utility_x86.cc revision 2700f7e1edbcd2518f4978e4cd0e05a4149f91b6
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "codegen_x86.h"
18#include "dex/quick/mir_to_lir-inl.h"
19#include "dex/dataflow_iterator-inl.h"
20#include "x86_lir.h"
21
22namespace art {
23
24/* This file contains codegen for the X86 ISA */
25
26LIR* X86Mir2Lir::OpFpRegCopy(RegStorage r_dest, RegStorage r_src) {
27  int opcode;
28  /* must be both DOUBLE or both not DOUBLE */
29  DCHECK_EQ(X86_DOUBLEREG(r_dest.GetReg()), X86_DOUBLEREG(r_src.GetReg()));
30  if (X86_DOUBLEREG(r_dest.GetReg())) {
31    opcode = kX86MovsdRR;
32  } else {
33    if (X86_SINGLEREG(r_dest.GetReg())) {
34      if (X86_SINGLEREG(r_src.GetReg())) {
35        opcode = kX86MovssRR;
36      } else {  // Fpr <- Gpr
37        opcode = kX86MovdxrRR;
38      }
39    } else {  // Gpr <- Fpr
40      DCHECK(X86_SINGLEREG(r_src.GetReg()));
41      opcode = kX86MovdrxRR;
42    }
43  }
44  DCHECK_NE((EncodingMap[opcode].flags & IS_BINARY_OP), 0ULL);
45  LIR* res = RawLIR(current_dalvik_offset_, opcode, r_dest.GetReg(), r_src.GetReg());
46  if (r_dest == r_src) {
47    res->flags.is_nop = true;
48  }
49  return res;
50}
51
52bool X86Mir2Lir::InexpensiveConstantInt(int32_t value) {
53  return true;
54}
55
56bool X86Mir2Lir::InexpensiveConstantFloat(int32_t value) {
57  return false;
58}
59
60bool X86Mir2Lir::InexpensiveConstantLong(int64_t value) {
61  return true;
62}
63
64bool X86Mir2Lir::InexpensiveConstantDouble(int64_t value) {
65  return value == 0;
66}
67
68/*
69 * Load a immediate using a shortcut if possible; otherwise
70 * grab from the per-translation literal pool.  If target is
71 * a high register, build constant into a low register and copy.
72 *
73 * No additional register clobbering operation performed. Use this version when
74 * 1) r_dest is freshly returned from AllocTemp or
75 * 2) The codegen is under fixed register usage
76 */
77LIR* X86Mir2Lir::LoadConstantNoClobber(RegStorage r_dest, int value) {
78  RegStorage r_dest_save = r_dest;
79  if (X86_FPREG(r_dest.GetReg())) {
80    if (value == 0) {
81      return NewLIR2(kX86XorpsRR, r_dest.GetReg(), r_dest.GetReg());
82    }
83    DCHECK(X86_SINGLEREG(r_dest.GetReg()));
84    r_dest = AllocTemp();
85  }
86
87  LIR *res;
88  if (value == 0) {
89    res = NewLIR2(kX86Xor32RR, r_dest.GetReg(), r_dest.GetReg());
90  } else {
91    // Note, there is no byte immediate form of a 32 bit immediate move.
92    res = NewLIR2(kX86Mov32RI, r_dest.GetReg(), value);
93  }
94
95  if (X86_FPREG(r_dest_save.GetReg())) {
96    NewLIR2(kX86MovdxrRR, r_dest_save.GetReg(), r_dest.GetReg());
97    FreeTemp(r_dest);
98  }
99
100  return res;
101}
102
103LIR* X86Mir2Lir::OpUnconditionalBranch(LIR* target) {
104  LIR* res = NewLIR1(kX86Jmp8, 0 /* offset to be patched during assembly*/);
105  res->target = target;
106  return res;
107}
108
109LIR* X86Mir2Lir::OpCondBranch(ConditionCode cc, LIR* target) {
110  LIR* branch = NewLIR2(kX86Jcc8, 0 /* offset to be patched */,
111                        X86ConditionEncoding(cc));
112  branch->target = target;
113  return branch;
114}
115
116LIR* X86Mir2Lir::OpReg(OpKind op, RegStorage r_dest_src) {
117  X86OpCode opcode = kX86Bkpt;
118  switch (op) {
119    case kOpNeg: opcode = kX86Neg32R; break;
120    case kOpNot: opcode = kX86Not32R; break;
121    case kOpRev: opcode = kX86Bswap32R; break;
122    case kOpBlx: opcode = kX86CallR; break;
123    default:
124      LOG(FATAL) << "Bad case in OpReg " << op;
125  }
126  return NewLIR1(opcode, r_dest_src.GetReg());
127}
128
129LIR* X86Mir2Lir::OpRegImm(OpKind op, RegStorage r_dest_src1, int value) {
130  X86OpCode opcode = kX86Bkpt;
131  bool byte_imm = IS_SIMM8(value);
132  DCHECK(!X86_FPREG(r_dest_src1.GetReg()));
133  switch (op) {
134    case kOpLsl: opcode = kX86Sal32RI; break;
135    case kOpLsr: opcode = kX86Shr32RI; break;
136    case kOpAsr: opcode = kX86Sar32RI; break;
137    case kOpAdd: opcode = byte_imm ? kX86Add32RI8 : kX86Add32RI; break;
138    case kOpOr:  opcode = byte_imm ? kX86Or32RI8  : kX86Or32RI;  break;
139    case kOpAdc: opcode = byte_imm ? kX86Adc32RI8 : kX86Adc32RI; break;
140    // case kOpSbb: opcode = kX86Sbb32RI; break;
141    case kOpAnd: opcode = byte_imm ? kX86And32RI8 : kX86And32RI; break;
142    case kOpSub: opcode = byte_imm ? kX86Sub32RI8 : kX86Sub32RI; break;
143    case kOpXor: opcode = byte_imm ? kX86Xor32RI8 : kX86Xor32RI; break;
144    case kOpCmp: opcode = byte_imm ? kX86Cmp32RI8 : kX86Cmp32RI; break;
145    case kOpMov:
146      /*
147       * Moving the constant zero into register can be specialized as an xor of the register.
