utility_x86.cc revision 4c115b85cc48f4dfc8fc2b0484ddfeb29f02d658
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "codegen_x86.h"
18#include "dex/quick/mir_to_lir-inl.h"
19#include "dex/dataflow_iterator-inl.h"
20#include "x86_lir.h"
21
22namespace art {
23
24/* This file contains codegen for the X86 ISA */
25
26LIR* X86Mir2Lir::OpFpRegCopy(RegStorage r_dest, RegStorage r_src) {
27  int opcode;
28  /* must be both DOUBLE or both not DOUBLE */
29  DCHECK(r_dest.IsFloat() || r_src.IsFloat());
30  DCHECK_EQ(r_dest.IsDouble(), r_src.IsDouble());
31  if (r_dest.IsDouble()) {
32    opcode = kX86MovsdRR;
33  } else {
34    if (r_dest.IsSingle()) {
35      if (r_src.IsSingle()) {
36        opcode = kX86MovssRR;
37      } else {  // Fpr <- Gpr
38        opcode = kX86MovdxrRR;
39      }
40    } else {  // Gpr <- Fpr
41      DCHECK(r_src.IsSingle()) << "Raw: 0x" << std::hex << r_src.GetRawBits();
42      opcode = kX86MovdrxRR;
43    }
44  }
45  DCHECK_NE((EncodingMap[opcode].flags & IS_BINARY_OP), 0ULL);
46  LIR* res = RawLIR(current_dalvik_offset_, opcode, r_dest.GetReg(), r_src.GetReg());
47  if (r_dest == r_src) {
48    res->flags.is_nop = true;
49  }
50  return res;
51}
52
53bool X86Mir2Lir::InexpensiveConstantInt(int32_t value) {
54  return true;
55}
56
57bool X86Mir2Lir::InexpensiveConstantFloat(int32_t value) {
58  return false;
59}
60
61bool X86Mir2Lir::InexpensiveConstantLong(int64_t value) {
62  return true;
63}
64
65bool X86Mir2Lir::InexpensiveConstantDouble(int64_t value) {
66  return value == 0;
67}
68
69/*
70 * Load a immediate using a shortcut if possible; otherwise
71 * grab from the per-translation literal pool.  If target is
72 * a high register, build constant into a low register and copy.
73 *
74 * No additional register clobbering operation performed. Use this version when
75 * 1) r_dest is freshly returned from AllocTemp or
76 * 2) The codegen is under fixed register usage
77 */
78LIR* X86Mir2Lir::LoadConstantNoClobber(RegStorage r_dest, int value) {
79  RegStorage r_dest_save = r_dest;
80  if (r_dest.IsFloat()) {
81    if (value == 0) {
82      return NewLIR2(kX86XorpsRR, r_dest.GetReg(), r_dest.GetReg());
83    }
84    r_dest = AllocTemp();
85  }
86
87  LIR *res;
88  if (value == 0) {
89    res = NewLIR2(kX86Xor32RR, r_dest.GetReg(), r_dest.GetReg());
90  } else {
91    // Note, there is no byte immediate form of a 32 bit immediate move.
92    // 64-bit immediate is not supported by LIR structure
93    res = NewLIR2(kX86Mov32RI, r_dest.GetReg(), value);
94  }
95
96  if (r_dest_save.IsFloat()) {
97    NewLIR2(kX86MovdxrRR, r_dest_save.GetReg(), r_dest.GetReg());
98    FreeTemp(r_dest);
99  }
100
101  return res;
102}
103
104LIR* X86Mir2Lir::OpUnconditionalBranch(LIR* target) {
105  LIR* res = NewLIR1(kX86Jmp8, 0 /* offset to be patched during assembly*/);
106  res->target = target;
107  return res;
108}
109
110LIR* X86Mir2Lir::OpCondBranch(ConditionCode cc, LIR* target) {
111  LIR* branch = NewLIR2(kX86Jcc8, 0 /* offset to be patched */,
112                        X86ConditionEncoding(cc));
113  branch->target = target;
114  return branch;
115}
116
117LIR* X86Mir2Lir::OpReg(OpKind op, RegStorage r_dest_src) {
118  X86OpCode opcode = kX86Bkpt;
119  switch (op) {
120    case kOpNeg: opcode = r_dest_src.Is64Bit() ? kX86Neg64R : kX86Neg32R; break;
121    case kOpNot: opcode = r_dest_src.Is64Bit() ? kX86Not64R : kX86Not32R; break;
122    case kOpRev: opcode = kX86Bswap32R; break;
123    case kOpBlx: opcode = kX86CallR; break;
124    default:
125      LOG(FATAL) << "Bad case in OpReg " << op;
126  }
127  return NewLIR1(opcode, r_dest_src.GetReg());
128}
129
130LIR* X86Mir2Lir::OpRegImm(OpKind op, RegStorage r_dest_src1, int value) {
131  X86OpCode opcode = kX86Bkpt;
132  bool byte_imm = IS_SIMM8(value);
133  DCHECK(!r_dest_src1.IsFloat());
134  if (r_dest_src1.Is64Bit()) {
135    switch (op) {
136      case kOpAdd: opcode = byte_imm ? kX86Add64RI8 : kX86Add64RI; break;
137      case kOpSub: opcode = byte_imm ? kX86Sub64RI8 : kX86Sub64RI; break;
138      case kOpLsl: opcode = kX86Sal64RI; break;
139      case kOpLsr: opcode = kX86Shr64RI; break;
140      case kOpAsr: opcode = kX86Sar64RI; break;
141      case kOpCmp: opcode = byte_imm ? kX86Cmp64RI8 : kX86Cmp64RI; break;
142      default:
143        LOG(FATAL) << "Bad case in OpRegImm (64-bit) " << op;
144    }
145  } else {
146    switch (op) {
147      case kOpLsl: opcode = kX86Sal32RI; break;
148      case kOpLsr: opcode = kX86Shr32RI; break;
149      case kOpAsr: opcode = kX86Sar32RI; break;
150      case kOpAdd: opcode = byte_imm ? kX86Add32RI8 : kX86Add32RI; break;
151      case kOpOr:  opcode = byte_imm ? kX86Or32RI8  : kX86Or32RI;  break;
152      case kOpAdc: opcode = byte_imm ? kX86Adc32RI8 : kX86Adc32RI; break;
153      // case kOpSbb: opcode = kX86Sbb32RI; break;
154      case kOpAnd: opcode = byte_imm ? kX86And32RI8 : kX86And32RI; break;
155      case kOpSub: opcode = byte_imm ? kX86Sub32RI8 : kX86Sub32RI; break;
156      case kOpXor: opcode = byte_imm ? kX86Xor32RI8 : kX86Xor32RI; break;
157      case kOpCmp: opcode = byte_imm ? kX86Cmp32RI8 : kX86Cmp32RI; break;
158      case kOpMov:
159        /*
160         * Moving the constant zero into register can be specialized as an xor of the register.
