utility_x86.cc revision 2f244e9faccfcca68af3c5484c397a01a1c3a342
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "codegen_x86.h"
18#include "dex/quick/mir_to_lir-inl.h"
19#include "dex/dataflow_iterator-inl.h"
20#include "x86_lir.h"
21
22namespace art {
23
24/* This file contains codegen for the X86 ISA */
25
26LIR* X86Mir2Lir::OpFpRegCopy(RegStorage r_dest, RegStorage r_src) {
27  int opcode;
28  /* must be both DOUBLE or both not DOUBLE */
29  DCHECK(r_dest.IsFloat() || r_src.IsFloat());
30  DCHECK_EQ(r_dest.IsDouble(), r_src.IsDouble());
31  if (r_dest.IsDouble()) {
32    opcode = kX86MovsdRR;
33  } else {
34    if (r_dest.IsSingle()) {
35      if (r_src.IsSingle()) {
36        opcode = kX86MovssRR;
37      } else {  // Fpr <- Gpr
38        opcode = kX86MovdxrRR;
39      }
40    } else {  // Gpr <- Fpr
41      DCHECK(r_src.IsSingle()) << "Raw: 0x" << std::hex << r_src.GetRawBits();
42      opcode = kX86MovdrxRR;
43    }
44  }
45  DCHECK_NE((EncodingMap[opcode].flags & IS_BINARY_OP), 0ULL);
46  LIR* res = RawLIR(current_dalvik_offset_, opcode, r_dest.GetReg(), r_src.GetReg());
47  if (r_dest == r_src) {
48    res->flags.is_nop = true;
49  }
50  return res;
51}
52
53bool X86Mir2Lir::InexpensiveConstantInt(int32_t value) {
54  return true;
55}
56
57bool X86Mir2Lir::InexpensiveConstantFloat(int32_t value) {
58  return false;
59}
60
61bool X86Mir2Lir::InexpensiveConstantLong(int64_t value) {
62  return true;
63}
64
65bool X86Mir2Lir::InexpensiveConstantDouble(int64_t value) {
66  return value == 0;
67}
68
69/*
70 * Load a immediate using a shortcut if possible; otherwise
71 * grab from the per-translation literal pool.  If target is
72 * a high register, build constant into a low register and copy.
73 *
74 * No additional register clobbering operation performed. Use this version when
75 * 1) r_dest is freshly returned from AllocTemp or
76 * 2) The codegen is under fixed register usage
77 */
78LIR* X86Mir2Lir::LoadConstantNoClobber(RegStorage r_dest, int value) {
79  RegStorage r_dest_save = r_dest;
80  if (r_dest.IsFloat()) {
81    if (value == 0) {
82      return NewLIR2(kX86XorpsRR, r_dest.GetReg(), r_dest.GetReg());
83    }
84    r_dest = AllocTemp();
85  }
86
87  LIR *res;
88  if (value == 0) {
89    res = NewLIR2(kX86Xor32RR, r_dest.GetReg(), r_dest.GetReg());
90  } else {
91    // Note, there is no byte immediate form of a 32 bit immediate move.
92    res = NewLIR2(kX86Mov32RI, r_dest.GetReg(), value);
93  }
94
95  if (r_dest_save.IsFloat()) {
96    NewLIR2(kX86MovdxrRR, r_dest_save.GetReg(), r_dest.GetReg());
97    FreeTemp(r_dest);
98  }
99
100  return res;
101}
102
103LIR* X86Mir2Lir::OpUnconditionalBranch(LIR* target) {
104  LIR* res = NewLIR1(kX86Jmp8, 0 /* offset to be patched during assembly*/);
105  res->target = target;
106  return res;
107}
108
109LIR* X86Mir2Lir::OpCondBranch(ConditionCode cc, LIR* target) {
110  LIR* branch = NewLIR2(kX86Jcc8, 0 /* offset to be patched */,
111                        X86ConditionEncoding(cc));
112  branch->target = target;
113  return branch;
114}
115
116LIR* X86Mir2Lir::OpReg(OpKind op, RegStorage r_dest_src) {
117  X86OpCode opcode = kX86Bkpt;
118  switch (op) {
119    case kOpNeg: opcode = kX86Neg32R; break;
120    case kOpNot: opcode = kX86Not32R; break;
121    case kOpRev: opcode = kX86Bswap32R; break;
122    case kOpBlx: opcode = kX86CallR; break;
123    default:
124      LOG(FATAL) << "Bad case in OpReg " << op;
125  }
126  return NewLIR1(opcode, r_dest_src.GetReg());
127}
128
129LIR* X86Mir2Lir::OpRegImm(OpKind op, RegStorage r_dest_src1, int value) {
130  X86OpCode opcode = kX86Bkpt;
131  bool byte_imm = IS_SIMM8(value);
132  DCHECK(!r_dest_src1.IsFloat());
133  switch (op) {
134    case kOpLsl: opcode = kX86Sal32RI; break;
135    case kOpLsr: opcode = kX86Shr32RI; break;
136    case kOpAsr: opcode = kX86Sar32RI; break;
137    case kOpAdd: opcode = byte_imm ? kX86Add32RI8 : kX86Add32RI; break;
138    case kOpOr:  opcode = byte_imm ? kX86Or32RI8  : kX86Or32RI;  break;
139    case kOpAdc: opcode = byte_imm ? kX86Adc32RI8 : kX86Adc32RI; break;
140    // case kOpSbb: opcode = kX86Sbb32RI; break;
141    case kOpAnd: opcode = byte_imm ? kX86And32RI8 : kX86And32RI; break;
142    case kOpSub: opcode = byte_imm ? kX86Sub32RI8 : kX86Sub32RI; break;
143    case kOpXor: opcode = byte_imm ? kX86Xor32RI8 : kX86Xor32RI; break;
144    case kOpCmp: opcode = byte_imm ? kX86Cmp32RI8 : kX86Cmp32RI; break;
145    case kOpMov:
146      /*
147       * Moving the constant zero into register can be specialized as an xor of the register.