148       * However, that sets eflags while the move does not. For that reason here, always do
149       * the move and if caller is flexible, they should be calling LoadConstantNoClobber instead.
150       */
151      opcode = kX86Mov32RI;
152      break;
153    case kOpMul:
154      opcode = byte_imm ? kX86Imul32RRI8 : kX86Imul32RRI;
155      return NewLIR3(opcode, r_dest_src1.GetReg(), r_dest_src1.GetReg(), value);
156    default:
157      LOG(FATAL) << "Bad case in OpRegImm " << op;
158  }
159  return NewLIR2(opcode, r_dest_src1.GetReg(), value);
160}
161
162LIR* X86Mir2Lir::OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) {
163    X86OpCode opcode = kX86Nop;
164    bool src2_must_be_cx = false;
165    switch (op) {
166        // X86 unary opcodes
167      case kOpMvn:
168        OpRegCopy(r_dest_src1, r_src2);
169        return OpReg(kOpNot, r_dest_src1);
170      case kOpNeg:
171        OpRegCopy(r_dest_src1, r_src2);
172        return OpReg(kOpNeg, r_dest_src1);
173      case kOpRev:
174        OpRegCopy(r_dest_src1, r_src2);
175        return OpReg(kOpRev, r_dest_src1);
176      case kOpRevsh:
177        OpRegCopy(r_dest_src1, r_src2);
178        OpReg(kOpRev, r_dest_src1);
179        return OpRegImm(kOpAsr, r_dest_src1, 16);
180        // X86 binary opcodes
181      case kOpSub: opcode = kX86Sub32RR; break;
182      case kOpSbc: opcode = kX86Sbb32RR; break;
183      case kOpLsl: opcode = kX86Sal32RC; src2_must_be_cx = true; break;
184      case kOpLsr: opcode = kX86Shr32RC; src2_must_be_cx = true; break;
185      case kOpAsr: opcode = kX86Sar32RC; src2_must_be_cx = true; break;
186      case kOpMov: opcode = kX86Mov32RR; break;
187      case kOpCmp: opcode = kX86Cmp32RR; break;
188      case kOpAdd: opcode = kX86Add32RR; break;
189      case kOpAdc: opcode = kX86Adc32RR; break;
190      case kOpAnd: opcode = kX86And32RR; break;
191      case kOpOr:  opcode = kX86Or32RR; break;
192      case kOpXor: opcode = kX86Xor32RR; break;
193      case kOp2Byte:
194        // Use shifts instead of a byte operand if the source can't be byte accessed.