161         * However, that sets eflags while the move does not. For that reason here, always do
162         * the move and if caller is flexible, they should be calling LoadConstantNoClobber instead.
163         */
164        opcode = kX86Mov32RI;
165        break;
166      case kOpMul:
167        opcode = byte_imm ? kX86Imul32RRI8 : kX86Imul32RRI;
168        return NewLIR3(opcode, r_dest_src1.GetReg(), r_dest_src1.GetReg(), value);
169      case kOp2Byte:
170        opcode = kX86Mov32RI;
171        value = static_cast<int8_t>(value);
172        break;
173      case kOp2Short:
174        opcode = kX86Mov32RI;
175        value = static_cast<int16_t>(value);
176        break;
177      case kOp2Char:
178        opcode = kX86Mov32RI;
179        value = static_cast<uint16_t>(value);
180        break;
181      case kOpNeg:
182        opcode = kX86Mov32RI;
183        value = -value;
184        break;
185      default:
186        LOG(FATAL) << "Bad case in OpRegImm " << op;
187    }
188  }
189  return NewLIR2(opcode, r_dest_src1.GetReg(), value);
190}
191
192LIR* X86Mir2Lir::OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) {
193    bool is64Bit = r_dest_src1.Is64Bit();
194    X86OpCode opcode = kX86Nop;
195    bool src2_must_be_cx = false;
196    switch (op) {
197        // X86 unary opcodes
198      case kOpMvn:
199        OpRegCopy(r_dest_src1, r_src2);
200        return OpReg(kOpNot, r_dest_src1);
201      case kOpNeg:
202        OpRegCopy(r_dest_src1, r_src2);
203        return OpReg(kOpNeg, r_dest_src1);
204      case kOpRev:
205        OpRegCopy(r_dest_src1, r_src2);
206        return OpReg(kOpRev, r_dest_src1);
207      case kOpRevsh:
208        OpRegCopy(r_dest_src1, r_src2);
209        OpReg(kOpRev, r_dest_src1);
210        return OpRegImm(kOpAsr, r_dest_src1, 16);
211        // X86 binary opcodes
212      case kOpSub: opcode = is64Bit ? kX86Sub64RR : kX86Sub32RR; break;
213      case kOpSbc: opcode = is64Bit ? kX86Sbb64RR : kX86Sbb32RR; break;
214      case kOpLsl: opcode = is64Bit ? kX86Sal64RC : kX86Sal32RC; src2_must_be_cx = true; break;
215      case kOpLsr: opcode = is64Bit ? kX86Shr64RC : kX86Shr32RC; src2_must_be_cx = true; break;
216      case kOpAsr: opcode = is64Bit ? kX86Sar64RC : kX86Sar32RC; src2_must_be_cx = true; break;
217      case kOpMov: opcode = is64Bit ? kX86Mov64RR : kX86Mov32RR; break;
218      case kOpCmp: opcode = is64Bit ? kX86Cmp64RR : kX86Cmp32RR; break;
219      case kOpAdd: opcode = is64Bit ? kX86Add64RR : kX86Add32RR; break;
220      case kOpAdc: opcode = is64Bit ? kX86Adc64RR : kX86Adc32RR; break;
221      case kOpAnd: opcode = is64Bit ? kX86And64RR : kX86And32RR; break;
222      case kOpOr:  opcode = is64Bit ? kX86Or64RR : kX86Or32RR; break;
223      case kOpXor: opcode = is64Bit ? kX86Xor64RR : kX86Xor32RR; break;
224      case kOp2Byte:
225        // TODO: there are several instances of this check.  A utility function perhaps?
226        // TODO: Similar to Arm's reg < 8 check.  Perhaps add attribute checks to RegStorage?
227        // Use shifts instead of a byte operand if the source can't be byte accessed.
