while the move does not. For that reason here, always do
164         * the move and if caller is flexible, they should be calling LoadConstantNoClobber instead.
165         */
166        opcode = kX86Mov32RI;
167        break;
168      case kOpMul:
169        opcode = byte_imm ? kX86Imul32RRI8 : kX86Imul32RRI;
170        return NewLIR3(opcode, r_dest_src1.GetReg(), r_dest_src1.GetReg(), value);
171      case kOp2Byte:
172        opcode = kX86Mov32RI;
173        value = static_cast<int8_t>(value);
174        break;
175      case kOp2Short:
176        opcode = kX86Mov32RI;
177        value = static_cast<int16_t>(value);
178        break;
179      case kOp2Char:
180        opcode = kX86Mov32RI;
181        value = static_cast<uint16_t>(value);
182        break;
183      case kOpNeg:
184        opcode = kX86Mov32RI;
185        value = -value;
186        break;
187      default:
188        LOG(FATAL) << "Bad case in OpRegImm " << op;
189    }
190  }
191  return NewLIR2(opcode, r_dest_src1.GetReg(), value);
192}
193
194LIR* X86Mir2Lir::OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) {
195    bool is64Bit = r_dest_src1.Is64Bit();
196    X86OpCode opcode = kX86Nop;
197    bool src2_must_be_cx = false;
198    switch (op) {
199        // X86 unary opcodes
200      case kOpMvn:
201        OpRegCopy(r_dest_src1, r_src2);
202        return OpReg(kOpNot, r_dest_src1);
203      case kOpNeg:
204        OpRegCopy(r_dest_src1, r_src2);
205        return OpReg(kOpNeg, r_dest_src1);
206      case kOpRev:
207        OpRegCopy(r_dest_src1, r_src2);
208        return OpReg(kOpRev, r_dest_src1);
209      case kOpRevsh:
210        OpRegCopy(r_dest_src1, r_src2);
211        OpReg(kOpRev, r_dest_src1);
212        return OpRegImm(kOpAsr, r_dest_src1, 16);
213        // X86 binary opcodes
214      case kOpSub: opcode = is64Bit ? kX86Sub64RR : kX86Sub32RR; break;
215      case kOpSbc: opcode = is64Bit ? kX86Sbb64RR : kX86Sbb32RR; break;
216      case kOpLsl: opcode = is64Bit ? kX86Sal64RC : kX86Sal32RC; src2_must_be_cx = true; break;
217      case kOpLsr: opcode = is64Bit ? kX86Shr64RC : kX86Shr32RC; src2_must_be_cx = true; break;
218      case kOpAsr: opcode = is64Bit ? kX86Sar64RC : kX86Sar32RC; src2_must_be_cx = true; break;
219      case kOpMov: opcode = is64Bit ? kX86Mov64RR : kX86Mov32RR; break;
220      case kOpCmp: opcode = is64Bit ? kX86Cmp64RR : kX86Cmp32RR; break;
221      case kOpAdd: opcode = is64Bit ? kX86Add64RR : kX86Add32RR; break;
222      case kOpAdc: opcode = is64Bit ? kX86Adc64RR : kX86Adc32RR; break;
223      case kOpAnd: opcode = is64Bit ? kX86And64RR : kX86And32RR; break;
224      case kOpOr:  opcode = is64Bit ? kX86Or64RR : kX86Or32RR; break;
225      case kOpXor: opcode = is64Bit ? kX86Xor64RR : kX86Xor32RR; break;
226      case kOp2Byte:
227        // TODO: there are several instances of this check.  A utility function perhaps?
228        // TODO: Similar to Arm's reg < 8 check.  Perhaps add attribute checks to RegStorage?
229        // Use shifts instead of a byte operand if the source can't be byte accessed.