148       * However, that sets eflags while the move does not. For that reason here, always do
149       * the move and if caller is flexible, they should be calling LoadConstantNoClobber instead.
150       */
151      opcode = kX86Mov32RI;
152      break;
153    case kOpMul:
154      opcode = byte_imm ? kX86Imul32RRI8 : kX86Imul32RRI;
155      return NewLIR3(opcode, r_dest_src1.GetReg(), r_dest_src1.GetReg(), value);
156    default:
157      LOG(FATAL) << "Bad case in OpRegImm " << op;
158  }
159  return NewLIR2(opcode, r_dest_src1.GetReg(), value);
160}
161
162LIR* X86Mir2Lir::OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) {
163    X86OpCode opcode = kX86Nop;
164    bool src2_must_be_cx = false;
165    switch (op) {
166        // X86 unary opcodes
167      case kOpMvn:
168        OpRegCopy(r_dest_src1, r_src2);
169        return OpReg(kOpNot, r_dest_src1);
170      case kOpNeg:
171        OpRegCopy(r_dest_src1, r_src2);
172        return OpReg(kOpNeg, r_dest_src1);
173      case kOpRev:
174        OpRegCopy(r_dest_src1, r_src2);
175        return OpReg(kOpRev, r_dest_src1);
176      case kOpRevsh:
177        OpRegCopy(r_dest_src1, r_src2);
178        OpReg(kOpRev, r_dest_src1);
179        return OpRegImm(kOpAsr, r_dest_src1, 16);
180        // X86 binary opcodes
181      case kOpSub: opcode = kX86Sub32RR; break;
182      case kOpSbc: opcode = kX86Sbb32RR; break;
183      case kOpLsl: opcode = kX86Sal32RC; src2_must_be_cx = true; break;
184      case kOpLsr: opcode = kX86Shr32RC; src2_must_be_cx = true; break;
185      case kOpAsr: opcode = kX86Sar32RC; src2_must_be_cx = true; break;
186      case kOpMov: opcode = kX86Mov32RR; break;
187      case kOpCmp: opcode = kX86Cmp32RR; break;
188      case kOpAdd: opcode = kX86Add32RR; break;
189      case kOpAdc: opcode = kX86Adc32RR; break;
190      case kOpAnd: opcode = kX86And32RR; break;
191      case kOpOr:  opcode = kX86Or32RR; break;
192      case kOpXor: opcode = kX86Xor32RR; break;
193      case kOp2Byte:
194        // TODO: there are several instances of this check.  A utility function perhaps?
195        // TODO: Similar to Arm's reg < 8 check.  Perhaps add attribute checks to RegStorage?
196        // Use shifts instead of a byte operand if the source can't be byte accessed.