228        if (r_src2.GetRegNum() >= rs_rX86_SP.GetRegNum()) {
229          NewLIR2(is64Bit ? kX86Mov64RR : kX86Mov32RR, r_dest_src1.GetReg(), r_src2.GetReg());
230          NewLIR2(is64Bit ? kX86Sal64RI : kX86Sal32RI, r_dest_src1.GetReg(), is64Bit ? 56 : 24);
231          return NewLIR2(is64Bit ? kX86Sar64RI : kX86Sar32RI, r_dest_src1.GetReg(),
232                         is64Bit ? 56 : 24);
233        } else {
234          opcode = is64Bit ? kX86Bkpt : kX86Movsx8RR;
235        }
236        break;
237      case kOp2Short: opcode = is64Bit ? kX86Bkpt : kX86Movsx16RR; break;
238      case kOp2Char: opcode = is64Bit ? kX86Bkpt : kX86Movzx16RR; break;
239      case kOpMul: opcode = is64Bit ? kX86Bkpt : kX86Imul32RR; break;
240      default:
241        LOG(FATAL) << "Bad case in OpRegReg " << op;
242        break;
243    }
244    CHECK(!src2_must_be_cx || r_src2.GetReg() == rs_rCX.GetReg());
245    return NewLIR2(opcode, r_dest_src1.GetReg(), r_src2.GetReg());
246}
247
248LIR* X86Mir2Lir::OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset, MoveType move_type) {
249  DCHECK(!r_base.IsFloat());
250  X86OpCode opcode = kX86Nop;
251  int dest = r_dest.IsPair() ? r_dest.GetLowReg() : r_dest.GetReg();
252  switch (move_type) {
253    case kMov8GP:
254      CHECK(!r_dest.IsFloat());
255      opcode = kX86Mov8RM;
256      break;
257    case kMov16GP:
258      CHECK(!r_dest.IsFloat());
259      opcode = kX86Mov16RM;
260      break;
261    case kMov32GP:
262      CHECK(!r_dest.IsFloat());
263      opcode = kX86Mov32RM;
264      break;
265    case kMov32FP:
266      CHECK(r_dest.IsFloat());
267      opcode = kX86MovssRM;
268      break;
269    case kMov64FP:
270      CHECK(r_dest.IsFloat());
271      opcode = kX86MovsdRM;
272      break;
273    case kMovU128FP:
274      CHECK(r_dest.IsFloat());
275      opcode = kX86MovupsRM;
276      break;
277    case kMovA128FP:
278      CHECK(r_dest.IsFloat());
279      opcode = kX86MovapsRM;
280      break;
281    case kMovLo128FP:
282      CHECK(r_dest.IsFloat());
283      opcode = kX86MovlpsRM;
284      break;
285    case kMovHi128FP:
286      CHECK(r_dest.IsFloat());
287      opcode = kX86MovhpsRM;
288      break;
289    case kMov64GP:
290    case kMovLo64FP:
291    case kMovHi64FP:
292    default:
293      LOG(FATAL) << "Bad case in OpMovRegMem";
294      break;
295  }
296
297  return NewLIR3(opcode, dest, r_base.GetReg(), offset);
298}
299
300LIR* X86Mir2Lir::OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src, MoveType move_type) {
301  DCHECK(!r_base.IsFloat());
302  int src = r_src.IsPair() ? r_src.GetLowReg() : r_src.GetReg();
303
304  X86OpCode opcode = kX86Nop;
305  switch (move_type) {
306    case kMov8GP:
307      CHECK(!r_src.IsFloat());
308      opcode = kX86Mov8MR;
309      break;
310    case kMov16GP:
311      CHECK(!r_src.IsFloat());
312      opcode = kX86Mov16MR;
313      break;
314    case kMov32GP:
315      CHECK(!r_src.IsFloat());
316      opcode = kX86Mov32MR;
317      break;
318    case kMov32FP:
319      CHECK(r_src.IsFloat());
320      opcode = kX86MovssMR;
321      break;
322    case kMov64FP:
323      CHECK(r_src.IsFloat());
324      opcode = kX86MovsdMR;
325      break;
326    case kMovU128FP:
327      CHECK(r_src.IsFloat());
328      opcode = kX86MovupsMR;
329      break;
330    case kMovA128FP:
331      CHECK(r_src.IsFloat());
332      opcode = kX86MovapsMR;
333      break;
334    case kMovLo128FP:
335      CHECK(r_src.IsFloat());
336      opcode = kX86MovlpsMR;
337      break;
338    case kMovHi128FP:
339      CHECK(r_src.IsFloat());
340      opcode = kX86MovhpsMR;
341      break;
342    case kMov64GP:
343    case kMovLo64FP:
344    case kMovHi64FP:
345    default:
346      LOG(FATAL) << "Bad case in OpMovMemReg";
347      break;
348  }
349
350  return NewLIR3(opcode, r_base.GetReg(), offset, src);
351}
352
353LIR* X86Mir2Lir::OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) {
354  // The only conditional reg to reg operation supported is Cmov
355  DCHECK_EQ(op, kOpCmov);
356  return NewLIR3(kX86Cmov32RRC, r_dest.GetReg(), r_src.GetReg(), X86ConditionEncoding(cc));
357}
358
359LIR* X86Mir2Lir::OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset) {
360  bool is64Bit = r_dest.Is64Bit();
361  X86OpCode opcode = kX86Nop;
362  switch (op) {
363      // X86 binary opcodes
364    case kOpSub: opcode = is64Bit ? kX86Sub64RM : kX86Sub32RM; break;
365    case kOpMov: opcode = is64Bit ? kX86Mov64RM : kX86Mov32RM; break;
366    case kOpCmp: opcode = is64Bit ? kX86Cmp64RM : kX86Cmp32RM; break;
367    case kOpAdd: opcode = is64Bit ? kX86Add64RM : kX86Add32RM; break;