230        if (r_src2.GetRegNum() >= rs_rX86_SP.GetRegNum()) {
231          NewLIR2(is64Bit ? kX86Mov64RR : kX86Mov32RR, r_dest_src1.GetReg(), r_src2.GetReg());
232          NewLIR2(is64Bit ? kX86Sal64RI : kX86Sal32RI, r_dest_src1.GetReg(), is64Bit ? 56 : 24);
233          return NewLIR2(is64Bit ? kX86Sar64RI : kX86Sar32RI, r_dest_src1.GetReg(),
234                         is64Bit ? 56 : 24);
235        } else {
236          opcode = is64Bit ? kX86Bkpt : kX86Movsx8RR;
237        }
238        break;
239      case kOp2Short: opcode = is64Bit ? kX86Bkpt : kX86Movsx16RR; break;
240      case kOp2Char: opcode = is64Bit ? kX86Bkpt : kX86Movzx16RR; break;
241      case kOpMul: opcode = is64Bit ? kX86Bkpt : kX86Imul32RR; break;
242      default:
243        LOG(FATAL) << "Bad case in OpRegReg " << op;
244        break;
245    }
246    CHECK(!src2_must_be_cx || r_src2.GetReg() == rs_rCX.GetReg());
247    return NewLIR2(opcode, r_dest_src1.GetReg(), r_src2.GetReg());
248}
249
250LIR* X86Mir2Lir::OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset, MoveType move_type) {
251  DCHECK(!r_base.IsFloat());
252  X86OpCode opcode = kX86Nop;
253  int dest = r_dest.IsPair() ? r_dest.GetLowReg() : r_dest.GetReg();
254  switch (move_type) {
255    case kMov8GP:
256      CHECK(!r_dest.IsFloat());
257      opcode = kX86Mov8RM;
258      break;
259    case kMov16GP:
260      CHECK(!r_dest.IsFloat());
261      opcode = kX86Mov16RM;
262      break;
263    case kMov32GP:
264      CHECK(!r_dest.IsFloat());
265      opcode = kX86Mov32RM;
266      break;
267    case kMov32FP:
268      CHECK(r_dest.IsFloat());
269      opcode = kX86MovssRM;
270      break;
271    case kMov64FP:
272      CHECK(r_dest.IsFloat());
273      opcode = kX86MovsdRM;
274      break;
275    case kMovU128FP:
276      CHECK(r_dest.IsFloat());
277      opcode = kX86MovupsRM;
278      break;
279    case kMovA128FP:
280      CHECK(r_dest.IsFloat());
281      opcode = kX86MovapsRM;
282      break;
283    case kMovLo128FP:
284      CHECK(r_dest.IsFloat());
285      opcode = kX86MovlpsRM;
286      break;
287    case kMovHi128FP:
288      CHECK(r_dest.IsFloat());
289      opcode = kX86MovhpsRM;
290      break;
291    case kMov64GP:
292    case kMovLo64FP:
293    case kMovHi64FP:
294    default:
295      LOG(FATAL) << "Bad case in OpMovRegMem";
296      break;
297  }
298
299  return NewLIR3(opcode, dest, r_base.GetReg(), offset);
300}
301
302LIR* X86Mir2Lir::OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src, MoveType move_type) {
303  DCHECK(!r_base.IsFloat());
304  int src = r_src.IsPair() ? r_src.GetLowReg() : r_src.GetReg();
305
306  X86OpCode opcode = kX86Nop;
307  switch (move_type) {
308    case kMov8GP:
309      CHECK(!r_src.IsFloat());
310      opcode = kX86Mov8MR;
311      break;
312    case kMov16GP:
313      CHECK(!r_src.IsFloat());
314      opcode = kX86Mov16MR;
315      break;
316    case kMov32GP:
317      CHECK(!r_src.IsFloat());
318      opcode = kX86Mov32MR;
319      break;
320    case kMov32FP:
321      CHECK(r_src.IsFloat());
322      opcode = kX86MovssMR;
323      break;
324    case kMov64FP:
325      CHECK(r_src.IsFloat());
326      opcode = kX86MovsdMR;
327      break;
328    case kMovU128FP:
329      CHECK(r_src.IsFloat());
330      opcode = kX86MovupsMR;
331      break;
332    case kMovA128FP:
333      CHECK(r_src.IsFloat());
334      opcode = kX86MovapsMR;
335      break;
336    case kMovLo128FP:
337      CHECK(r_src.IsFloat());
338      opcode = kX86MovlpsMR;
339      break;
340    case kMovHi128FP:
341      CHECK(r_src.IsFloat());
342      opcode = kX86MovhpsMR;
343      break;
344    case kMov64GP:
345    case kMovLo64FP:
346    case kMovHi64FP:
347    default:
348      LOG(FATAL) << "Bad case in OpMovMemReg";
349      break;
350  }
351
352  return NewLIR3(opcode, r_base.GetReg(), offset, src);
353}
354
355LIR* X86Mir2Lir::OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) {
356  // The only conditional reg to reg operation supported is Cmov
357  DCHECK_EQ(op, kOpCmov);
358  return NewLIR3(kX86Cmov32RRC, r_dest.GetReg(), r_src.GetReg(), X86ConditionEncoding(cc));
359}
360
361LIR* X86Mir2Lir::OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset) {
362  bool is64Bit = r_dest.Is64Bit();
363  X86OpCode opcode = kX86Nop;
364  switch (op) {
365      // X86 binary opcodes