195        if (r_src2.GetReg() >= 4) {
196          NewLIR2(kX86Mov32RR, r_dest_src1.GetReg(), r_src2.GetReg());
197          NewLIR2(kX86Sal32RI, r_dest_src1.GetReg(), 24);
198          return NewLIR2(kX86Sar32RI, r_dest_src1.GetReg(), 24);
199        } else {
200          opcode = kX86Movsx8RR;
201        }
202        break;
203      case kOp2Short: opcode = kX86Movsx16RR; break;
204      case kOp2Char: opcode = kX86Movzx16RR; break;
205      case kOpMul: opcode = kX86Imul32RR; break;
206      default:
207        LOG(FATAL) << "Bad case in OpRegReg " << op;
208        break;
209    }
210    CHECK(!src2_must_be_cx || r_src2.GetReg() == rCX);
211    return NewLIR2(opcode, r_dest_src1.GetReg(), r_src2.GetReg());
212}
213
214LIR* X86Mir2Lir::OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset, MoveType move_type) {
215  DCHECK(!(X86_FPREG(r_base.GetReg())));
216  X86OpCode opcode = kX86Nop;
217  int dest = r_dest.IsPair() ? r_dest.GetLowReg() : r_dest.GetReg();
218  switch (move_type) {
219    case kMov8GP:
220      CHECK(!X86_FPREG(dest));
221      opcode = kX86Mov8RM;
222      break;
223    case kMov16GP:
224      CHECK(!X86_FPREG(dest));
225      opcode = kX86Mov16RM;
226      break;
227    case kMov32GP:
228      CHECK(!X86_FPREG(dest));
229      opcode = kX86Mov32RM;
230      break;
231    case kMov32FP:
232      CHECK(X86_FPREG(dest));
233      opcode = kX86MovssRM;
234      break;
235    case kMov64FP:
236      CHECK(X86_FPREG(dest));
237      opcode = kX86MovsdRM;
238      break;
239    case kMovU128FP:
240      CHECK(X86_FPREG(dest));
241      opcode = kX86MovupsRM;
242      break;
243    case kMovA128FP:
244      CHECK(X86_FPREG(dest));
245      opcode = kX86MovapsRM;
246      break;
247    case kMovLo128FP:
248      CHECK(X86_FPREG(dest));
249      opcode = kX86MovlpsRM;
250      break;
251    case kMovHi128FP:
252      CHECK(X86_FPREG(dest));
253      opcode = kX86MovhpsRM;
254      break;
255    case kMov64GP:
256    case kMovLo64FP:
257    case kMovHi64FP:
258    default:
259      LOG(FATAL) << "Bad case in OpMovRegMem";
260      break;
261  }
262
263  return NewLIR3(opcode, dest, r_base.GetReg(), offset);
264}
265
266LIR* X86Mir2Lir::OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src, MoveType move_type) {
267  DCHECK(!(X86_FPREG(r_base.GetReg())));
268  int src = r_src.IsPair() ? r_src.GetLowReg() : r_src.GetReg();
269
270  X86OpCode opcode = kX86Nop;
271  switch (move_type) {
272    case kMov8GP:
273      CHECK(!X86_FPREG(src));
274      opcode = kX86Mov8MR;
275      break;
276    case kMov16GP:
277      CHECK(!X86_FPREG(src));
278      opcode = kX86Mov16MR;
279      break;
280    case kMov32GP:
281      CHECK(!X86_FPREG(src));
282      opcode = kX86Mov32MR;
283      break;
284    case kMov32FP:
285      CHECK(X86_FPREG(src));
286      opcode = kX86MovssMR;
287      break;
288    case kMov64FP:
289      CHECK(X86_FPREG(src));
290      opcode = kX86MovsdMR;
291      break;
292    case kMovU128FP:
293      CHECK(X86_FPREG(src));
294      opcode = kX86MovupsMR;
295      break;
296    case kMovA128FP:
297      CHECK(X86_FPREG(src));
298      opcode = kX86MovapsMR;
299      break;
300    case kMovLo128FP:
301      CHECK(X86_FPREG(src));
302      opcode = kX86MovlpsMR;
303      break;
304    case kMovHi128FP:
305      CHECK(X86_FPREG(src));
306      opcode = kX86MovhpsMR;
307      break;
308    case kMov64GP:
309    case kMovLo64FP:
310    case kMovHi64FP:
311    default:
312      LOG(FATAL) << "Bad case in OpMovMemReg";
313      break;
314  }
315
316  return NewLIR3(opcode, r_base.GetReg(), offset, src);
317}
318
319LIR* X86Mir2Lir::OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) {
320  // The only conditional reg to reg operation supported is Cmov
321  DCHECK_EQ(op, kOpCmov);
322  return NewLIR3(kX86Cmov32RRC, r_dest.GetReg(), r_src.GetReg(), X86ConditionEncoding(cc));
323}
324
325LIR* X86Mir2Lir::OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset) {
326  X86OpCode opcode = kX86Nop;
327  switch (op) {
328      // X86 binary opcodes
329    case kOpSub: opcode = kX86Sub32RM; break;
330    case kOpMov: opcode = kX86Mov32RM; break;
331    case kOpCmp: opcode = kX86Cmp32RM; break;
332    case kOpAdd: opcode = kX86Add32RM; break;
333    case kOpAnd: opcode = kX86And32RM; break;