368    case kOpAnd: opcode = is64Bit ? kX86And64RM : kX86And32RM; break;
369    case kOpOr:  opcode = is64Bit ? kX86Or64RM : kX86Or32RM; break;
370    case kOpXor: opcode = is64Bit ? kX86Xor64RM : kX86Xor32RM; break;
371    case kOp2Byte: opcode = kX86Movsx8RM; break;
372    case kOp2Short: opcode = kX86Movsx16RM; break;
373    case kOp2Char: opcode = kX86Movzx16RM; break;
374    case kOpMul:
375    default:
376      LOG(FATAL) << "Bad case in OpRegMem " << op;
377      break;
378  }
379  LIR *l = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), offset);
380  if (mem_ref_type_ == ResourceMask::kDalvikReg) {
381    DCHECK(r_base == rs_rX86_SP);
382    AnnotateDalvikRegAccess(l, offset >> 2, true /* is_load */, false /* is_64bit */);
383  }
384  return l;
385}
386
387LIR* X86Mir2Lir::OpMemReg(OpKind op, RegLocation rl_dest, int r_value) {
388  DCHECK_NE(rl_dest.location, kLocPhysReg);
389  int displacement = SRegOffset(rl_dest.s_reg_low);
390  bool is64Bit = rl_dest.wide != 0;
391  X86OpCode opcode = kX86Nop;
392  switch (op) {
393    case kOpSub: opcode = is64Bit ? kX86Sub64MR : kX86Sub32MR; break;
394    case kOpMov: opcode = is64Bit ? kX86Mov64MR : kX86Mov32MR; break;
395    case kOpCmp: opcode = is64Bit ? kX86Cmp64MR : kX86Cmp32MR; break;
396    case kOpAdd: opcode = is64Bit ? kX86Add64MR : kX86Add32MR; break;
397    case kOpAnd: opcode = is64Bit ? kX86And64MR : kX86And32MR; break;
398    case kOpOr:  opcode = is64Bit ? kX86Or64MR : kX86Or32MR; break;
399    case kOpXor: opcode = is64Bit ? kX86Xor64MR : kX86Xor32MR; break;
400    case kOpLsl: opcode = is64Bit ? kX86Sal64MC : kX86Sal32MC; break;
401    case kOpLsr: opcode = is64Bit ? kX86Shr64MC : kX86Shr32MC; break;
402    case kOpAsr: opcode = is64Bit ? kX86Sar64MC : kX86Sar32MC; break;
403    default:
404      LOG(FATAL) << "Bad case in OpMemReg " << op;
405      break;
406  }
407  LIR *l = NewLIR3(opcode, rs_rX86_SP.GetReg(), displacement, r_value);
408  if (mem_ref_type_ == ResourceMask::kDalvikReg) {
409    AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, is64Bit /* is_64bit */);
410    AnnotateDalvikRegAccess(l, displacement >> 2, false /* is_load */, is64Bit /* is_64bit */);
411  }
412  return l;
413}
414
415LIR* X86Mir2Lir::OpRegMem(OpKind op, RegStorage r_dest, RegLocation rl_value) {
416  DCHECK_NE(rl_value.location, kLocPhysReg);
417  bool is64Bit = r_dest.Is64Bit();
418  int displacement = SRegOffset(rl_value.s_reg_low);
419  X86OpCode opcode = kX86Nop;
420  switch (op) {
421    case kOpSub: opcode = is64Bit ? kX86Sub64RM : kX86Sub32RM; break;
422    case kOpMov: opcode = is64Bit ? kX86Mov64RM : kX86Mov32RM; break;
423    case kOpCmp: opcode = is64Bit ? kX86Cmp64RM : kX86Cmp32RM; break;
424    case kOpAdd: opcode = is64Bit ? kX86Add64RM : kX86Add32RM; break;
425    case kOpAnd: opcode = is64Bit ? kX86And64RM : kX86And32RM; break;
426    case kOpOr:  opcode = is64Bit ? kX86Or64RM : kX86Or32RM; break;
427    case kOpXor: opcode = is64Bit ? kX86Xor64RM : kX86Xor32RM; break;
428    case kOpMul: opcode = is64Bit ? kX86Bkpt : kX86Imul32RM; break;
429    default:
430      LOG(FATAL) << "Bad case in OpRegMem " << op;
431      break;
432  }
433  LIR *l = NewLIR3(opcode, r_dest.GetReg(), rs_rX86_SP.GetReg(), displacement);
434  if (mem_ref_type_ == ResourceMask::kDalvikReg) {
435    AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, is64Bit /* is_64bit */);
436  }
437  return l;
438}
439
440LIR* X86Mir2Lir::OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1,
441                             RegStorage r_src2) {
442  bool is64Bit = r_dest.Is64Bit();
443  if (r_dest != r_src1 && r_dest != r_src2) {
444    if (op == kOpAdd) {  // lea special case, except can't encode rbp as base
445      if (r_src1 == r_src2) {
446        OpRegCopy(r_dest, r_src1);
447        return OpRegImm(kOpLsl, r_dest, 1);
448      } else if (r_src1 != rs_rBP) {
449        return NewLIR5(is64Bit ? kX86Lea64RA : kX86Lea32RA, r_dest.GetReg(),
450                       r_src1.GetReg() /* base */, r_src2.GetReg() /* index */,
451                       0 /* scale */, 0 /* disp */);
452      } else {
453        return NewLIR5(is64Bit ? kX86Lea64RA : kX86Lea32RA, r_dest.GetReg(),
454                       r_src2.GetReg() /* base */, r_src1.GetReg() /* index */,
455                       0 /* scale */, 0 /* disp */);
456      }
457    } else {
458      OpRegCopy(r_dest, r_src1);
459      return OpRegReg(op, r_dest, r_src2);
460    }
461  } else if (r_dest == r_src1) {
462    return OpRegReg(op, r_dest, r_src2);
463  } else {  // r_dest == r_src2
464    switch (op) {