366    case kOpSub: opcode = is64Bit ? kX86Sub64RM : kX86Sub32RM; break;
367    case kOpMov: opcode = is64Bit ? kX86Mov64RM : kX86Mov32RM; break;
368    case kOpCmp: opcode = is64Bit ? kX86Cmp64RM : kX86Cmp32RM; break;
369    case kOpAdd: opcode = is64Bit ? kX86Add64RM : kX86Add32RM; break;
370    case kOpAnd: opcode = is64Bit ? kX86And64RM : kX86And32RM; break;
371    case kOpOr:  opcode = is64Bit ? kX86Or64RM : kX86Or32RM; break;
372    case kOpXor: opcode = is64Bit ? kX86Xor64RM : kX86Xor32RM; break;
373    case kOp2Byte: opcode = kX86Movsx8RM; break;
374    case kOp2Short: opcode = kX86Movsx16RM; break;
375    case kOp2Char: opcode = kX86Movzx16RM; break;
376    case kOpMul:
377    default:
378      LOG(FATAL) << "Bad case in OpRegMem " << op;
379      break;
380  }
381  LIR *l = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), offset);
382  if (mem_ref_type_ == ResourceMask::kDalvikReg) {
383    DCHECK(r_base == rs_rX86_SP);
384    AnnotateDalvikRegAccess(l, offset >> 2, true /* is_load */, false /* is_64bit */);
385  }
386  return l;
387}
388
389LIR* X86Mir2Lir::OpMemReg(OpKind op, RegLocation rl_dest, int r_value) {
390  DCHECK_NE(rl_dest.location, kLocPhysReg);
391  int displacement = SRegOffset(rl_dest.s_reg_low);
392  bool is64Bit = rl_dest.wide != 0;
393  X86OpCode opcode = kX86Nop;
394  switch (op) {
395    case kOpSub: opcode = is64Bit ? kX86Sub64MR : kX86Sub32MR; break;
396    case kOpMov: opcode = is64Bit ? kX86Mov64MR : kX86Mov32MR; break;
397    case kOpCmp: opcode = is64Bit ? kX86Cmp64MR : kX86Cmp32MR; break;
398    case kOpAdd: opcode = is64Bit ? kX86Add64MR : kX86Add32MR; break;
399    case kOpAnd: opcode = is64Bit ? kX86And64MR : kX86And32MR; break;
400    case kOpOr:  opcode = is64Bit ? kX86Or64MR : kX86Or32MR; break;
401    case kOpXor: opcode = is64Bit ? kX86Xor64MR : kX86Xor32MR; break;
402    case kOpLsl: opcode = is64Bit ? kX86Sal64MC : kX86Sal32MC; break;
403    case kOpLsr: opcode = is64Bit ? kX86Shr64MC : kX86Shr32MC; break;
404    case kOpAsr: opcode = is64Bit ? kX86Sar64MC : kX86Sar32MC; break;
405    default:
406      LOG(FATAL) << "Bad case in OpMemReg " << op;
407      break;
408  }
409  LIR *l = NewLIR3(opcode, rs_rX86_SP.GetReg(), displacement, r_value);
410  if (mem_ref_type_ == ResourceMask::kDalvikReg) {
411    AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, is64Bit /* is_64bit */);
412    AnnotateDalvikRegAccess(l, displacement >> 2, false /* is_load */, is64Bit /* is_64bit */);
413  }
414  return l;
415}
416
417LIR* X86Mir2Lir::OpRegMem(OpKind op, RegStorage r_dest, RegLocation rl_value) {
418  DCHECK_NE(rl_value.location, kLocPhysReg);
419  bool is64Bit = r_dest.Is64Bit();
420  int displacement = SRegOffset(rl_value.s_reg_low);
421  X86OpCode opcode = kX86Nop;
422  switch (op) {
423    case kOpSub: opcode = is64Bit ? kX86Sub64RM : kX86Sub32RM; break;
424    case kOpMov: opcode = is64Bit ? kX86Mov64RM : kX86Mov32RM; break;
425    case kOpCmp: opcode = is64Bit ? kX86Cmp64RM : kX86Cmp32RM; break;
426    case kOpAdd: opcode = is64Bit ? kX86Add64RM : kX86Add32RM; break;
427    case kOpAnd: opcode = is64Bit ? kX86And64RM : kX86And32RM; break;
428    case kOpOr:  opcode = is64Bit ? kX86Or64RM : kX86Or32RM; break;
429    case kOpXor: opcode = is64Bit ? kX86Xor64RM : kX86Xor32RM; break;
430    case kOpMul: opcode = is64Bit ? kX86Bkpt : kX86Imul32RM; break;
431    default:
432      LOG(FATAL) << "Bad case in OpRegMem " << op;
433      break;
434  }
435  LIR *l = NewLIR3(opcode, r_dest.GetReg(), rs_rX86_SP.GetReg(), displacement);
436  if (mem_ref_type_ == ResourceMask::kDalvikReg) {
437    AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, is64Bit /* is_64bit */);
438  }
439  return l;
440}
441
442LIR* X86Mir2Lir::OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1,
443                             RegStorage r_src2) {
444  bool is64Bit = r_dest.Is64Bit();
445  if (r_dest != r_src1 && r_dest != r_src2) {
446    if (op == kOpAdd) {  // lea special case, except can't encode rbp as base
447      if (r_src1 == r_src2) {
448        OpRegCopy(r_dest, r_src1);
449        return OpRegImm(kOpLsl, r_dest, 1);
450      } else if (r_src1 != rs_rBP) {
451        return NewLIR5(is64Bit ? kX86Lea64RA : kX86Lea32RA, r_dest.GetReg(),
452                       r_src1.GetReg() /* base */, r_src2.GetReg() /* index */,