334    case kOpOr:  opcode = kX86Or32RM; break;
335    case kOpXor: opcode = kX86Xor32RM; break;
336    case kOp2Byte: opcode = kX86Movsx8RM; break;
337    case kOp2Short: opcode = kX86Movsx16RM; break;
338    case kOp2Char: opcode = kX86Movzx16RM; break;
339    case kOpMul:
340    default:
341      LOG(FATAL) << "Bad case in OpRegMem " << op;
342      break;
343  }
344  LIR *l = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), offset);
345  if (r_base == rs_rX86_SP) {
346    AnnotateDalvikRegAccess(l, offset >> 2, true /* is_load */, false /* is_64bit */);
347  }
348  return l;
349}
350
351LIR* X86Mir2Lir::OpMemReg(OpKind op, RegLocation rl_dest, int r_value) {
352  DCHECK_NE(rl_dest.location, kLocPhysReg);
353  int displacement = SRegOffset(rl_dest.s_reg_low);
354  X86OpCode opcode = kX86Nop;
355  switch (op) {
356    case kOpSub: opcode = kX86Sub32MR; break;
357    case kOpMov: opcode = kX86Mov32MR; break;
358    case kOpCmp: opcode = kX86Cmp32MR; break;
359    case kOpAdd: opcode = kX86Add32MR; break;
360    case kOpAnd: opcode = kX86And32MR; break;
361    case kOpOr:  opcode = kX86Or32MR; break;
362    case kOpXor: opcode = kX86Xor32MR; break;
363    case kOpLsl: opcode = kX86Sal32MC; break;
364    case kOpLsr: opcode = kX86Shr32MC; break;
365    case kOpAsr: opcode = kX86Sar32MC; break;
366    default:
367      LOG(FATAL) << "Bad case in OpMemReg " << op;
368      break;
369  }
370  LIR *l = NewLIR3(opcode, rX86_SP, displacement, r_value);
371  AnnotateDalvikRegAccess(l, displacement >> 2, false /* is_load */, false /* is_64bit */);
372  return l;
373}
374
375LIR* X86Mir2Lir::OpRegMem(OpKind op, RegStorage r_dest, RegLocation rl_value) {
376  DCHECK_NE(rl_value.location, kLocPhysReg);
377  int displacement = SRegOffset(rl_value.s_reg_low);
378  X86OpCode opcode = kX86Nop;
379  switch (op) {
380    case kOpSub: opcode = kX86Sub32RM; break;
381    case kOpMov: opcode = kX86Mov32RM; break;
382    case kOpCmp: opcode = kX86Cmp32RM; break;
383    case kOpAdd: opcode = kX86Add32RM; break;
384    case kOpAnd: opcode = kX86And32RM; break;
385    case kOpOr:  opcode = kX86Or32RM; break;
386    case kOpXor: opcode = kX86Xor32RM; break;
387    case kOpMul: opcode = kX86Imul32RM; break;
388    default:
389      LOG(FATAL) << "Bad case in OpRegMem " << op;
390      break;
391  }
392  LIR *l = NewLIR3(opcode, r_dest.GetReg(), rX86_SP, displacement);
393  AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, false /* is_64bit */);
394  return l;
395}
396
397LIR* X86Mir2Lir::OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1,
398                             RegStorage r_src2) {
399  if (r_dest != r_src1 && r_dest != r_src2) {
400    if (op == kOpAdd) {  // lea special case, except can't encode rbp as base
401      if (r_src1 == r_src2) {
402        OpRegCopy(r_dest, r_src1);
403        return OpRegImm(kOpLsl, r_dest, 1);
404      } else if (r_src1 != rs_rBP) {
405        return NewLIR5(kX86Lea32RA, r_dest.GetReg(), r_src1.GetReg() /* base */,
406                       r_src2.GetReg() /* index */, 0 /* scale */, 0 /* disp */);
407      } else {
408        return NewLIR5(kX86Lea32RA, r_dest.GetReg(), r_src2.GetReg() /* base */,
409                       r_src1.GetReg() /* index */, 0 /* scale */, 0 /* disp */);
410      }
411    } else {
412      OpRegCopy(r_dest, r_src1);
413      return OpRegReg(op, r_dest, r_src2);
414    }
415  } else if (r_dest == r_src1) {
416    return OpRegReg(op, r_dest, r_src2);
417  } else {  // r_dest == r_src2
418    switch (op) {
419      case kOpSub:  // non-commutative
420        OpReg(kOpNeg, r_dest);
421        op = kOpAdd;
422        break;
423      case kOpSbc:
424      case kOpLsl: case kOpLsr: case kOpAsr: case kOpRor: {
425        RegStorage t_reg = AllocTemp();
426        OpRegCopy(t_reg, r_src1);
427        OpRegReg(op, t_reg, r_src2);
428        LIR* res = OpRegCopy(r_dest, t_reg);
429        FreeTemp(t_reg);
430        return res;
431      }
432      case kOpAdd:  // commutative
433      case kOpOr:
434      case kOpAdc:
435      case kOpAnd:
436      case kOpXor:
437        break;
438      default:
439        LOG(FATAL) << "Bad case in OpRegRegReg " << op;
440    }
441    return OpRegReg(op, r_dest, r_src1);
442  }
443}
444