197        if (r_src2.GetRegNum() >= rs_rX86_SP.GetRegNum()) {
198          NewLIR2(kX86Mov32RR, r_dest_src1.GetReg(), r_src2.GetReg());
199          NewLIR2(kX86Sal32RI, r_dest_src1.GetReg(), 24);
200          return NewLIR2(kX86Sar32RI, r_dest_src1.GetReg(), 24);
201        } else {
202          opcode = kX86Movsx8RR;
203        }
204        break;
205      case kOp2Short: opcode = kX86Movsx16RR; break;
206      case kOp2Char: opcode = kX86Movzx16RR; break;
207      case kOpMul: opcode = kX86Imul32RR; break;
208      default:
209        LOG(FATAL) << "Bad case in OpRegReg " << op;
210        break;
211    }
212    CHECK(!src2_must_be_cx || r_src2.GetReg() == rs_rCX.GetReg());
213    return NewLIR2(opcode, r_dest_src1.GetReg(), r_src2.GetReg());
214}
215
216LIR* X86Mir2Lir::OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset, MoveType move_type) {
217  DCHECK(!r_base.IsFloat());
218  X86OpCode opcode = kX86Nop;
219  int dest = r_dest.IsPair() ? r_dest.GetLowReg() : r_dest.GetReg();
220  switch (move_type) {
221    case kMov8GP:
222      CHECK(!r_dest.IsFloat());
223      opcode = kX86Mov8RM;
224      break;
225    case kMov16GP:
226      CHECK(!r_dest.IsFloat());
227      opcode = kX86Mov16RM;
228      break;
229    case kMov32GP:
230      CHECK(!r_dest.IsFloat());
231      opcode = kX86Mov32RM;
232      break;
233    case kMov32FP:
234      CHECK(r_dest.IsFloat());
235      opcode = kX86MovssRM;
236      break;
237    case kMov64FP:
238      CHECK(r_dest.IsFloat());
239      opcode = kX86MovsdRM;
240      break;
241    case kMovU128FP:
242      CHECK(r_dest.IsFloat());
243      opcode = kX86MovupsRM;
244      break;
245    case kMovA128FP:
246      CHECK(r_dest.IsFloat());
247      opcode = kX86MovapsRM;
248      break;
249    case kMovLo128FP:
250      CHECK(r_dest.IsFloat());
251      opcode = kX86MovlpsRM;
252      break;
253    case kMovHi128FP:
254      CHECK(r_dest.IsFloat());
255      opcode = kX86MovhpsRM;
256      break;
257    case kMov64GP:
258    case kMovLo64FP:
259    case kMovHi64FP:
260    default:
261      LOG(FATAL) << "Bad case in OpMovRegMem";
262      break;
263  }
264
265  return NewLIR3(opcode, dest, r_base.GetReg(), offset);
266}
267
268LIR* X86Mir2Lir::OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src, MoveType move_type) {
269  DCHECK(!r_base.IsFloat());
270  int src = r_src.IsPair() ? r_src.GetLowReg() : r_src.GetReg();
271
272  X86OpCode opcode = kX86Nop;
273  switch (move_type) {
274    case kMov8GP:
275      CHECK(!r_src.IsFloat());
276      opcode = kX86Mov8MR;
277      break;
278    case kMov16GP:
279      CHECK(!r_src.IsFloat());
280      opcode = kX86Mov16MR;
281      break;
282    case kMov32GP:
283      CHECK(!r_src.IsFloat());
284      opcode = kX86Mov32MR;
285      break;
286    case kMov32FP:
287      CHECK(r_src.IsFloat());
288      opcode = kX86MovssMR;
289      break;
290    case kMov64FP:
291      CHECK(r_src.IsFloat());
292      opcode = kX86MovsdMR;
293      break;
294    case kMovU128FP:
295      CHECK(r_src.IsFloat());
296      opcode = kX86MovupsMR;
297      break;
298    case kMovA128FP:
299      CHECK(r_src.IsFloat());
300      opcode = kX86MovapsMR;
301      break;
302    case kMovLo128FP:
303      CHECK(r_src.IsFloat());
304      opcode = kX86MovlpsMR;
305      break;
306    case kMovHi128FP:
307      CHECK(r_src.IsFloat());
308      opcode = kX86MovhpsMR;
309      break;
310    case kMov64GP:
311    case kMovLo64FP:
312    case kMovHi64FP:
313    default:
314      LOG(FATAL) << "Bad case in OpMovMemReg";
315      break;
316  }
317
318  return NewLIR3(opcode, r_base.GetReg(), offset, src);
319}
320
321LIR* X86Mir2Lir::OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) {
322  // The only conditional reg to reg operation supported is Cmov
323  DCHECK_EQ(op, kOpCmov);
324  return NewLIR3(kX86Cmov32RRC, r_dest.GetReg(), r_src.GetReg(), X86ConditionEncoding(cc));
325}
326
327LIR* X86Mir2Lir::OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset) {
328  X86OpCode opcode = kX86Nop;
329  switch (op) {
330      // X86 binary opcodes
331    case kOpSub: opcode = kX86Sub32RM; break;
332    case kOpMov: opcode = kX86Mov32RM; break;
333    case kOpCmp: opcode = kX86Cmp32RM; break;
334    case kOpAdd: opcode = kX86Add32RM; break;
335    case kOpAnd: opcode = kX86And32RM; break;
336    case kOpOr:  opcode = kX86Or32RM; break;
337    case kOpXor: opcode = kX86Xor32RM; break;
338    case kOp2Byte: opcode = kX86Movsx8RM; break;
339    case kOp2Short: opcode = kX86Movsx16RM; break;
340    case kOp2Char: opcode = kX86Movzx16RM; break;
341    case kOpMul:
342    default:
343      LOG(FATAL) << "Bad case in OpRegMem " << op;
344      break;
345  }