453                       0 /* scale */, 0 /* disp */);
454      } else {
455        return NewLIR5(is64Bit ? kX86Lea64RA : kX86Lea32RA, r_dest.GetReg(),
456                       r_src2.GetReg() /* base */, r_src1.GetReg() /* index */,
457                       0 /* scale */, 0 /* disp */);
458      }
459    } else {
460      OpRegCopy(r_dest, r_src1);
461      return OpRegReg(op, r_dest, r_src2);
462    }
463  } else if (r_dest == r_src1) {
464    return OpRegReg(op, r_dest, r_src2);
465  } else {  // r_dest == r_src2
466    switch (op) {
467      case kOpSub:  // non-commutative
468        OpReg(kOpNeg, r_dest);
469        op = kOpAdd;
470        break;
471      case kOpSbc:
472      case kOpLsl: case kOpLsr: case kOpAsr: case kOpRor: {
473        RegStorage t_reg = AllocTemp();
474        OpRegCopy(t_reg, r_src1);
475        OpRegReg(op, t_reg, r_src2);
476        LIR* res = OpRegCopyNoInsert(r_dest, t_reg);
477        AppendLIR(res);
478        FreeTemp(t_reg);
479        return res;
480      }
481      case kOpAdd:  // commutative
482      case kOpOr:
483      case kOpAdc:
484      case kOpAnd:
485      case kOpXor:
486        break;
487      default:
488        LOG(FATAL) << "Bad case in OpRegRegReg " << op;
489    }
490    return OpRegReg(op, r_dest, r_src1);
491  }
492}
493
494LIR* X86Mir2Lir::OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src, int value) {
495  if (op == kOpMul && !Gen64Bit()) {
496    X86OpCode opcode = IS_SIMM8(value) ? kX86Imul32RRI8 : kX86Imul32RRI;
497    return NewLIR3(opcode, r_dest.GetReg(), r_src.GetReg(), value);
498  } else if (op == kOpAnd && !Gen64Bit()) {
499    if (value == 0xFF && r_src.Low4()) {
500      return NewLIR2(kX86Movzx8RR, r_dest.GetReg(), r_src.GetReg());
501    } else if (value == 0xFFFF) {
502      return NewLIR2(kX86Movzx16RR, r_dest.GetReg(), r_src.GetReg());
503    }
504  }
505  if (r_dest != r_src) {
506    if (false && op == kOpLsl && value >= 0 && value <= 3) {  // lea shift special case
507      // TODO: fix bug in LEA encoding when disp == 0
508      return NewLIR5(kX86Lea32RA, r_dest.GetReg(),  r5sib_no_base /* base */,
509                     r_src.GetReg() /* index */, value /* scale */, 0 /* disp */);
510    } else if (op == kOpAdd) {  // lea add special case
511      return NewLIR5(r_dest.Is64Bit() ? kX86Lea64RA : kX86Lea32RA, r_dest.GetReg(),
512                     r_src.GetReg() /* base */, rs_rX86_SP.GetReg()/*r4sib_no_index*/ /* index */,
513                     0 /* scale */, value /* disp */);
514    }
515    OpRegCopy(r_dest, r_src);
516  }
517  return OpRegImm(op, r_dest, value);
518}
519
520LIR* X86Mir2Lir::OpThreadMem(OpKind op, ThreadOffset<4> thread_offset) {
521  DCHECK_EQ(kX86, cu_->instruction_set);
522  X86OpCode opcode = kX86Bkpt;
523  switch (op) {
524    case kOpBlx: opcode = kX86CallT;  break;
525    case kOpBx: opcode = kX86JmpT;  break;
526    default:
527      LOG(FATAL) << "Bad opcode: " << op;
528      break;
529  }
530  return NewLIR1(opcode, thread_offset.Int32Value());
531}
532
533LIR* X86Mir2Lir::OpThreadMem(OpKind op, ThreadOffset<8> thread_offset) {
534  DCHECK_EQ(kX86_64, cu_->instruction_set);
535  X86OpCode opcode = kX86Bkpt;
536  switch (op) {
537    case kOpBlx: opcode = kX86CallT;  break;
538    case kOpBx: opcode = kX86JmpT;  break;
539    default:
540      LOG(FATAL) << "Bad opcode: " << op;
541      break;
542  }
543  return NewLIR1(opcode, thread_offset.Int32Value());
544}
545
546LIR* X86Mir2Lir::OpMem(OpKind op, RegStorage r_base, int disp) {
547  X86OpCode opcode = kX86Bkpt;
548  switch (op) {
549    case kOpBlx: opcode = kX86CallM;  break;
550    default:
551      LOG(FATAL) << "Bad opcode: " << op;
552      break;
553  }
554  return NewLIR2(opcode, r_base.GetReg(), disp);
555}
556
557LIR* X86Mir2Lir::LoadConstantWide(RegStorage r_dest, int64_t value) {
558    int32_t val_lo = Low32Bits(value);
559    int32_t val_hi = High32Bits(value);
560    int32_t low_reg_val = r_dest.IsPair() ? r_dest.GetLowReg() : r_dest.GetReg();
561    LIR *res;
562    bool is_fp = r_dest.IsFloat();
563    // TODO: clean this up once we fully recognize 64-bit storage containers.
564    if (is_fp) {
565      if (value == 0) {
566        return NewLIR2(kX86XorpsRR, low_reg_val, low_reg_val);
567      } else if (base_of_code_ != nullptr) {
568        // We will load the value from the literal area.