445LIR* X86Mir2Lir::OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src, int value) {
446  if (op == kOpMul) {
447    X86OpCode opcode = IS_SIMM8(value) ? kX86Imul32RRI8 : kX86Imul32RRI;
448    return NewLIR3(opcode, r_dest.GetReg(), r_src.GetReg(), value);
449  } else if (op == kOpAnd) {
450    if (value == 0xFF && r_src.GetReg() < 4) {
451      return NewLIR2(kX86Movzx8RR, r_dest.GetReg(), r_src.GetReg());
452    } else if (value == 0xFFFF) {
453      return NewLIR2(kX86Movzx16RR, r_dest.GetReg(), r_src.GetReg());
454    }
455  }
456  if (r_dest != r_src) {
457    if (false && op == kOpLsl && value >= 0 && value <= 3) {  // lea shift special case
458      // TODO: fix bug in LEA encoding when disp == 0
459      return NewLIR5(kX86Lea32RA, r_dest.GetReg(),  r5sib_no_base /* base */,
460                     r_src.GetReg() /* index */, value /* scale */, 0 /* disp */);
461    } else if (op == kOpAdd) {  // lea add special case
462      return NewLIR5(kX86Lea32RA, r_dest.GetReg(), r_src.GetReg() /* base */,
463                     r4sib_no_index /* index */, 0 /* scale */, value /* disp */);
464    }
465    OpRegCopy(r_dest, r_src);
466  }
467  return OpRegImm(op, r_dest, value);
468}
469
470LIR* X86Mir2Lir::OpThreadMem(OpKind op, ThreadOffset thread_offset) {
471  X86OpCode opcode = kX86Bkpt;
472  switch (op) {
473    case kOpBlx: opcode = kX86CallT;  break;
474    case kOpBx: opcode = kX86JmpT;  break;
475    default:
476      LOG(FATAL) << "Bad opcode: " << op;
477      break;
478  }
479  return NewLIR1(opcode, thread_offset.Int32Value());
480}
481
482LIR* X86Mir2Lir::OpMem(OpKind op, RegStorage r_base, int disp) {
483  X86OpCode opcode = kX86Bkpt;
484  switch (op) {
485    case kOpBlx: opcode = kX86CallM;  break;
486    default:
487      LOG(FATAL) << "Bad opcode: " << op;
488      break;
489  }
490  return NewLIR2(opcode, r_base.GetReg(), disp);
491}
492
493LIR* X86Mir2Lir::LoadConstantWide(RegStorage r_dest, int64_t value) {
494    int32_t val_lo = Low32Bits(value);
495    int32_t val_hi = High32Bits(value);
496    int32_t low_reg_val = r_dest.IsPair() ? r_dest.GetLowReg() : r_dest.GetReg();
497    LIR *res;
498    bool is_fp = X86_FPREG(low_reg_val);
499    // TODO: clean this up once we fully recognize 64-bit storage containers.
500    if (is_fp) {
501      if (value == 0) {
502        return NewLIR2(kX86XorpsRR, low_reg_val, low_reg_val);
503      } else if (base_of_code_ != nullptr) {
504        // We will load the value from the literal area.
505        LIR* data_target = ScanLiteralPoolWide(literal_list_, val_lo, val_hi);
506        if (data_target == NULL) {
507          data_target = AddWideData(&literal_list_, val_lo, val_hi);
508        }
509
510        // Address the start of the method
511        RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
512        rl_method = LoadValue(rl_method, kCoreReg);
513
514        // Load the proper value from the literal area.
515        // We don't know the proper offset for the value, so pick one that will force
516        // 4 byte offset.  We will fix this up in the assembler later to have the right
517        // value.
518        res = LoadBaseDisp(rl_method.reg, 256 /* bogus */, RegStorage::Solo64(low_reg_val),
519                           kDouble, INVALID_SREG);
520        res->target = data_target;
521        res->flags.fixup = kFixupLoad;
522        SetMemRefType(res, true, kLiteral);
523        store_method_addr_used_ = true;
524      } else {
525        if (val_lo == 0) {
526          res = NewLIR2(kX86XorpsRR, low_reg_val, low_reg_val);
527        } else {
528          res = LoadConstantNoClobber(RegStorage::Solo32(low_reg_val), val_lo);
529        }
530        if (val_hi != 0) {
531          // FIXME: clean up when AllocTempDouble no longer returns a pair.
532          RegStorage r_dest_hi = AllocTempDouble();
533          LoadConstantNoClobber(RegStorage::Solo32(r_dest_hi.GetLowReg()), val_hi);
534          NewLIR2(kX86PunpckldqRR, low_reg_val, r_dest_hi.GetLowReg());
535          FreeTemp(r_dest_hi);
536        }
537      }
538    } else {
539      res = LoadConstantNoClobber(r_dest.GetLow(), val_lo);
540      LoadConstantNoClobber(r_dest.GetHigh(), val_hi);
541    }
542    return res;
543}
544
545// FIXME: don't split r_dest into two storage units.
