utility_x86.cc revision 60d7a65f7fb60f502160a2e479e86014c7787553
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "codegen_x86.h"
18#include "dex/quick/mir_to_lir-inl.h"
19#include "dex/dataflow_iterator-inl.h"
20#include "x86_lir.h"
21
22namespace art {
23
24/* This file contains codegen for the X86 ISA */
25
26LIR* X86Mir2Lir::OpFpRegCopy(int r_dest, int r_src) {
27  int opcode;
28  /* must be both DOUBLE or both not DOUBLE */
29  DCHECK_EQ(X86_DOUBLEREG(r_dest), X86_DOUBLEREG(r_src));
30  if (X86_DOUBLEREG(r_dest)) {
31    opcode = kX86MovsdRR;
32  } else {
33    if (X86_SINGLEREG(r_dest)) {
34      if (X86_SINGLEREG(r_src)) {
35        opcode = kX86MovssRR;
36      } else {  // Fpr <- Gpr
37        opcode = kX86MovdxrRR;
38      }
39    } else {  // Gpr <- Fpr
40      DCHECK(X86_SINGLEREG(r_src));
41      opcode = kX86MovdrxRR;
42    }
43  }
44  DCHECK_NE((EncodingMap[opcode].flags & IS_BINARY_OP), 0ULL);
45  LIR* res = RawLIR(current_dalvik_offset_, opcode, r_dest, r_src);
46  if (r_dest == r_src) {
47    res->flags.is_nop = true;
48  }
49  return res;
50}
51
52bool X86Mir2Lir::InexpensiveConstantInt(int32_t value) {
53  return true;
54}
55
56bool X86Mir2Lir::InexpensiveConstantFloat(int32_t value) {
57  return false;
58}
59
60bool X86Mir2Lir::InexpensiveConstantLong(int64_t value) {
61  return true;
62}
63
64bool X86Mir2Lir::InexpensiveConstantDouble(int64_t value) {
65  return value == 0;
66}
67
68/*
69 * Load a immediate using a shortcut if possible; otherwise
70 * grab from the per-translation literal pool.  If target is
71 * a high register, build constant into a low register and copy.
72 *
73 * No additional register clobbering operation performed. Use this version when
74 * 1) r_dest is freshly returned from AllocTemp or
75 * 2) The codegen is under fixed register usage
76 */
77LIR* X86Mir2Lir::LoadConstantNoClobber(int r_dest, int value) {
78  int r_dest_save = r_dest;
79  if (X86_FPREG(r_dest)) {
80    if (value == 0) {
81      return NewLIR2(kX86XorpsRR, r_dest, r_dest);
82    }
83    DCHECK(X86_SINGLEREG(r_dest));
84    r_dest = AllocTemp();
85  }
86
87  LIR *res;
88  if (value == 0) {
89    res = NewLIR2(kX86Xor32RR, r_dest, r_dest);
90  } else {
91    // Note, there is no byte immediate form of a 32 bit immediate move.
92    res = NewLIR2(kX86Mov32RI, r_dest, value);
93  }
94
95  if (X86_FPREG(r_dest_save)) {
96    NewLIR2(kX86MovdxrRR, r_dest_save, r_dest);
97    FreeTemp(r_dest);
98  }
99
100  return res;
101}
102
103LIR* X86Mir2Lir::OpUnconditionalBranch(LIR* target) {
104  LIR* res = NewLIR1(kX86Jmp8, 0 /* offset to be patched during assembly*/);
105  res->target = target;
106  return res;
107}
108
109LIR* X86Mir2Lir::OpCondBranch(ConditionCode cc, LIR* target) {
110  LIR* branch = NewLIR2(kX86Jcc8, 0 /* offset to be patched */,
111                        X86ConditionEncoding(cc));
112  branch->target = target;
113  return branch;
114}
115
116LIR* X86Mir2Lir::OpReg(OpKind op, int r_dest_src) {
117  X86OpCode opcode = kX86Bkpt;
118  switch (op) {
119    case kOpNeg: opcode = kX86Neg32R; break;
120    case kOpNot: opcode = kX86Not32R; break;
121    case kOpRev: opcode = kX86Bswap32R; break;
122    case kOpBlx: opcode = kX86CallR; break;