569        LIR* data_target = ScanLiteralPoolWide(literal_list_, val_lo, val_hi);
570        if (data_target == NULL) {
571          data_target = AddWideData(&literal_list_, val_lo, val_hi);
572        }
573
574        // Address the start of the method
575        RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
576        if (rl_method.wide) {
577          rl_method = LoadValueWide(rl_method, kCoreReg);
578        } else {
579          rl_method = LoadValue(rl_method, kCoreReg);
580        }
581
582        // Load the proper value from the literal area.
583        // We don't know the proper offset for the value, so pick one that will force
584        // 4 byte offset.  We will fix this up in the assembler later to have the right
585        // value.
586        ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
587        res = LoadBaseDisp(rl_method.reg, 256 /* bogus */, RegStorage::FloatSolo64(low_reg_val),
588                           kDouble, kNotVolatile);
589        res->target = data_target;
590        res->flags.fixup = kFixupLoad;
591        store_method_addr_used_ = true;
592      } else {
593        if (val_lo == 0) {
594          res = NewLIR2(kX86XorpsRR, low_reg_val, low_reg_val);
595        } else {
596          res = LoadConstantNoClobber(RegStorage::FloatSolo32(low_reg_val), val_lo);
597        }
598        if (val_hi != 0) {
599          RegStorage r_dest_hi = AllocTempDouble();
600          LoadConstantNoClobber(r_dest_hi, val_hi);
601          NewLIR2(kX86PunpckldqRR, low_reg_val, r_dest_hi.GetReg());
602          FreeTemp(r_dest_hi);
603        }
604      }
605    } else {
606      if (r_dest.IsPair()) {
607        res = LoadConstantNoClobber(r_dest.GetLow(), val_lo);
608        LoadConstantNoClobber(r_dest.GetHigh(), val_hi);
609      } else {
610        // TODO(64) make int64_t value parameter of LoadConstantNoClobber
611        if (val_lo < 0) {
612          val_hi += 1;
613        }
614        if (val_hi != 0) {
615          res = LoadConstantNoClobber(RegStorage::Solo32(r_dest.GetReg()), val_hi);
616          NewLIR2(kX86Sal64RI, r_dest.GetReg(), 32);
617        } else {
618          res = NewLIR2(kX86Xor64RR, r_dest.GetReg(), r_dest.GetReg());
619        }
620        if (val_lo != 0) {
621          NewLIR2(kX86Add64RI, r_dest.GetReg(), val_lo);
622        }
623      }
624    }
625    return res;
626}
627
628LIR* X86Mir2Lir::LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
629                                     int displacement, RegStorage r_dest, OpSize size) {
630  LIR *load = NULL;
631  LIR *load2 = NULL;
632  bool is_array = r_index.Valid();
633  bool pair = r_dest.IsPair();
634  bool is64bit = ((size == k64) || (size == kDouble));
635  X86OpCode opcode = kX86Nop;
636  switch (size) {
637    case k64:
638    case kDouble:
639      if (r_dest.IsFloat()) {
640        opcode = is_array ? kX86MovsdRA : kX86MovsdRM;
641      } else if (!pair) {
642        opcode = is_array ? kX86Mov64RA  : kX86Mov64RM;
643      } else {
644        opcode = is_array ? kX86Mov32RA  : kX86Mov32RM;
645      }
646      // TODO: double store is to unaligned address
647      DCHECK_EQ((displacement & 0x3), 0);
648      break;
649    case kWord:
650      if (Gen64Bit()) {
651        opcode = is_array ? kX86Mov64RA  : kX86Mov64RM;
652        CHECK_EQ(is_array, false);
653        CHECK_EQ(r_dest.IsFloat(), false);
654        break;
655      }  // else fall-through to k32 case
656    case k32:
657    case kSingle:
658    case kReference:  // TODO: update for reference decompression on 64-bit targets.
659      opcode = is_array ? kX86Mov32RA : kX86Mov32RM;
660      if (r_dest.IsFloat()) {
661        opcode = is_array ? kX86MovssRA : kX86MovssRM;
662        DCHECK(r_dest.IsFloat());
663      }
664      DCHECK_EQ((displacement & 0x3), 0);
665      break;
666    case kUnsignedHalf:
667      opcode = is_array ? kX86Movzx16RA : kX86Movzx16RM;
668      DCHECK_EQ((displacement & 0x1), 0);
669      break;
670    case kSignedHalf:
671      opcode = is_array ? kX86Movsx16RA : kX86Movsx16RM;
672      DCHECK_EQ((displacement & 0x1), 0);
673      break;
674    case kUnsignedByte:
675      opcode = is_array ? kX86Movzx8RA : kX86Movzx8RM;
676      break;
677    case kSignedByte:
678      opcode = is_array ? kX86Movsx8RA : kX86Movsx8RM;
679      break;
680    default:
681      LOG(FATAL) << "Bad case in LoadBaseIndexedDispBody";
682  }
683
684  if (!is_array) {
685    if (!pair) {
686      load = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), displacement + LOWORD_OFFSET);