546LIR* X86Mir2Lir::LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
547                                     int displacement, RegStorage r_dest, RegStorage r_dest_hi,
548                                     OpSize size, int s_reg) {
549  LIR *load = NULL;
550  LIR *load2 = NULL;
551  bool is_array = r_index.Valid();
552  bool pair = false;
553  bool is64bit = false;
554  X86OpCode opcode = kX86Nop;
555  switch (size) {
556    case kLong:
557    case kDouble:
558      // TODO: use regstorage attributes here.
559      is64bit = true;
560      if (X86_FPREG(r_dest.GetReg())) {
561        opcode = is_array ? kX86MovsdRA : kX86MovsdRM;
562      } else {
563        pair = true;
564        opcode = is_array ? kX86Mov32RA  : kX86Mov32RM;
565      }
566      // TODO: double store is to unaligned address
567      DCHECK_EQ((displacement & 0x3), 0);
568      break;
569    case kWord:
570    case kSingle:
571      opcode = is_array ? kX86Mov32RA : kX86Mov32RM;
572      if (X86_FPREG(r_dest.GetReg())) {
573        opcode = is_array ? kX86MovssRA : kX86MovssRM;
574        DCHECK(X86_SINGLEREG(r_dest.GetReg()));
575      }
576      DCHECK_EQ((displacement & 0x3), 0);
577      break;
578    case kUnsignedHalf:
579      opcode = is_array ? kX86Movzx16RA : kX86Movzx16RM;
580      DCHECK_EQ((displacement & 0x1), 0);
581      break;
582    case kSignedHalf:
583      opcode = is_array ? kX86Movsx16RA : kX86Movsx16RM;
584      DCHECK_EQ((displacement & 0x1), 0);
585      break;
586    case kUnsignedByte:
587      opcode = is_array ? kX86Movzx8RA : kX86Movzx8RM;
588      break;
589    case kSignedByte:
590      opcode = is_array ? kX86Movsx8RA : kX86Movsx8RM;
591      break;
592    default:
593      LOG(FATAL) << "Bad case in LoadBaseIndexedDispBody";
594  }
595
596  if (!is_array) {
597    if (!pair) {
598      load = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), displacement + LOWORD_OFFSET);
599    } else {
600      if (r_base == r_dest) {
601        load2 = NewLIR3(opcode, r_dest_hi.GetReg(), r_base.GetReg(),
602                        displacement + HIWORD_OFFSET);
603        load = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), displacement + LOWORD_OFFSET);
604      } else {
605        load = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), displacement + LOWORD_OFFSET);
606        load2 = NewLIR3(opcode, r_dest_hi.GetReg(), r_base.GetReg(),
607                        displacement + HIWORD_OFFSET);
608      }
609    }
610    if (r_base == rs_rX86_SP) {
611      AnnotateDalvikRegAccess(load, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
612                              true /* is_load */, is64bit);
613      if (pair) {
614        AnnotateDalvikRegAccess(load2, (displacement + HIWORD_OFFSET) >> 2,
615                                true /* is_load */, is64bit);
616      }
617    }
618  } else {
619    if (!pair) {
620      load = NewLIR5(opcode, r_dest.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
621                     displacement + LOWORD_OFFSET);
622    } else {
623      if (r_base == r_dest) {
624        if (r_dest_hi == r_index) {
625          // We can't use either register for the first load.
626          RegStorage temp = AllocTemp();
627          load2 = NewLIR5(opcode, temp.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
628                          displacement + HIWORD_OFFSET);
629          load = NewLIR5(opcode, r_dest.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
630                         displacement + LOWORD_OFFSET);
631          OpRegCopy(r_dest_hi, temp);
632          FreeTemp(temp);
633        } else {
634          load2 = NewLIR5(opcode, r_dest_hi.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
635                          displacement + HIWORD_OFFSET);
636          load = NewLIR5(opcode, r_dest.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
637                         displacement + LOWORD_OFFSET);
638        }
639      } else {
640        if (r_dest == r_index) {
641          // We can't use either register for the first load.