123    default:
124      LOG(FATAL) << "Bad case in OpReg " << op;
125  }
126  return NewLIR1(opcode, r_dest_src);
127}
128
129LIR* X86Mir2Lir::OpRegImm(OpKind op, int r_dest_src1, int value) {
130  X86OpCode opcode = kX86Bkpt;
131  bool byte_imm = IS_SIMM8(value);
132  DCHECK(!X86_FPREG(r_dest_src1));
133  switch (op) {
134    case kOpLsl: opcode = kX86Sal32RI; break;
135    case kOpLsr: opcode = kX86Shr32RI; break;
136    case kOpAsr: opcode = kX86Sar32RI; break;
137    case kOpAdd: opcode = byte_imm ? kX86Add32RI8 : kX86Add32RI; break;
138    case kOpOr:  opcode = byte_imm ? kX86Or32RI8  : kX86Or32RI;  break;
139    case kOpAdc: opcode = byte_imm ? kX86Adc32RI8 : kX86Adc32RI; break;
140    // case kOpSbb: opcode = kX86Sbb32RI; break;
141    case kOpAnd: opcode = byte_imm ? kX86And32RI8 : kX86And32RI; break;
142    case kOpSub: opcode = byte_imm ? kX86Sub32RI8 : kX86Sub32RI; break;
143    case kOpXor: opcode = byte_imm ? kX86Xor32RI8 : kX86Xor32RI; break;
144    case kOpCmp: opcode = byte_imm ? kX86Cmp32RI8 : kX86Cmp32RI; break;
145    case kOpMov:
146      /*
147       * Moving the constant zero into register can be specialized as an xor of the register.
148       * However, that sets eflags while the move does not. For that reason here, always do
149       * the move and if caller is flexible, they should be calling LoadConstantNoClobber instead.
150       */
151      opcode = kX86Mov32RI;
152      break;
153    case kOpMul:
154      opcode = byte_imm ? kX86Imul32RRI8 : kX86Imul32RRI;
155      return NewLIR3(opcode, r_dest_src1, r_dest_src1, value);
156    default:
157      LOG(FATAL) << "Bad case in OpRegImm " << op;
158  }
159  return NewLIR2(opcode, r_dest_src1, value);
160}
161
162LIR* X86Mir2Lir::OpRegReg(OpKind op, int r_dest_src1, int r_src2) {
163    X86OpCode opcode = kX86Nop;
164    bool src2_must_be_cx = false;
165    switch (op) {
166        // X86 unary opcodes
167      case kOpMvn:
168        OpRegCopy(r_dest_src1, r_src2);
169        return OpReg(kOpNot, r_dest_src1);
170      case kOpNeg:
171        OpRegCopy(r_dest_src1, r_src2);
172        return OpReg(kOpNeg, r_dest_src1);
173      case kOpRev:
174        OpRegCopy(r_dest_src1, r_src2);
175        return OpReg(kOpRev, r_dest_src1);
176      case kOpRevsh:
177        OpRegCopy(r_dest_src1, r_src2);
178        OpReg(kOpRev, r_dest_src1);
179        return OpRegImm(kOpAsr, r_dest_src1, 16);
180        // X86 binary opcodes
181      case kOpSub: opcode = kX86Sub32RR; break;
182      case kOpSbc: opcode = kX86Sbb32RR; break;
183      case kOpLsl: opcode = kX86Sal32RC; src2_must_be_cx = true; break;
184      case kOpLsr: opcode = kX86Shr32RC; src2_must_be_cx = true; break;
185      case kOpAsr: opcode = kX86Sar32RC; src2_must_be_cx = true; break;
186      case kOpMov: opcode = kX86Mov32RR; break;
187      case kOpCmp: opcode = kX86Cmp32RR; break;
188      case kOpAdd: opcode = kX86Add32RR; break;
189      case kOpAdc: opcode = kX86Adc32RR; break;
190      case kOpAnd: opcode = kX86And32RR; break;
191      case kOpOr:  opcode = kX86Or32RR; break;
192      case kOpXor: opcode = kX86Xor32RR; break;
193      case kOp2Byte:
194        // Use shifts instead of a byte operand if the source can't be byte accessed.