687    } else {
688      DCHECK(!r_dest.IsFloat());  // Make sure we're not still using a pair here.
689      if (r_base == r_dest.GetLow()) {
690        load2 = NewLIR3(opcode, r_dest.GetHighReg(), r_base.GetReg(),
691                        displacement + HIWORD_OFFSET);
692        load = NewLIR3(opcode, r_dest.GetLowReg(), r_base.GetReg(), displacement + LOWORD_OFFSET);
693      } else {
694        load = NewLIR3(opcode, r_dest.GetLowReg(), r_base.GetReg(), displacement + LOWORD_OFFSET);
695        load2 = NewLIR3(opcode, r_dest.GetHighReg(), r_base.GetReg(),
696                        displacement + HIWORD_OFFSET);
697      }
698    }
699    if (mem_ref_type_ == ResourceMask::kDalvikReg) {
700      DCHECK(r_base == rs_rX86_SP);
701      AnnotateDalvikRegAccess(load, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
702                              true /* is_load */, is64bit);
703      if (pair) {
704        AnnotateDalvikRegAccess(load2, (displacement + HIWORD_OFFSET) >> 2,
705                                true /* is_load */, is64bit);
706      }
707    }
708  } else {
709    if (!pair) {
710      load = NewLIR5(opcode, r_dest.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
711                     displacement + LOWORD_OFFSET);
712    } else {
713      DCHECK(!r_dest.IsFloat());  // Make sure we're not still using a pair here.
714      if (r_base == r_dest.GetLow()) {
715        if (r_dest.GetHigh() == r_index) {
716          // We can't use either register for the first load.
717          RegStorage temp = AllocTemp();
718          load2 = NewLIR5(opcode, temp.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
719                          displacement + HIWORD_OFFSET);
720          load = NewLIR5(opcode, r_dest.GetLowReg(), r_base.GetReg(), r_index.GetReg(), scale,
721                         displacement + LOWORD_OFFSET);
722          OpRegCopy(r_dest.GetHigh(), temp);
723          FreeTemp(temp);
724        } else {
725          load2 = NewLIR5(opcode, r_dest.GetHighReg(), r_base.GetReg(), r_index.GetReg(), scale,
726                          displacement + HIWORD_OFFSET);
727          load = NewLIR5(opcode, r_dest.GetLowReg(), r_base.GetReg(), r_index.GetReg(), scale,
728                         displacement + LOWORD_OFFSET);
729        }
730      } else {
731        if (r_dest.GetLow() == r_index) {
732          // We can't use either register for the first load.
733          RegStorage temp = AllocTemp();
734          load = NewLIR5(opcode, temp.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
735                         displacement + LOWORD_OFFSET);
736          load2 = NewLIR5(opcode, r_dest.GetHighReg(), r_base.GetReg(), r_index.GetReg(), scale,
737                          displacement + HIWORD_OFFSET);
738          OpRegCopy(r_dest.GetLow(), temp);
739          FreeTemp(temp);
740        } else {
741          load = NewLIR5(opcode, r_dest.GetLowReg(), r_base.GetReg(), r_index.GetReg(), scale,
742                         displacement + LOWORD_OFFSET);
743          load2 = NewLIR5(opcode, r_dest.GetHighReg(), r_base.GetReg(), r_index.GetReg(), scale,
744                          displacement + HIWORD_OFFSET);
745        }
746      }
747    }
748  }
749
750  return load;
751}
752
753/* Load value from base + scaled index. */
754LIR* X86Mir2Lir::LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
755                                 int scale, OpSize size) {
756  return LoadBaseIndexedDisp(r_base, r_index, scale, 0, r_dest, size);
757}
758
759LIR* X86Mir2Lir::LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
760                              OpSize size, VolatileKind is_volatile) {
761  // LoadBaseDisp() will emit correct insn for atomic load on x86
762  // assuming r_dest is correctly prepared using RegClassForFieldLoadStore().
763
764  LIR* load = LoadBaseIndexedDisp(r_base, RegStorage::InvalidReg(), 0, displacement, r_dest,
765                                  size);
766
767  if (UNLIKELY(is_volatile == kVolatile)) {
768    // Without context sensitive analysis, we must issue the most conservative barriers.
769    // In this case, either a load or store may follow so we issue both barriers.