465      case kOpSub:  // non-commutative
466        OpReg(kOpNeg, r_dest);
467        op = kOpAdd;
468        break;
469      case kOpSbc:
470      case kOpLsl: case kOpLsr: case kOpAsr: case kOpRor: {
471        RegStorage t_reg = AllocTemp();
472        OpRegCopy(t_reg, r_src1);
473        OpRegReg(op, t_reg, r_src2);
474        LIR* res = OpRegCopyNoInsert(r_dest, t_reg);
475        AppendLIR(res);
476        FreeTemp(t_reg);
477        return res;
478      }
479      case kOpAdd:  // commutative
480      case kOpOr:
481      case kOpAdc:
482      case kOpAnd:
483      case kOpXor:
484        break;
485      default:
486        LOG(FATAL) << "Bad case in OpRegRegReg " << op;
487    }
488    return OpRegReg(op, r_dest, r_src1);
489  }
490}
491
492LIR* X86Mir2Lir::OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src, int value) {
493  if (op == kOpMul && !Gen64Bit()) {
494    X86OpCode opcode = IS_SIMM8(value) ? kX86Imul32RRI8 : kX86Imul32RRI;
495    return NewLIR3(opcode, r_dest.GetReg(), r_src.GetReg(), value);
496  } else if (op == kOpAnd && !Gen64Bit()) {
497    if (value == 0xFF && r_src.Low4()) {
498      return NewLIR2(kX86Movzx8RR, r_dest.GetReg(), r_src.GetReg());
499    } else if (value == 0xFFFF) {
500      return NewLIR2(kX86Movzx16RR, r_dest.GetReg(), r_src.GetReg());
501    }
502  }
503  if (r_dest != r_src) {
504    if (false && op == kOpLsl && value >= 0 && value <= 3) {  // lea shift special case
505      // TODO: fix bug in LEA encoding when disp == 0
506      return NewLIR5(kX86Lea32RA, r_dest.GetReg(),  r5sib_no_base /* base */,
507                     r_src.GetReg() /* index */, value /* scale */, 0 /* disp */);
508    } else if (op == kOpAdd) {  // lea add special case
509      return NewLIR5(r_dest.Is64Bit() ? kX86Lea64RA : kX86Lea32RA, r_dest.GetReg(),
510                     r_src.GetReg() /* base */, rs_rX86_SP.GetReg()/*r4sib_no_index*/ /* index */,
511                     0 /* scale */, value /* disp */);
512    }
513    OpRegCopy(r_dest, r_src);
514  }
515  return OpRegImm(op, r_dest, value);
516}
517
518LIR* X86Mir2Lir::OpThreadMem(OpKind op, ThreadOffset<4> thread_offset) {
519  DCHECK_EQ(kX86, cu_->instruction_set);
520  X86OpCode opcode = kX86Bkpt;
521  switch (op) {
522    case kOpBlx: opcode = kX86CallT;  break;
523    case kOpBx: opcode = kX86JmpT;  break;
524    default:
525      LOG(FATAL) << "Bad opcode: " << op;
526      break;
527  }
528  return NewLIR1(opcode, thread_offset.Int32Value());
529}
530
531LIR* X86Mir2Lir::OpThreadMem(OpKind op, ThreadOffset<8> thread_offset) {
532  DCHECK_EQ(kX86_64, cu_->instruction_set);
533  X86OpCode opcode = kX86Bkpt;
534  switch (op) {
535    case kOpBlx: opcode = kX86CallT;  break;
536    case kOpBx: opcode = kX86JmpT;  break;
537    default:
538      LOG(FATAL) << "Bad opcode: " << op;
539      break;
540  }
541  return NewLIR1(opcode, thread_offset.Int32Value());
542}
543
544LIR* X86Mir2Lir::OpMem(OpKind op, RegStorage r_base, int disp) {
545  X86OpCode opcode = kX86Bkpt;
546  switch (op) {
547    case kOpBlx: opcode = kX86CallM;  break;
548    default:
549      LOG(FATAL) << "Bad opcode: " << op;
550      break;
551  }
552  return NewLIR2(opcode, r_base.GetReg(), disp);
553}
554
555LIR* X86Mir2Lir::LoadConstantWide(RegStorage r_dest, int64_t value) {
556    int32_t val_lo = Low32Bits(value);
557    int32_t val_hi = High32Bits(value);
558    int32_t low_reg_val = r_dest.IsPair() ? r_dest.GetLowReg() : r_dest.GetReg();
559    LIR *res;
560    bool is_fp = r_dest.IsFloat();
561    // TODO: clean this up once we fully recognize 64-bit storage containers.
562    if (is_fp) {
563      if (value == 0) {
564        return NewLIR2(kX86XorpsRR, low_reg_val, low_reg_val);
565      } else if (base_of_code_ != nullptr) {
566        // We will load the value from the literal area.
567        LIR* data_target = ScanLiteralPoolWide(literal_list_, val_lo, val_hi);
568        if (data_target == NULL) {
569          data_target = AddWideData(&literal_list_, val_lo, val_hi);
570        }
571
572        // Address the start of the method
573        RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
574        if (rl_method.wide) {
575          rl_method = LoadValueWide(rl_method, kCoreReg);
576        } else {
577          rl_method = LoadValue(rl_method, kCoreReg);
578        }
579
580        // Load the proper value from the literal area.
581        // We don't know the proper offset for the value, so pick one that will force
582        // 4 byte offset.  We will fix this up in the assembler later to have the right
583        // value.