346  LIR *l = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), offset);
347  if (r_base == rs_rX86_SP) {
348    AnnotateDalvikRegAccess(l, offset >> 2, true /* is_load */, false /* is_64bit */);
349  }
350  return l;
351}
352
353LIR* X86Mir2Lir::OpMemReg(OpKind op, RegLocation rl_dest, int r_value) {
354  DCHECK_NE(rl_dest.location, kLocPhysReg);
355  int displacement = SRegOffset(rl_dest.s_reg_low);
356  X86OpCode opcode = kX86Nop;
357  switch (op) {
358    case kOpSub: opcode = kX86Sub32MR; break;
359    case kOpMov: opcode = kX86Mov32MR; break;
360    case kOpCmp: opcode = kX86Cmp32MR; break;
361    case kOpAdd: opcode = kX86Add32MR; break;
362    case kOpAnd: opcode = kX86And32MR; break;
363    case kOpOr:  opcode = kX86Or32MR; break;
364    case kOpXor: opcode = kX86Xor32MR; break;
365    case kOpLsl: opcode = kX86Sal32MC; break;
366    case kOpLsr: opcode = kX86Shr32MC; break;
367    case kOpAsr: opcode = kX86Sar32MC; break;
368    default:
369      LOG(FATAL) << "Bad case in OpMemReg " << op;
370      break;
371  }
372  LIR *l = NewLIR3(opcode, rs_rX86_SP.GetReg(), displacement, r_value);
373  AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, false /* is_64bit */);
374  AnnotateDalvikRegAccess(l, displacement >> 2, false /* is_load */, false /* is_64bit */);
375  return l;
376}
377
378LIR* X86Mir2Lir::OpRegMem(OpKind op, RegStorage r_dest, RegLocation rl_value) {
379  DCHECK_NE(rl_value.location, kLocPhysReg);
380  int displacement = SRegOffset(rl_value.s_reg_low);
381  X86OpCode opcode = kX86Nop;
382  switch (op) {
383    case kOpSub: opcode = kX86Sub32RM; break;
384    case kOpMov: opcode = kX86Mov32RM; break;
385    case kOpCmp: opcode = kX86Cmp32RM; break;
386    case kOpAdd: opcode = kX86Add32RM; break;
387    case kOpAnd: opcode = kX86And32RM; break;
388    case kOpOr:  opcode = kX86Or32RM; break;
389    case kOpXor: opcode = kX86Xor32RM; break;
390    case kOpMul: opcode = kX86Imul32RM; break;
391    default:
392      LOG(FATAL) << "Bad case in OpRegMem " << op;
393      break;
394  }
395  LIR *l = NewLIR3(opcode, r_dest.GetReg(), rs_rX86_SP.GetReg(), displacement);
396  AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, false /* is_64bit */);
397  return l;
398}
399
400LIR* X86Mir2Lir::OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1,
401                             RegStorage r_src2) {
402  if (r_dest != r_src1 && r_dest != r_src2) {
403    if (op == kOpAdd) {  // lea special case, except can't encode rbp as base
404      if (r_src1 == r_src2) {
405        OpRegCopy(r_dest, r_src1);
406        return OpRegImm(kOpLsl, r_dest, 1);
407      } else if (r_src1 != rs_rBP) {
408        return NewLIR5(kX86Lea32RA, r_dest.GetReg(), r_src1.GetReg() /* base */,
409                       r_src2.GetReg() /* index */, 0 /* scale */, 0 /* disp */);
410      } else {
411        return NewLIR5(kX86Lea32RA, r_dest.GetReg(), r_src2.GetReg() /* base */,
412                       r_src1.GetReg() /* index */, 0 /* scale */, 0 /* disp */);
413      }
414    } else {
415      OpRegCopy(r_dest, r_src1);
416      return OpRegReg(op, r_dest, r_src2);
417    }
418  } else if (r_dest == r_src1) {
419    return OpRegReg(op, r_dest, r_src2);
420  } else {  // r_dest == r_src2
421    switch (op) {
422      case kOpSub:  // non-commutative
423        OpReg(kOpNeg, r_dest);
424        op = kOpAdd;
425        break;
426      case kOpSbc:
427      case kOpLsl: case kOpLsr: case kOpAsr: case kOpRor: {
428        RegStorage t_reg = AllocTemp();
429        OpRegCopy(t_reg, r_src1);
430        OpRegReg(op, t_reg, r_src2);
431        LIR* res = OpRegCopyNoInsert(r_dest, t_reg);
432        AppendLIR(res);
433        FreeTemp(t_reg);
434        return res;
435      }
436      case kOpAdd:  // commutative
437      case kOpOr:
438      case kOpAdc:
439      case kOpAnd:
440      case kOpXor:
441        break;
442      default:
443        LOG(FATAL) << "Bad case in OpRegRegReg " << op;
444    }
445    return OpRegReg(op, r_dest, r_src1);
446  }
447}
448
449LIR* X86Mir2Lir::OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src, int value) {
450  if (op == kOpMul) {
451    X86OpCode opcode = IS_SIMM8(value) ? kX86Imul32RRI8 : kX86Imul32RRI;
452    return NewLIR3(opcode, r_dest.GetReg(), r_src.GetReg(), value);
453  } else if (op == kOpAnd) {
454    if (value == 0xFF && r_src.Low4()) {
455      return NewLIR2(kX86Movzx8RR, r_dest.GetReg(), r_src.GetReg());
456    } else if (value == 0xFFFF) {
457      return NewLIR2(kX86Movzx16RR, r_dest.GetReg(), r_src.GetReg());
458    }
459  }
460  if (r_dest != r_src) {
461    if (false && op == kOpLsl && value >= 0 && value <= 3) {  // lea shift special case
462      // TODO: fix bug in LEA encoding when disp == 0