770    GenMemBarrier(kLoadLoad);
771    GenMemBarrier(kLoadStore);
772  }
773
774  return load;
775}
776
777LIR* X86Mir2Lir::StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
778                                      int displacement, RegStorage r_src, OpSize size) {
779  LIR *store = NULL;
780  LIR *store2 = NULL;
781  bool is_array = r_index.Valid();
782  bool pair = r_src.IsPair();
783  bool is64bit = (size == k64) || (size == kDouble);
784  X86OpCode opcode = kX86Nop;
785  switch (size) {
786    case k64:
787    case kDouble:
788      if (r_src.IsFloat()) {
789        opcode = is_array ? kX86MovsdAR : kX86MovsdMR;
790      } else if (!pair) {
791        opcode = is_array ? kX86Mov64AR  : kX86Mov64MR;
792      } else {
793        opcode = is_array ? kX86Mov32AR  : kX86Mov32MR;
794      }
795      // TODO: double store is to unaligned address
796      DCHECK_EQ((displacement & 0x3), 0);
797      break;
798    case kWord:
799      if (Gen64Bit()) {
800        opcode = is_array ? kX86Mov64AR  : kX86Mov64MR;
801        CHECK_EQ(is_array, false);
802        CHECK_EQ(r_src.IsFloat(), false);
803        break;
804      }  // else fall-through to k32 case
805    case k32:
806    case kSingle:
807    case kReference:
808      opcode = is_array ? kX86Mov32AR : kX86Mov32MR;
809      if (r_src.IsFloat()) {
810        opcode = is_array ? kX86MovssAR : kX86MovssMR;
811        DCHECK(r_src.IsSingle());
812      }
813      DCHECK_EQ((displacement & 0x3), 0);
814      break;
815    case kUnsignedHalf:
816    case kSignedHalf:
817      opcode = is_array ? kX86Mov16AR : kX86Mov16MR;
818      DCHECK_EQ((displacement & 0x1), 0);
819      break;
820    case kUnsignedByte:
821    case kSignedByte:
822      opcode = is_array ? kX86Mov8AR : kX86Mov8MR;
823      break;
824    default:
825      LOG(FATAL) << "Bad case in StoreBaseIndexedDispBody";
826  }
827
828  if (!is_array) {
829    if (!pair) {
830      store = NewLIR3(opcode, r_base.GetReg(), displacement + LOWORD_OFFSET, r_src.GetReg());
831    } else {
832      DCHECK(!r_src.IsFloat());  // Make sure we're not still using a pair here.
833      store = NewLIR3(opcode, r_base.GetReg(), displacement + LOWORD_OFFSET, r_src.GetLowReg());
834      store2 = NewLIR3(opcode, r_base.GetReg(), displacement + HIWORD_OFFSET, r_src.GetHighReg());
835    }
836    if (mem_ref_type_ == ResourceMask::kDalvikReg) {
837      DCHECK(r_base == rs_rX86_SP);
838      AnnotateDalvikRegAccess(store, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
839                              false /* is_load */, is64bit);
840      if (pair) {
841        AnnotateDalvikRegAccess(store2, (displacement + HIWORD_OFFSET) >> 2,
842                                false /* is_load */, is64bit);
843      }
844    }
845  } else {
846    if (!pair) {
847      store = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale,
848                      displacement + LOWORD_OFFSET, r_src.GetReg());
849    } else {
850      DCHECK(!r_src.IsFloat());  // Make sure we're not still using a pair here.
851      store = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale,
852                      displacement + LOWORD_OFFSET, r_src.GetLowReg());
853      store2 = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale,
854                       displacement + HIWORD_OFFSET, r_src.GetHighReg());
855    }
856  }
857  return store;
858}
859
860/* store value base base + scaled index. */
861LIR* X86Mir2Lir::StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
862                                  int scale, OpSize size) {
863  return StoreBaseIndexedDisp(r_base, r_index, scale, 0, r_src, size);
864}
865
866LIR* X86Mir2Lir::StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src, OpSize size,
867                               VolatileKind is_volatile) {
868  if (UNLIKELY(is_volatile == kVolatile)) {
869    // There might have been a store before this volatile one so insert StoreStore barrier.
870    GenMemBarrier(kStoreStore);
871  }
872
873  // StoreBaseDisp() will emit correct insn for atomic store on x86
874  // assuming r_dest is correctly prepared using RegClassForFieldLoadStore().
875
876  LIR* store = StoreBaseIndexedDisp(r_base, RegStorage::InvalidReg(), 0, displacement, r_src, size);
877
878  if (UNLIKELY(is_volatile == kVolatile)) {
879    // A load might follow the volatile store so insert a StoreLoad barrier.
880    GenMemBarrier(kStoreLoad);
881  }
882
883  return store;
884}
885
886LIR* X86Mir2Lir::OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
887                                   int offset, int check_value, LIR* target) {
888    NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base_reg.GetReg(), offset,
889            check_value);
890    LIR* branch = OpCondBranch(cond, target);
891    return branch;
892}
893
894void X86Mir2Lir::AnalyzeMIR() {
895  // Assume we don't need a pointer to the base of the code.
896  cu_->NewTimingSplit("X86 MIR Analysis");
897  store_method_addr_ = false;
898
899  // Walk the MIR looking for interesting items.
900  PreOrderDfsIterator iter(mir_graph_);
901  BasicBlock* curr_bb = iter.Next();
902  while (curr_bb != NULL) {
903    AnalyzeBB(curr_bb);
904    curr_bb = iter.Next();
905  }
906
907  // Did we need a pointer to the method code?
908  if (store_method_addr_) {
909    base_of_code_ = mir_graph_->GetNewCompilerTemp(kCompilerTempVR, Gen64Bit() == true);
910  } else {
911    base_of_code_ = nullptr;
912  }
913}
914
915void X86Mir2Lir::AnalyzeBB(BasicBlock * bb) {
916  if (bb->block_type == kDead) {
917    // Ignore dead blocks
918    return;
919  }
920
921  for (MIR *mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
922    int opcode = mir->dalvikInsn.opcode;
923    if (MIRGraph::IsPseudoMirOp(opcode)) {
924      AnalyzeExtendedMIR(opcode, bb, mir);
925    } else {
926      AnalyzeMIR(opcode, bb, mir);
927    }
928  }
929}
930
931
932void X86Mir2Lir::AnalyzeExtendedMIR(int opcode, BasicBlock * bb, MIR *mir) {
933  switch (opcode) {
934    // Instructions referencing doubles.