584        ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
585        res = LoadBaseDisp(rl_method.reg, 256 /* bogus */, RegStorage::FloatSolo64(low_reg_val),
586                           kDouble);
587        res->target = data_target;
588        res->flags.fixup = kFixupLoad;
589        store_method_addr_used_ = true;
590      } else {
591        if (val_lo == 0) {
592          res = NewLIR2(kX86XorpsRR, low_reg_val, low_reg_val);
593        } else {
594          res = LoadConstantNoClobber(RegStorage::FloatSolo32(low_reg_val), val_lo);
595        }
596        if (val_hi != 0) {
597          RegStorage r_dest_hi = AllocTempDouble();
598          LoadConstantNoClobber(r_dest_hi, val_hi);
599          NewLIR2(kX86PunpckldqRR, low_reg_val, r_dest_hi.GetReg());
600          FreeTemp(r_dest_hi);
601        }
602      }
603    } else {
604      if (r_dest.IsPair()) {
605        res = LoadConstantNoClobber(r_dest.GetLow(), val_lo);
606        LoadConstantNoClobber(r_dest.GetHigh(), val_hi);
607      } else {
608        // TODO(64) make int64_t value parameter of LoadConstantNoClobber
609        if (val_lo < 0) {
610          val_hi += 1;
611        }
612        res = LoadConstantNoClobber(RegStorage::Solo32(r_dest.GetReg()), val_hi);
613        NewLIR2(kX86Sal64RI, r_dest.GetReg(), 32);
614        if (val_lo != 0) {
615          NewLIR2(kX86Add64RI, r_dest.GetReg(), val_lo);
616        }
617      }
618    }
619    return res;
620}
621
622LIR* X86Mir2Lir::LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
623                                     int displacement, RegStorage r_dest, OpSize size) {
624  LIR *load = NULL;
625  LIR *load2 = NULL;
626  bool is_array = r_index.Valid();
627  bool pair = r_dest.IsPair();
628  bool is64bit = ((size == k64) || (size == kDouble));
629  X86OpCode opcode = kX86Nop;
630  switch (size) {
631    case k64:
632    case kDouble:
633      if (r_dest.IsFloat()) {
634        opcode = is_array ? kX86MovsdRA : kX86MovsdRM;
635      } else if (!pair) {
636        opcode = is_array ? kX86Mov64RA  : kX86Mov64RM;
637      } else {
638        opcode = is_array ? kX86Mov32RA  : kX86Mov32RM;
639      }
640      // TODO: double store is to unaligned address
641      DCHECK_EQ((displacement & 0x3), 0);
642      break;
643    case kWord:
644      if (Gen64Bit()) {
645        opcode = is_array ? kX86Mov64RA  : kX86Mov64RM;
646        CHECK_EQ(is_array, false);
647        CHECK_EQ(r_dest.IsFloat(), false);
648        break;
649      }  // else fall-through to k32 case
650    case k32:
651    case kSingle:
652    case kReference:  // TODO: update for reference decompression on 64-bit targets.
653      opcode = is_array ? kX86Mov32RA : kX86Mov32RM;
654      if (r_dest.IsFloat()) {
655        opcode = is_array ? kX86MovssRA : kX86MovssRM;
656        DCHECK(r_dest.IsFloat());
657      }
658      DCHECK_EQ((displacement & 0x3), 0);
659      break;
660    case kUnsignedHalf:
661      opcode = is_array ? kX86Movzx16RA : kX86Movzx16RM;
662      DCHECK_EQ((displacement & 0x1), 0);
663      break;
664    case kSignedHalf:
665      opcode = is_array ? kX86Movsx16RA : kX86Movsx16RM;
666      DCHECK_EQ((displacement & 0x1), 0);
667      break;
668    case kUnsignedByte:
669      opcode = is_array ? kX86Movzx8RA : kX86Movzx8RM;
670      break;
671    case kSignedByte:
672      opcode = is_array ? kX86Movsx8RA : kX86Movsx8RM;
673      break;
674    default:
675      LOG(FATAL) << "Bad case in LoadBaseIndexedDispBody";
676  }
677
678  if (!is_array) {
679    if (!pair) {
680      load = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), displacement + LOWORD_OFFSET);
681    } else {
682      DCHECK(!r_dest.IsFloat());  // Make sure we're not still using a pair here.
683      if (r_base == r_dest.GetLow()) {
684        load2 = NewLIR3(opcode, r_dest.GetHighReg(), r_base.GetReg(),
685                        displacement + HIWORD_OFFSET);
686        load = NewLIR3(opcode, r_dest.GetLowReg(), r_base.GetReg(), displacement + LOWORD_OFFSET);
687      } else {
688        load = NewLIR3(opcode, r_dest.GetLowReg(), r_base.GetReg(), displacement + LOWORD_OFFSET);
689        load2 = NewLIR3(opcode, r_dest.GetHighReg(), r_base.GetReg(),
690                        displacement + HIWORD_OFFSET);
691      }
692    }
693    if (mem_ref_type_ == ResourceMask::kDalvikReg) {
694      DCHECK(r_base == rs_rX86_SP);
695      AnnotateDalvikRegAccess(load, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
696                              true /* is_load */, is64bit);
697      if (pair) {
698        AnnotateDalvikRegAccess(load2, (displacement + HIWORD_OFFSET) >> 2,
699                                true /* is_load */, is64bit);
700      }
701    }
702  } else {
703    if (!pair) {
704      load = NewLIR5(opcode, r_dest.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
705                     displacement + LOWORD_OFFSET);
706    } else {
707      DCHECK(!r_dest.IsFloat());  // Make sure we're not still using a pair here.
708      if (r_base == r_dest.GetLow()) {
709        if (r_dest.GetHigh() == r_index) {
710          // We can't use either register for the first load.
711          RegStorage temp = AllocTemp();
712          load2 = NewLIR5(opcode, temp.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
713                          displacement + HIWORD_OFFSET);
714          load = NewLIR5(opcode, r_dest.GetLowReg(), r_base.GetReg(), r_index.GetReg(), scale,
715                         displacement + LOWORD_OFFSET);
716          OpRegCopy(r_dest.GetHigh(), temp);
717          FreeTemp(temp);
718        } else {
719          load2 = NewLIR5(opcode, r_dest.GetHighReg(), r_base.GetReg(), r_index.GetReg(), scale,
720                          displacement + HIWORD_OFFSET);
721          load = NewLIR5(opcode, r_dest.GetLowReg(), r_base.GetReg(), r_index.GetReg(), scale,
722                         displacement + LOWORD_OFFSET);
723        }
724      } else {
725        if (r_dest.GetLow() == r_index) {
726          // We can't use either register for the first load.