463      return NewLIR5(kX86Lea32RA, r_dest.GetReg(),  r5sib_no_base /* base */,
464                     r_src.GetReg() /* index */, value /* scale */, 0 /* disp */);
465    } else if (op == kOpAdd) {  // lea add special case
466      return NewLIR5(kX86Lea32RA, r_dest.GetReg(), r_src.GetReg() /* base */,
467                     r4sib_no_index /* index */, 0 /* scale */, value /* disp */);
468    }
469    OpRegCopy(r_dest, r_src);
470  }
471  return OpRegImm(op, r_dest, value);
472}
473
474LIR* X86Mir2Lir::OpThreadMem(OpKind op, ThreadOffset<4> thread_offset) {
475  DCHECK_EQ(kX86, cu_->instruction_set);
476  X86OpCode opcode = kX86Bkpt;
477  switch (op) {
478    case kOpBlx: opcode = kX86CallT;  break;
479    case kOpBx: opcode = kX86JmpT;  break;
480    default:
481      LOG(FATAL) << "Bad opcode: " << op;
482      break;
483  }
484  return NewLIR1(opcode, thread_offset.Int32Value());
485}
486
487LIR* X86Mir2Lir::OpThreadMem(OpKind op, ThreadOffset<8> thread_offset) {
488  DCHECK_EQ(kX86_64, cu_->instruction_set);
489  X86OpCode opcode = kX86Bkpt;
490  switch (op) {
491    case kOpBlx: opcode = kX86CallT;  break;
492    case kOpBx: opcode = kX86JmpT;  break;
493    default:
494      LOG(FATAL) << "Bad opcode: " << op;
495      break;
496  }
497  return NewLIR1(opcode, thread_offset.Int32Value());
498}
499
500LIR* X86Mir2Lir::OpMem(OpKind op, RegStorage r_base, int disp) {
501  X86OpCode opcode = kX86Bkpt;
502  switch (op) {
503    case kOpBlx: opcode = kX86CallM;  break;
504    default:
505      LOG(FATAL) << "Bad opcode: " << op;
506      break;
507  }
508  return NewLIR2(opcode, r_base.GetReg(), disp);
509}
510
511LIR* X86Mir2Lir::LoadConstantWide(RegStorage r_dest, int64_t value) {
512    int32_t val_lo = Low32Bits(value);
513    int32_t val_hi = High32Bits(value);
514    int32_t low_reg_val = r_dest.IsPair() ? r_dest.GetLowReg() : r_dest.GetReg();
515    LIR *res;
516    bool is_fp = RegStorage::IsFloat(low_reg_val);
517    // TODO: clean this up once we fully recognize 64-bit storage containers.
518    if (is_fp) {
519      if (value == 0) {
520        return NewLIR2(kX86XorpsRR, low_reg_val, low_reg_val);
521      } else if (base_of_code_ != nullptr) {
522        // We will load the value from the literal area.
523        LIR* data_target = ScanLiteralPoolWide(literal_list_, val_lo, val_hi);
524        if (data_target == NULL) {
525          data_target = AddWideData(&literal_list_, val_lo, val_hi);
526        }
527
528        // Address the start of the method
529        RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
530        rl_method = LoadValue(rl_method, kCoreReg);
531
532        // Load the proper value from the literal area.
533        // We don't know the proper offset for the value, so pick one that will force
534        // 4 byte offset.  We will fix this up in the assembler later to have the right
535        // value.
536        res = LoadBaseDisp(rl_method.reg, 256 /* bogus */, RegStorage::Solo64(low_reg_val),
537                           kDouble);
538        res->target = data_target;
539        res->flags.fixup = kFixupLoad;
540        SetMemRefType(res, true, kLiteral);
541        store_method_addr_used_ = true;
542      } else {
543        if (val_lo == 0) {
544          res = NewLIR2(kX86XorpsRR, low_reg_val, low_reg_val);
545        } else {
546          res = LoadConstantNoClobber(RegStorage::Solo32(low_reg_val), val_lo);
547        }
548        if (val_hi != 0) {
549          RegStorage r_dest_hi = AllocTempDouble();
550          LoadConstantNoClobber(r_dest_hi, val_hi);
551          NewLIR2(kX86PunpckldqRR, low_reg_val, r_dest_hi.GetReg());
552          FreeTemp(r_dest_hi);
553        }
554      }
555    } else {
556      res = LoadConstantNoClobber(r_dest.GetLow(), val_lo);
557      LoadConstantNoClobber(r_dest.GetHigh(), val_hi);
558    }
559    return res;
560}
561
562LIR* X86Mir2Lir::LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
563                                     int displacement, RegStorage r_dest, OpSize size) {
564  LIR *load = NULL;
565  LIR *load2 = NULL;
566  bool is_array = r_index.Valid();
567  bool pair = r_dest.IsPair();
568  bool is64bit = ((size == k64) || (size == kDouble));
569  X86OpCode opcode = kX86Nop;
570  switch (size) {
571    case k64:
572    case kDouble:
573      if (r_dest.IsFloat()) {
574        opcode = is_array ? kX86MovsdRA : kX86MovsdRM;
575      } else {
576        opcode = is_array ? kX86Mov32RA  : kX86Mov32RM;
577      }
578      // TODO: double store is to unaligned address
579      DCHECK_EQ((displacement & 0x3), 0);
580      break;
581    case k32:
582    case kSingle:
583    case kReference:  // TODO: update for reference decompression on 64-bit targets.