195        if (r_src2 >= 4) {
196          NewLIR2(kX86Mov32RR, r_dest_src1, r_src2);
197          NewLIR2(kX86Sal32RI, r_dest_src1, 24);
198          return NewLIR2(kX86Sar32RI, r_dest_src1, 24);
199        } else {
200          opcode = kX86Movsx8RR;
201        }
202        break;
203      case kOp2Short: opcode = kX86Movsx16RR; break;
204      case kOp2Char: opcode = kX86Movzx16RR; break;
205      case kOpMul: opcode = kX86Imul32RR; break;
206      default:
207        LOG(FATAL) << "Bad case in OpRegReg " << op;
208        break;
209    }
210    CHECK(!src2_must_be_cx || r_src2 == rCX);
211    return NewLIR2(opcode, r_dest_src1, r_src2);
212}
213
214LIR* X86Mir2Lir::OpMovRegMem(int r_dest, int r_base, int offset, MoveType move_type) {
215  DCHECK(!(X86_FPREG(r_base)));
216
217  X86OpCode opcode = kX86Nop;
218  switch (move_type) {
219    case kMov8GP:
220      CHECK(!X86_FPREG(r_dest));
221      opcode = kX86Mov8RM;
222      break;
223    case kMov16GP:
224      CHECK(!X86_FPREG(r_dest));
225      opcode = kX86Mov16RM;
226      break;
227    case kMov32GP:
228      CHECK(!X86_FPREG(r_dest));
229      opcode = kX86Mov32RM;
230      break;
231    case kMov32FP:
232      CHECK(X86_FPREG(r_dest));
233      opcode = kX86MovssRM;
234      break;
235    case kMov64FP:
236      CHECK(X86_FPREG(r_dest));
237      opcode = kX86MovsdRM;
238      break;
239    case kMovU128FP:
240      CHECK(X86_FPREG(r_dest));
241      opcode = kX86MovupsRM;
242      break;
243    case kMovA128FP:
244      CHECK(X86_FPREG(r_dest));
245      opcode = kX86MovapsRM;
246      break;
247    case kMovLo128FP:
248      CHECK(X86_FPREG(r_dest));
249      opcode = kX86MovlpsRM;
250      break;
251    case kMovHi128FP:
252      CHECK(X86_FPREG(r_dest));
253      opcode = kX86MovhpsRM;
254      break;
255    case kMov64GP:
256    case kMovLo64FP:
257    case kMovHi64FP:
258    default:
259      LOG(FATAL) << "Bad case in OpMovRegMem";
260      break;
261  }
262
263  return NewLIR3(opcode, r_dest, r_base, offset);
264}
265
266LIR* X86Mir2Lir::OpMovMemReg(int r_base, int offset, int r_src, MoveType move_type) {
267  DCHECK(!(X86_FPREG(r_base)));
268
269  X86OpCode opcode = kX86Nop;
270  switch (move_type) {
271    case kMov8GP:
272      CHECK(!X86_FPREG(r_src));
273      opcode = kX86Mov8MR;
274      break;
275    case kMov16GP:
276      CHECK(!X86_FPREG(r_src));
277      opcode = kX86Mov16MR;
278      break;
279    case kMov32GP:
280      CHECK(!X86_FPREG(r_src));
281      opcode = kX86Mov32MR;
282      break;
283    case kMov32FP:
284      CHECK(X86_FPREG(r_src));
285      opcode = kX86MovssMR;
286      break;
287    case kMov64FP:
288      CHECK(X86_FPREG(r_src));
289      opcode = kX86MovsdMR;
290      break;
291    case kMovU128FP:
292      CHECK(X86_FPREG(r_src));
293      opcode = kX86MovupsMR;
294      break;
295    case kMovA128FP:
296      CHECK(X86_FPREG(r_src));
297      opcode = kX86MovapsMR;
298      break;
299    case kMovLo128FP:
300      CHECK(X86_FPREG(r_src));
301      opcode = kX86MovlpsMR;
302      break;
303    case kMovHi128FP:
304      CHECK(X86_FPREG(r_src));
305      opcode = kX86MovhpsMR;
306      break;
307    case kMov64GP:
308    case kMovLo64FP:
309    case kMovHi64FP:
310    default:
311      LOG(FATAL) << "Bad case in OpMovMemReg";
312      break;
313  }
314
315  return NewLIR3(opcode, r_base, offset, r_src);