642          RegStorage temp = AllocTemp();
643          load = NewLIR5(opcode, temp.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
644                         displacement + LOWORD_OFFSET);
645          load2 = NewLIR5(opcode, r_dest_hi.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
646                          displacement + HIWORD_OFFSET);
647          OpRegCopy(r_dest, temp);
648          FreeTemp(temp);
649        } else {
650          load = NewLIR5(opcode, r_dest.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
651                         displacement + LOWORD_OFFSET);
652          load2 = NewLIR5(opcode, r_dest_hi.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
653                          displacement + HIWORD_OFFSET);
654        }
655      }
656    }
657  }
658
659  return load;
660}
661
662/* Load value from base + scaled index. */
663LIR* X86Mir2Lir::LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
664                                 int scale, OpSize size) {
665  return LoadBaseIndexedDisp(r_base, r_index, scale, 0,
666                             r_dest, RegStorage::InvalidReg(), size, INVALID_SREG);
667}
668
669LIR* X86Mir2Lir::LoadBaseDisp(RegStorage r_base, int displacement,
670                  RegStorage r_dest, OpSize size, int s_reg) {
671  return LoadBaseIndexedDisp(r_base, RegStorage::InvalidReg(), 0, displacement,
672                             r_dest, RegStorage::InvalidReg(), size, s_reg);
673}
674
675LIR* X86Mir2Lir::LoadBaseDispWide(RegStorage r_base, int displacement, RegStorage r_dest,
676                                  int s_reg) {
677  return LoadBaseIndexedDisp(r_base, RegStorage::InvalidReg(), 0, displacement,
678                             r_dest.GetLow(), r_dest.GetHigh(), kLong, s_reg);
679}
680
681LIR* X86Mir2Lir::StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
682                                      int displacement, RegStorage r_src, RegStorage r_src_hi,
683                                      OpSize size, int s_reg) {
684  LIR *store = NULL;
685  LIR *store2 = NULL;
686  bool is_array = r_index.Valid();
687  // FIXME: use regstorage attributes in place of these.
688  bool pair = false;
689  bool is64bit = false;
690  X86OpCode opcode = kX86Nop;
691  switch (size) {
692    case kLong:
693    case kDouble:
694      is64bit = true;
695      if (X86_FPREG(r_src.GetReg())) {
696        opcode = is_array ? kX86MovsdAR : kX86MovsdMR;
697      } else {
698        pair = true;
699        opcode = is_array ? kX86Mov32AR  : kX86Mov32MR;
700      }
701      // TODO: double store is to unaligned address
702      DCHECK_EQ((displacement & 0x3), 0);
703      break;
704    case kWord:
705    case kSingle:
706      opcode = is_array ? kX86Mov32AR : kX86Mov32MR;
707      if (X86_FPREG(r_src.GetReg())) {
708        opcode = is_array ? kX86MovssAR : kX86MovssMR;
709        DCHECK(X86_SINGLEREG(r_src.GetReg()));
710      }
711      DCHECK_EQ((displacement & 0x3), 0);
712      break;
713    case kUnsignedHalf:
714    case kSignedHalf:
715      opcode = is_array ? kX86Mov16AR : kX86Mov16MR;
716      DCHECK_EQ((displacement & 0x1), 0);
717      break;
718    case kUnsignedByte:
719    case kSignedByte:
720      opcode = is_array ? kX86Mov8AR : kX86Mov8MR;
721      break;
722    default:
723      LOG(FATAL) << "Bad case in StoreBaseIndexedDispBody";
724  }
725
726  if (!is_array) {
727    if (!pair) {
728      store = NewLIR3(opcode, r_base.GetReg(), displacement + LOWORD_OFFSET, r_src.GetReg());
729    } else {
730      store = NewLIR3(opcode, r_base.GetReg(), displacement + LOWORD_OFFSET, r_src.GetReg());
731      store2 = NewLIR3(opcode, r_base.GetReg(), displacement + HIWORD_OFFSET, r_src_hi.GetReg());
732    }
733    if (r_base == rs_rX86_SP) {
734      AnnotateDalvikRegAccess(store, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
735                              false /* is_load */, is64bit);
736      if (pair) {
737        AnnotateDalvikRegAccess(store2, (displacement + HIWORD_OFFSET) >> 2,
738                                false /* is_load */, is64bit);
739      }
740    }
741  } else {
742    if (!pair) {
743      store = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale,
744                      displacement + LOWORD_OFFSET, r_src.GetReg());
745    } else {
746      store = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale,
747                      displacement + LOWORD_OFFSET, r_src.GetReg());
748      store2 = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale,
749                       displacement + HIWORD_OFFSET, r_src_hi.GetReg());
750    }
751  }
752
753  return store;
754}
755
756/* store value base base + scaled index. */
757LIR* X86Mir2Lir::StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
758                      int scale, OpSize size) {
759  return StoreBaseIndexedDisp(r_base, r_index, scale, 0,
760                              r_src, RegStorage::InvalidReg(), size, INVALID_SREG);
761}
762
763LIR* X86Mir2Lir::StoreBaseDisp(RegStorage r_base, int displacement,
764                               RegStorage r_src, OpSize size) {
765    return StoreBaseIndexedDisp(r_base, RegStorage::InvalidReg(), 0, displacement, r_src,
766                                RegStorage::InvalidReg(), size, INVALID_SREG);
767}
768
769LIR* X86Mir2Lir::StoreBaseDispWide(RegStorage r_base, int displacement, RegStorage r_src) {
770  return StoreBaseIndexedDisp(r_base, RegStorage::InvalidReg(), 0, displacement,
771                              r_src.GetLow(), r_src.GetHigh(), kLong, INVALID_SREG);
772}
773
774/*
775 * Copy a long value in Core registers to an XMM register
776 *
777 */
778void X86Mir2Lir::OpVectorRegCopyWide(uint8_t fp_reg, uint8_t low_reg, uint8_t high_reg) {
779  NewLIR2(kX86MovdxrRR, fp_reg, low_reg);
780  int tmp_reg = AllocTempDouble().GetLowReg();
781  NewLIR2(kX86MovdxrRR, tmp_reg, high_reg);
782  NewLIR2(kX86PunpckldqRR, fp_reg, tmp_reg);
783  FreeTemp(tmp_reg);
784}
785
786LIR* X86Mir2Lir::OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
787                                   int offset, int check_value, LIR* target) {
788    NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base_reg.GetReg(), offset,
789            check_value);
790    LIR* branch = OpCondBranch(cond, target);
791    return branch;
792}
793
794void X86Mir2Lir::AnalyzeMIR() {
795  // Assume we don't need a pointer to the base of the code.