727          RegStorage temp = AllocTemp();
728          load = NewLIR5(opcode, temp.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
729                         displacement + LOWORD_OFFSET);
730          load2 = NewLIR5(opcode, r_dest.GetHighReg(), r_base.GetReg(), r_index.GetReg(), scale,
731                          displacement + HIWORD_OFFSET);
732          OpRegCopy(r_dest.GetLow(), temp);
733          FreeTemp(temp);
734        } else {
735          load = NewLIR5(opcode, r_dest.GetLowReg(), r_base.GetReg(), r_index.GetReg(), scale,
736                         displacement + LOWORD_OFFSET);
737          load2 = NewLIR5(opcode, r_dest.GetHighReg(), r_base.GetReg(), r_index.GetReg(), scale,
738                          displacement + HIWORD_OFFSET);
739        }
740      }
741    }
742  }
743
744  return load;
745}
746
747/* Load value from base + scaled index. */
748LIR* X86Mir2Lir::LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
749                                 int scale, OpSize size) {
750  return LoadBaseIndexedDisp(r_base, r_index, scale, 0, r_dest, size);
751}
752
753LIR* X86Mir2Lir::LoadBaseDispVolatile(RegStorage r_base, int displacement, RegStorage r_dest,
754                                      OpSize size) {
755  // LoadBaseDisp() will emit correct insn for atomic load on x86
756  // assuming r_dest is correctly prepared using RegClassForFieldLoadStore().
757  return LoadBaseDisp(r_base, displacement, r_dest, size);
758}
759
760LIR* X86Mir2Lir::LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
761                              OpSize size) {
762  return LoadBaseIndexedDisp(r_base, RegStorage::InvalidReg(), 0, displacement, r_dest,
763                             size);
764}
765
766LIR* X86Mir2Lir::StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
767                                      int displacement, RegStorage r_src, OpSize size) {
768  LIR *store = NULL;
769  LIR *store2 = NULL;
770  bool is_array = r_index.Valid();
771  bool pair = r_src.IsPair();
772  bool is64bit = (size == k64) || (size == kDouble);
773  X86OpCode opcode = kX86Nop;
774  switch (size) {
775    case k64:
776    case kDouble:
777      if (r_src.IsFloat()) {
778        opcode = is_array ? kX86MovsdAR : kX86MovsdMR;
779      } else if (!pair) {
780        opcode = is_array ? kX86Mov64AR  : kX86Mov64MR;
781      } else {
782        opcode = is_array ? kX86Mov32AR  : kX86Mov32MR;
783      }
784      // TODO: double store is to unaligned address
785      DCHECK_EQ((displacement & 0x3), 0);
786      break;
787    case kWord:
788      if (Gen64Bit()) {
789        opcode = is_array ? kX86Mov64AR  : kX86Mov64MR;
790        CHECK_EQ(is_array, false);
791        CHECK_EQ(r_src.IsFloat(), false);
792        break;
793      }  // else fall-through to k32 case
794    case k32:
795    case kSingle:
796    case kReference:
797      opcode = is_array ? kX86Mov32AR : kX86Mov32MR;
798      if (r_src.IsFloat()) {
799        opcode = is_array ? kX86MovssAR : kX86MovssMR;
800        DCHECK(r_src.IsSingle());
801      }
802      DCHECK_EQ((displacement & 0x3), 0);
803      break;
804    case kUnsignedHalf:
805    case kSignedHalf:
806      opcode = is_array ? kX86Mov16AR : kX86Mov16MR;
807      DCHECK_EQ((displacement & 0x1), 0);
808      break;
809    case kUnsignedByte:
810    case kSignedByte:
811      opcode = is_array ? kX86Mov8AR : kX86Mov8MR;
812      break;
813    default:
814      LOG(FATAL) << "Bad case in StoreBaseIndexedDispBody";
815  }
816
817  if (!is_array) {
818    if (!pair) {
819      store = NewLIR3(opcode, r_base.GetReg(), displacement + LOWORD_OFFSET, r_src.GetReg());
820    } else {
821      DCHECK(!r_src.IsFloat());  // Make sure we're not still using a pair here.
822      store = NewLIR3(opcode, r_base.GetReg(), displacement + LOWORD_OFFSET, r_src.GetLowReg());
823      store2 = NewLIR3(opcode, r_base.GetReg(), displacement + HIWORD_OFFSET, r_src.GetHighReg());
824    }
825    if (mem_ref_type_ == ResourceMask::kDalvikReg) {
826      DCHECK(r_base == rs_rX86_SP);
827      AnnotateDalvikRegAccess(store, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
828                              false /* is_load */, is64bit);
829      if (pair) {
830        AnnotateDalvikRegAccess(store2, (displacement + HIWORD_OFFSET) >> 2,
831                                false /* is_load */, is64bit);
832      }
833    }
834  } else {
835    if (!pair) {
836      store = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale,
837                      displacement + LOWORD_OFFSET, r_src.GetReg());
838    } else {
839      DCHECK(!r_src.IsFloat());  // Make sure we're not still using a pair here.
840      store = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale,
841                      displacement + LOWORD_OFFSET, r_src.GetLowReg());
842      store2 = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale,
843                       displacement + HIWORD_OFFSET, r_src.GetHighReg());
844    }
845  }
846  return store;
847}
848
849/* store value base base + scaled index. */
850LIR* X86Mir2Lir::StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
851                      int scale, OpSize size) {
852  return StoreBaseIndexedDisp(r_base, r_index, scale, 0, r_src, size);
853}
854
855LIR* X86Mir2Lir::StoreBaseDispVolatile(RegStorage r_base, int displacement,
856                                       RegStorage r_src, OpSize size) {
857  // StoreBaseDisp() will emit correct insn for atomic store on x86
858  // assuming r_dest is correctly prepared using RegClassForFieldLoadStore().
859  return StoreBaseDisp(r_base, displacement, r_src, size);
860}
861
862LIR* X86Mir2Lir::StoreBaseDisp(RegStorage r_base, int displacement,
863                               RegStorage r_src, OpSize size) {
864  return StoreBaseIndexedDisp(r_base, RegStorage::InvalidReg(), 0, displacement, r_src, size);
865}
866
867LIR* X86Mir2Lir::OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
868                                   int offset, int check_value, LIR* target) {
869    NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base_reg.GetReg(), offset,
870            check_value);
871    LIR* branch = OpCondBranch(cond, target);
872    return branch;
873}
874
875void X86Mir2Lir::AnalyzeMIR() {
876  // Assume we don't need a pointer to the base of the code.