935    case kMirOpFusedCmplDouble:
936    case kMirOpFusedCmpgDouble:
937      AnalyzeFPInstruction(opcode, bb, mir);
938      break;
939    case kMirOpConstVector:
940      store_method_addr_ = true;
941      break;
942    default:
943      // Ignore the rest.
944      break;
945  }
946}
947
948void X86Mir2Lir::AnalyzeMIR(int opcode, BasicBlock * bb, MIR *mir) {
949  // Looking for
950  // - Do we need a pointer to the code (used for packed switches and double lits)?
951
952  switch (opcode) {
953    // Instructions referencing doubles.
954    case Instruction::CMPL_DOUBLE:
955    case Instruction::CMPG_DOUBLE:
956    case Instruction::NEG_DOUBLE:
957    case Instruction::ADD_DOUBLE:
958    case Instruction::SUB_DOUBLE:
959    case Instruction::MUL_DOUBLE:
960    case Instruction::DIV_DOUBLE:
961    case Instruction::REM_DOUBLE:
962    case Instruction::ADD_DOUBLE_2ADDR:
963    case Instruction::SUB_DOUBLE_2ADDR:
964    case Instruction::MUL_DOUBLE_2ADDR:
965    case Instruction::DIV_DOUBLE_2ADDR:
966    case Instruction::REM_DOUBLE_2ADDR:
967      AnalyzeFPInstruction(opcode, bb, mir);
968      break;
969
970    // Packed switches and array fills need a pointer to the base of the method.
971    case Instruction::FILL_ARRAY_DATA:
972    case Instruction::PACKED_SWITCH:
973      store_method_addr_ = true;
974      break;
975    case Instruction::INVOKE_STATIC:
976      AnalyzeInvokeStatic(opcode, bb, mir);
977      break;
978    default:
979      // Other instructions are not interesting yet.
980      break;
981  }
982}
983
984void X86Mir2Lir::AnalyzeFPInstruction(int opcode, BasicBlock * bb, MIR *mir) {
985  // Look at all the uses, and see if they are double constants.
986  uint64_t attrs = MIRGraph::GetDataFlowAttributes(static_cast<Instruction::Code>(opcode));
987  int next_sreg = 0;
988  if (attrs & DF_UA) {
989    if (attrs & DF_A_WIDE) {
990      AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg));
991      next_sreg += 2;
992    } else {
993      next_sreg++;
994    }
995  }
996  if (attrs & DF_UB) {
997    if (attrs & DF_B_WIDE) {
998      AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg));
999      next_sreg += 2;
1000    } else {
1001      next_sreg++;
1002    }
1003  }
1004  if (attrs & DF_UC) {
1005    if (attrs & DF_C_WIDE) {
1006      AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg));
1007    }
1008  }
1009}
1010
1011void X86Mir2Lir::AnalyzeDoubleUse(RegLocation use) {
1012  // If this is a double literal, we will want it in the literal pool.
1013  if (use.is_const) {
1014    store_method_addr_ = true;
1015  }
1016}
1017
1018RegLocation X86Mir2Lir::UpdateLocTyped(RegLocation loc, int reg_class) {
1019  loc = UpdateLoc(loc);
1020  if ((loc.location == kLocPhysReg) && (loc.fp != loc.reg.IsFloat())) {
1021    if (GetRegInfo(loc.reg)->IsTemp()) {
1022      Clobber(loc.reg);
1023      FreeTemp(loc.reg);
1024      loc.reg = RegStorage::InvalidReg();
1025      loc.location = kLocDalvikFrame;
1026    }
1027  }
1028  DCHECK(CheckCorePoolSanity());
1029  return loc;
1030}
1031
1032RegLocation X86Mir2Lir::UpdateLocWideTyped(RegLocation loc, int reg_class) {
1033  loc = UpdateLocWide(loc);
1034  if ((loc.location == kLocPhysReg) && (loc.fp != loc.reg.IsFloat())) {
1035    if (GetRegInfo(loc.reg)->IsTemp()) {
1036      Clobber(loc.reg);
1037      FreeTemp(loc.reg);
1038      loc.reg = RegStorage::InvalidReg();
1039      loc.location = kLocDalvikFrame;
1040    }
1041  }
1042  DCHECK(CheckCorePoolSanity());
1043  return loc;
1044}
1045
1046void X86Mir2Lir::AnalyzeInvokeStatic(int opcode, BasicBlock * bb, MIR *mir) {
1047  uint32_t index = mir->dalvikInsn.vB;
1048  if (!(mir->optimization_flags & MIR_INLINED)) {
1049    DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr);
1050    InlineMethod method;
1051    if (cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(cu_->dex_file)
1052        ->IsIntrinsic(index, &method)) {
1053      switch (method.opcode) {
1054        case kIntrinsicAbsDouble:
1055          store_method_addr_ = true;
1056          break;
1057        default:
1058          break;
1059      }
1060    }
1061  }
1062}
1063}  // namespace art
1064