584      opcode = is_array ? kX86Mov32RA : kX86Mov32RM;
585      if (r_dest.IsFloat()) {
586        opcode = is_array ? kX86MovssRA : kX86MovssRM;
587        DCHECK(r_dest.IsFloat());
588      }
589      DCHECK_EQ((displacement & 0x3), 0);
590      break;
591    case kUnsignedHalf:
592      opcode = is_array ? kX86Movzx16RA : kX86Movzx16RM;
593      DCHECK_EQ((displacement & 0x1), 0);
594      break;
595    case kSignedHalf:
596      opcode = is_array ? kX86Movsx16RA : kX86Movsx16RM;
597      DCHECK_EQ((displacement & 0x1), 0);
598      break;
599    case kUnsignedByte:
600      opcode = is_array ? kX86Movzx8RA : kX86Movzx8RM;
601      break;
602    case kSignedByte:
603      opcode = is_array ? kX86Movsx8RA : kX86Movsx8RM;
604      break;
605    default:
606      LOG(FATAL) << "Bad case in LoadBaseIndexedDispBody";
607  }
608
609  if (!is_array) {
610    if (!pair) {
611      load = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), displacement + LOWORD_OFFSET);
612    } else {
613      DCHECK(!r_dest.IsFloat());  // Make sure we're not still using a pair here.
614      if (r_base == r_dest.GetLow()) {
615        load2 = NewLIR3(opcode, r_dest.GetHighReg(), r_base.GetReg(),
616                        displacement + HIWORD_OFFSET);
617        load = NewLIR3(opcode, r_dest.GetLowReg(), r_base.GetReg(), displacement + LOWORD_OFFSET);
618      } else {
619        load = NewLIR3(opcode, r_dest.GetLowReg(), r_base.GetReg(), displacement + LOWORD_OFFSET);
620        load2 = NewLIR3(opcode, r_dest.GetHighReg(), r_base.GetReg(),
621                        displacement + HIWORD_OFFSET);
622      }
623    }
624    if (r_base == rs_rX86_SP) {
625      AnnotateDalvikRegAccess(load, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
626                              true /* is_load */, is64bit);
627      if (pair) {
628        AnnotateDalvikRegAccess(load2, (displacement + HIWORD_OFFSET) >> 2,
629                                true /* is_load */, is64bit);
630      }
631    }
632  } else {
633    if (!pair) {
634      load = NewLIR5(opcode, r_dest.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
635                     displacement + LOWORD_OFFSET);
636    } else {
637      DCHECK(!r_dest.IsFloat());  // Make sure we're not still using a pair here.
638      if (r_base == r_dest.GetLow()) {
639        if (r_dest.GetHigh() == r_index) {
640          // We can't use either register for the first load.
641          RegStorage temp = AllocTemp();
642          load2 = NewLIR5(opcode, temp.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
643                          displacement + HIWORD_OFFSET);
644          load = NewLIR5(opcode, r_dest.GetLowReg(), r_base.GetReg(), r_index.GetReg(), scale,
645                         displacement + LOWORD_OFFSET);
646          OpRegCopy(r_dest.GetHigh(), temp);
647          FreeTemp(temp);
648        } else {
649          load2 = NewLIR5(opcode, r_dest.GetHighReg(), r_base.GetReg(), r_index.GetReg(), scale,
650                          displacement + HIWORD_OFFSET);
651          load = NewLIR5(opcode, r_dest.GetLowReg(), r_base.GetReg(), r_index.GetReg(), scale,
652                         displacement + LOWORD_OFFSET);
653        }
654      } else {
655        if (r_dest.GetLow() == r_index) {
656          // We can't use either register for the first load.
657          RegStorage temp = AllocTemp();
658          load = NewLIR5(opcode, temp.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
659                         displacement + LOWORD_OFFSET);
660          load2 = NewLIR5(opcode, r_dest.GetHighReg(), r_base.GetReg(), r_index.GetReg(), scale,
661                          displacement + HIWORD_OFFSET);
662          OpRegCopy(r_dest.GetLow(), temp);
663          FreeTemp(temp);
664        } else {
665          load = NewLIR5(opcode, r_dest.GetLowReg(), r_base.GetReg(), r_index.GetReg(), scale,
666                         displacement + LOWORD_OFFSET);
667          load2 = NewLIR5(opcode, r_dest.GetHighReg(), r_base.GetReg(), r_index.GetReg(), scale,
668                          displacement + HIWORD_OFFSET);
669        }
670      }
671    }
672  }
673
674  return load;
675}
676
677/* Load value from base + scaled index. */
678LIR* X86Mir2Lir::LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
679                                 int scale, OpSize size) {
680  return LoadBaseIndexedDisp(r_base, r_index, scale, 0, r_dest, size);
681}
682
683LIR* X86Mir2Lir::LoadBaseDispVolatile(RegStorage r_base, int displacement, RegStorage r_dest,
684                                      OpSize size) {
685  // LoadBaseDisp() will emit correct insn for atomic load on x86
686  // assuming r_dest is correctly prepared using RegClassForFieldLoadStore().