877  cu_->NewTimingSplit("X86 MIR Analysis");
878  store_method_addr_ = false;
879
880  // Walk the MIR looking for interesting items.
881  PreOrderDfsIterator iter(mir_graph_);
882  BasicBlock* curr_bb = iter.Next();
883  while (curr_bb != NULL) {
884    AnalyzeBB(curr_bb);
885    curr_bb = iter.Next();
886  }
887
888  // Did we need a pointer to the method code?
889  if (store_method_addr_) {
890    base_of_code_ = mir_graph_->GetNewCompilerTemp(kCompilerTempVR, Gen64Bit() == true);
891  } else {
892    base_of_code_ = nullptr;
893  }
894}
895
896void X86Mir2Lir::AnalyzeBB(BasicBlock * bb) {
897  if (bb->block_type == kDead) {
898    // Ignore dead blocks
899    return;
900  }
901
902  for (MIR *mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
903    int opcode = mir->dalvikInsn.opcode;
904    if (MIRGraph::IsPseudoMirOp(opcode)) {
905      AnalyzeExtendedMIR(opcode, bb, mir);
906    } else {
907      AnalyzeMIR(opcode, bb, mir);
908    }
909  }
910}
911
912
913void X86Mir2Lir::AnalyzeExtendedMIR(int opcode, BasicBlock * bb, MIR *mir) {
914  switch (opcode) {
915    // Instructions referencing doubles.
916    case kMirOpFusedCmplDouble:
917    case kMirOpFusedCmpgDouble:
918      AnalyzeFPInstruction(opcode, bb, mir);
919      break;
920    case kMirOpConstVector:
921      store_method_addr_ = true;
922      break;
923    default:
924      // Ignore the rest.
925      break;
926  }
927}
928
929void X86Mir2Lir::AnalyzeMIR(int opcode, BasicBlock * bb, MIR *mir) {
930  // Looking for
931  // - Do we need a pointer to the code (used for packed switches and double lits)?
932
933  switch (opcode) {
934    // Instructions referencing doubles.
935    case Instruction::CMPL_DOUBLE:
936    case Instruction::CMPG_DOUBLE:
937    case Instruction::NEG_DOUBLE:
938    case Instruction::ADD_DOUBLE:
939    case Instruction::SUB_DOUBLE:
940    case Instruction::MUL_DOUBLE:
941    case Instruction::DIV_DOUBLE:
942    case Instruction::REM_DOUBLE:
943    case Instruction::ADD_DOUBLE_2ADDR:
944    case Instruction::SUB_DOUBLE_2ADDR:
945    case Instruction::MUL_DOUBLE_2ADDR:
946    case Instruction::DIV_DOUBLE_2ADDR:
947    case Instruction::REM_DOUBLE_2ADDR:
948      AnalyzeFPInstruction(opcode, bb, mir);
949      break;
950
951    // Packed switches and array fills need a pointer to the base of the method.
952    case Instruction::FILL_ARRAY_DATA:
953    case Instruction::PACKED_SWITCH:
954      store_method_addr_ = true;
955      break;
956    default:
957      // Other instructions are not interesting yet.
958      break;
959  }
960}
961
962void X86Mir2Lir::AnalyzeFPInstruction(int opcode, BasicBlock * bb, MIR *mir) {
963  // Look at all the uses, and see if they are double constants.
964  uint64_t attrs = MIRGraph::GetDataFlowAttributes(static_cast<Instruction::Code>(opcode));
965  int next_sreg = 0;
966  if (attrs & DF_UA) {
967    if (attrs & DF_A_WIDE) {
968      AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg));
969      next_sreg += 2;
970    } else {
971      next_sreg++;
972    }
973  }
974  if (attrs & DF_UB) {
975    if (attrs & DF_B_WIDE) {
976      AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg));
977      next_sreg += 2;
978    } else {
979      next_sreg++;
980    }
981  }
982  if (attrs & DF_UC) {
983    if (attrs & DF_C_WIDE) {
984      AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg));
985    }
986  }
987}
988
989void X86Mir2Lir::AnalyzeDoubleUse(RegLocation use) {
990  // If this is a double literal, we will want it in the literal pool.
991  if (use.is_const) {
992    store_method_addr_ = true;
993  }
994}
995
996RegLocation X86Mir2Lir::UpdateLocTyped(RegLocation loc, int reg_class) {
997  loc = UpdateLoc(loc);
998  if ((loc.location == kLocPhysReg) && (loc.fp != loc.reg.IsFloat())) {
999    if (GetRegInfo(loc.reg)->IsTemp()) {
1000      Clobber(loc.reg);
1001      FreeTemp(loc.reg);
1002      loc.reg = RegStorage::InvalidReg();
1003      loc.location = kLocDalvikFrame;
1004    }
1005  }
1006  DCHECK(CheckCorePoolSanity());
1007  return loc;
1008}
1009
1010RegLocation X86Mir2Lir::UpdateLocWideTyped(RegLocation loc, int reg_class) {
1011  loc = UpdateLocWide(loc);
1012  if ((loc.location == kLocPhysReg) && (loc.fp != loc.reg.IsFloat())) {
1013    if (GetRegInfo(loc.reg)->IsTemp()) {
1014      Clobber(loc.reg);
1015      FreeTemp(loc.reg);
1016      loc.reg = RegStorage::InvalidReg();
1017      loc.location = kLocDalvikFrame;
1018    }
1019  }
1020  DCHECK(CheckCorePoolSanity());
1021  return loc;
1022}
1023}  // namespace art
1024