796  cu_->NewTimingSplit("X86 MIR Analysis");
797  store_method_addr_ = false;
798
799  // Walk the MIR looking for interesting items.
800  PreOrderDfsIterator iter(mir_graph_);
801  BasicBlock* curr_bb = iter.Next();
802  while (curr_bb != NULL) {
803    AnalyzeBB(curr_bb);
804    curr_bb = iter.Next();
805  }
806
807  // Did we need a pointer to the method code?
808  if (store_method_addr_) {
809    base_of_code_ = mir_graph_->GetNewCompilerTemp(kCompilerTempVR, false);
810  } else {
811    base_of_code_ = nullptr;
812  }
813}
814
815void X86Mir2Lir::AnalyzeBB(BasicBlock * bb) {
816  if (bb->block_type == kDead) {
817    // Ignore dead blocks
818    return;
819  }
820
821  for (MIR *mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
822    int opcode = mir->dalvikInsn.opcode;
823    if (opcode >= kMirOpFirst) {
824      AnalyzeExtendedMIR(opcode, bb, mir);
825    } else {
826      AnalyzeMIR(opcode, bb, mir);
827    }
828  }
829}
830
831
832void X86Mir2Lir::AnalyzeExtendedMIR(int opcode, BasicBlock * bb, MIR *mir) {
833  switch (opcode) {
834    // Instructions referencing doubles.
835    case kMirOpFusedCmplDouble:
836    case kMirOpFusedCmpgDouble:
837      AnalyzeFPInstruction(opcode, bb, mir);
838      break;
839    default:
840      // Ignore the rest.
841      break;
842  }
843}
844
845void X86Mir2Lir::AnalyzeMIR(int opcode, BasicBlock * bb, MIR *mir) {
846  // Looking for
847  // - Do we need a pointer to the code (used for packed switches and double lits)?
848
849  switch (opcode) {
850    // Instructions referencing doubles.
851    case Instruction::CMPL_DOUBLE:
852    case Instruction::CMPG_DOUBLE:
853    case Instruction::NEG_DOUBLE:
854    case Instruction::ADD_DOUBLE:
855    case Instruction::SUB_DOUBLE:
856    case Instruction::MUL_DOUBLE:
857    case Instruction::DIV_DOUBLE:
858    case Instruction::REM_DOUBLE:
859    case Instruction::ADD_DOUBLE_2ADDR:
860    case Instruction::SUB_DOUBLE_2ADDR:
861    case Instruction::MUL_DOUBLE_2ADDR:
862    case Instruction::DIV_DOUBLE_2ADDR:
863    case Instruction::REM_DOUBLE_2ADDR:
864      AnalyzeFPInstruction(opcode, bb, mir);
865      break;
866
867    // Packed switches and array fills need a pointer to the base of the method.
868    case Instruction::FILL_ARRAY_DATA:
869    case Instruction::PACKED_SWITCH:
870      store_method_addr_ = true;
871      break;
872    default:
873      // Other instructions are not interesting yet.
874      break;
875  }
876}
877
878void X86Mir2Lir::AnalyzeFPInstruction(int opcode, BasicBlock * bb, MIR *mir) {
879  // Look at all the uses, and see if they are double constants.
880  uint64_t attrs = mir_graph_->oat_data_flow_attributes_[opcode];
881  int next_sreg = 0;
882  if (attrs & DF_UA) {
883    if (attrs & DF_A_WIDE) {
884      AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg));
885      next_sreg += 2;
886    } else {
887      next_sreg++;
888    }
889  }
890  if (attrs & DF_UB) {
891    if (attrs & DF_B_WIDE) {
892      AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg));
893      next_sreg += 2;
894    } else {
895      next_sreg++;
896    }
897  }
898  if (attrs & DF_UC) {
899    if (attrs & DF_C_WIDE) {
900      AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg));
901    }
902  }
903}
904
905void X86Mir2Lir::AnalyzeDoubleUse(RegLocation use) {
906  // If this is a double literal, we will want it in the literal pool.
907  if (use.is_const) {
908    store_method_addr_ = true;
909  }
910}
911
912}  // namespace art
913