687  return LoadBaseDisp(r_base, displacement, r_dest, size);
688}
689
690LIR* X86Mir2Lir::LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
691                              OpSize size) {
692  // TODO: base this on target.
693  if (size == kWord) {
694    size = k32;
695  }
696  return LoadBaseIndexedDisp(r_base, RegStorage::InvalidReg(), 0, displacement, r_dest,
697                             size);
698}
699
700LIR* X86Mir2Lir::StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
701                                      int displacement, RegStorage r_src, OpSize size) {
702  LIR *store = NULL;
703  LIR *store2 = NULL;
704  bool is_array = r_index.Valid();
705  bool pair = r_src.IsPair();
706  bool is64bit = (size == k64) || (size == kDouble);
707  X86OpCode opcode = kX86Nop;
708  switch (size) {
709    case k64:
710    case kDouble:
711      if (r_src.IsFloat()) {
712        opcode = is_array ? kX86MovsdAR : kX86MovsdMR;
713      } else {
714        opcode = is_array ? kX86Mov32AR  : kX86Mov32MR;
715      }
716      // TODO: double store is to unaligned address
717      DCHECK_EQ((displacement & 0x3), 0);
718      break;
719    case k32:
720    case kSingle:
721    case kReference:
722      opcode = is_array ? kX86Mov32AR : kX86Mov32MR;
723      if (r_src.IsFloat()) {
724        opcode = is_array ? kX86MovssAR : kX86MovssMR;
725        DCHECK(r_src.IsSingle());
726      }
727      DCHECK_EQ((displacement & 0x3), 0);
728      break;
729    case kUnsignedHalf:
730    case kSignedHalf:
731      opcode = is_array ? kX86Mov16AR : kX86Mov16MR;
732      DCHECK_EQ((displacement & 0x1), 0);
733      break;
734    case kUnsignedByte:
735    case kSignedByte:
736      opcode = is_array ? kX86Mov8AR : kX86Mov8MR;
737      break;
738    default:
739      LOG(FATAL) << "Bad case in StoreBaseIndexedDispBody";
740  }
741
742  if (!is_array) {
743    if (!pair) {
744      store = NewLIR3(opcode, r_base.GetReg(), displacement + LOWORD_OFFSET, r_src.GetReg());
745    } else {
746      DCHECK(!r_src.IsFloat());  // Make sure we're not still using a pair here.
747      store = NewLIR3(opcode, r_base.GetReg(), displacement + LOWORD_OFFSET, r_src.GetLowReg());
748      store2 = NewLIR3(opcode, r_base.GetReg(), displacement + HIWORD_OFFSET, r_src.GetHighReg());
749    }
750    if (r_base == rs_rX86_SP) {
751      AnnotateDalvikRegAccess(store, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
752                              false /* is_load */, is64bit);
753      if (pair) {
754        AnnotateDalvikRegAccess(store2, (displacement + HIWORD_OFFSET) >> 2,
755                                false /* is_load */, is64bit);
756      }
757    }
758  } else {
759    if (!pair) {
760      store = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale,
761                      displacement + LOWORD_OFFSET, r_src.GetReg());
762    } else {
763      DCHECK(!r_src.IsFloat());  // Make sure we're not still using a pair here.
764      store = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale,
765                      displacement + LOWORD_OFFSET, r_src.GetLowReg());
766      store2 = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale,
767                       displacement + HIWORD_OFFSET, r_src.GetHighReg());
768    }
769  }
770  return store;
771}
772
773/* store value base base + scaled index. */
774LIR* X86Mir2Lir::StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
775                      int scale, OpSize size) {
776  return StoreBaseIndexedDisp(r_base, r_index, scale, 0, r_src, size);
777}
778
779LIR* X86Mir2Lir::StoreBaseDispVolatile(RegStorage r_base, int displacement,
780                                       RegStorage r_src, OpSize size) {
781  // StoreBaseDisp() will emit correct insn for atomic store on x86
782  // assuming r_dest is correctly prepared using RegClassForFieldLoadStore().
783  return StoreBaseDisp(r_base, displacement, r_src, size);
784}
785
786LIR* X86Mir2Lir::StoreBaseDisp(RegStorage r_base, int displacement,
787                               RegStorage r_src, OpSize size) {
788  // TODO: base this on target.
789  if (size == kWord) {
790    size = k32;
791  }
792  return StoreBaseIndexedDisp(r_base, RegStorage::InvalidReg(), 0, displacement, r_src, size);
793}
794
795LIR* X86Mir2Lir::OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
796                                   int offset, int check_value, LIR* target) {
797    NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base_reg.GetReg(), offset,
798            check_value);
799    LIR* branch = OpCondBranch(cond, target);
800    return branch;
801}
802
803void X86Mir2Lir::AnalyzeMIR() {
804  // Assume we don't need a pointer to the base of the code.
805  cu_->NewTimingSplit("X86 MIR Analysis");
806  store_method_addr_ = false;
807
808  // Walk the MIR looking for interesting items.
809  PreOrderDfsIterator iter(mir_graph_);
810  BasicBlock* curr_bb = iter.Next();
811  while (curr_bb != NULL) {
812    AnalyzeBB(curr_bb);
813    curr_bb = iter.Next();
814  }
815
816  // Did we need a pointer to the method code?
817  if (store_method_addr_) {
818    base_of_code_ = mir_graph_->GetNewCompilerTemp(kCompilerTempVR, false);
819  } else {
820    base_of_code_ = nullptr;
821  }
822}
823
824void X86Mir2Lir::AnalyzeBB(BasicBlock * bb) {
825  if (bb->block_type == kDead) {
826    // Ignore dead blocks
827    return;
828  }
829
830  for (MIR *mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
831    int opcode = mir->dalvikInsn.opcode;
832    if (opcode >= kMirOpFirst) {
833      AnalyzeExtendedMIR(opcode, bb, mir);
834    } else {
835      AnalyzeMIR(opcode, bb, mir);
836    }
837  }
838}
839
840
841void X86Mir2Lir::AnalyzeExtendedMIR(int opcode, BasicBlock * bb, MIR *mir) {
842  switch (opcode) {
843    // Instructions referencing doubles.
844    case kMirOpFusedCmplDouble:
845    case kMirOpFusedCmpgDouble:
846      AnalyzeFPInstruction(opcode, bb, mir);
847      break;
848    default:
849      // Ignore the rest.
850      break;
851  }
852}
853
854void X86Mir2Lir::AnalyzeMIR(int opcode, BasicBlock * bb, MIR *mir) {
855  // Looking for
856  // - Do we need a pointer to the code (used for packed switches and double lits)?
857
858  switch (opcode) {
859    // Instructions referencing doubles.
860    case Instruction::CMPL_DOUBLE:
861    case Instruction::CMPG_DOUBLE:
862    case Instruction::NEG_DOUBLE:
863    case Instruction::ADD_DOUBLE:
864    case Instruction::SUB_DOUBLE:
865    case Instruction::MUL_DOUBLE:
866    case Instruction::DIV_DOUBLE:
867    case Instruction::REM_DOUBLE:
868    case Instruction::ADD_DOUBLE_2ADDR:
869    case Instruction::SUB_DOUBLE_2ADDR:
870    case Instruction::MUL_DOUBLE_2ADDR:
871    case Instruction::DIV_DOUBLE_2ADDR:
872    case Instruction::REM_DOUBLE_2ADDR:
873      AnalyzeFPInstruction(opcode, bb, mir);
874      break;
875
876    // Packed switches and array fills need a pointer to the base of the method.
877    case Instruction::FILL_ARRAY_DATA:
878    case Instruction::PACKED_SWITCH:
879      store_method_addr_ = true;
880      break;
881    default:
882      // Other instructions are not interesting yet.
883      break;
884  }
885}
886
887void X86Mir2Lir::AnalyzeFPInstruction(int opcode, BasicBlock * bb, MIR *mir) {
888  // Look at all the uses, and see if they are double constants.
889  uint64_t attrs = MIRGraph::GetDataFlowAttributes(static_cast<Instruction::Code>(opcode));
890  int next_sreg = 0;
891  if (attrs & DF_UA) {
892    if (attrs & DF_A_WIDE) {
893      AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg));
894      next_sreg += 2;
895    } else {
896      next_sreg++;
897    }
898  }
899  if (attrs & DF_UB) {
900    if (attrs & DF_B_WIDE) {
901      AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg));
902      next_sreg += 2;
903    } else {
904      next_sreg++;
905    }
906  }
907  if (attrs & DF_UC) {
908    if (attrs & DF_C_WIDE) {
909      AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg));
910    }
911  }
912}
913
914void X86Mir2Lir::AnalyzeDoubleUse(RegLocation use) {
915  // If this is a double literal, we will want it in the literal pool.
916  if (use.is_const) {
917    store_method_addr_ = true;
918  }
919}
920
921RegLocation X86Mir2Lir::UpdateLocTyped(RegLocation loc, int reg_class) {
922  loc = UpdateLoc(loc);
923  if ((loc.location == kLocPhysReg) && (loc.fp != loc.reg.IsFloat())) {
924    if (GetRegInfo(loc.reg)->IsTemp()) {
925      Clobber(loc.reg);
926      FreeTemp(loc.reg);
927      loc.reg = RegStorage::InvalidReg();
928      loc.location = kLocDalvikFrame;
929    }
930  }
931  return loc;
932}
933
934RegLocation X86Mir2Lir::UpdateLocWideTyped(RegLocation loc, int reg_class) {
935  loc = UpdateLocWide(loc);
936  if ((loc.location == kLocPhysReg) && (loc.fp != loc.reg.IsFloat())) {
937    if (GetRegInfo(loc.reg)->IsTemp()) {
938      Clobber(loc.reg);
939      FreeTemp(loc.reg);
940      loc.reg = RegStorage::InvalidReg();
941      loc.location = kLocDalvikFrame;
942    }
943  }
944  return loc;
945}
946
947}  // namespace art
948