316}
317
318LIR* X86Mir2Lir::OpCondRegReg(OpKind op, ConditionCode cc, int r_dest, int r_src) {
319  // The only conditional reg to reg operation supported is Cmov
320  DCHECK_EQ(op, kOpCmov);
321  return NewLIR3(kX86Cmov32RRC, r_dest, r_src, X86ConditionEncoding(cc));
322}
323
324LIR* X86Mir2Lir::OpRegMem(OpKind op, int r_dest, int rBase,
325              int offset) {
326  X86OpCode opcode = kX86Nop;
327  switch (op) {
328      // X86 binary opcodes
329    case kOpSub: opcode = kX86Sub32RM; break;
330    case kOpMov: opcode = kX86Mov32RM; break;
331    case kOpCmp: opcode = kX86Cmp32RM; break;
332    case kOpAdd: opcode = kX86Add32RM; break;
333    case kOpAnd: opcode = kX86And32RM; break;
334    case kOpOr:  opcode = kX86Or32RM; break;
335    case kOpXor: opcode = kX86Xor32RM; break;
336    case kOp2Byte: opcode = kX86Movsx8RM; break;
337    case kOp2Short: opcode = kX86Movsx16RM; break;
338    case kOp2Char: opcode = kX86Movzx16RM; break;
339    case kOpMul:
340    default:
341      LOG(FATAL) << "Bad case in OpRegMem " << op;
342      break;
343  }
344  LIR *l = NewLIR3(opcode, r_dest, rBase, offset);
345  if (rBase == rX86_SP) {
346    AnnotateDalvikRegAccess(l, offset >> 2, true /* is_load */, false /* is_64bit */);
347  }
348  return l;
349}
350
351LIR* X86Mir2Lir::OpMemReg(OpKind op, RegLocation rl_dest, int r_value) {
352  DCHECK_NE(rl_dest.location, kLocPhysReg);
353  int displacement = SRegOffset(rl_dest.s_reg_low);
354  X86OpCode opcode = kX86Nop;
355  switch (op) {
356    case kOpSub: opcode = kX86Sub32MR; break;
357    case kOpMov: opcode = kX86Mov32MR; break;
358    case kOpCmp: opcode = kX86Cmp32MR; break;
359    case kOpAdd: opcode = kX86Add32MR; break;
360    case kOpAnd: opcode = kX86And32MR; break;
361    case kOpOr:  opcode = kX86Or32MR; break;
362    case kOpXor: opcode = kX86Xor32MR; break;
363    case kOpLsl: opcode = kX86Sal32MC; break;
364    case kOpLsr: opcode = kX86Shr32MC; break;
365    case kOpAsr: opcode = kX86Sar32MC; break;
366    default:
367      LOG(FATAL) << "Bad case in OpMemReg " << op;
368      break;
369  }
370  LIR *l = NewLIR3(opcode, rX86_SP, displacement, r_value);
371  AnnotateDalvikRegAccess(l, displacement >> 2, false /* is_load */, false /* is_64bit */);
372  return l;
373}
374
375LIR* X86Mir2Lir::OpRegMem(OpKind op, int r_dest, RegLocation rl_value) {
376  DCHECK_NE(rl_value.location, kLocPhysReg);
377  int displacement = SRegOffset(rl_value.s_reg_low);
378  X86OpCode opcode = kX86Nop;
379  switch (op) {
380    case kOpSub: opcode = kX86Sub32RM; break;
381    case kOpMov: opcode = kX86Mov32RM; break;
382    case kOpCmp: opcode = kX86Cmp32RM; break;
383    case kOpAdd: opcode = kX86Add32RM; break;
384    case kOpAnd: opcode = kX86And32RM; break;
385    case kOpOr:  opcode = kX86Or32RM; break;
386    case kOpXor: opcode = kX86Xor32RM; break;
387    case kOpMul: opcode = kX86Imul32RM; break;
388    default:
389      LOG(FATAL) << "Bad case in OpRegMem " << op;
390      break;
391  }
392  LIR *l = NewLIR3(opcode, r_dest, rX86_SP, displacement);
393  AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, false /* is_64bit */);
394  return l;
395}
396
397LIR* X86Mir2Lir::OpRegRegReg(OpKind op, int r_dest, int r_src1,
398                 int r_src2) {
399  if (r_dest != r_src1 && r_dest != r_src2) {
400    if (op == kOpAdd) {  // lea special case, except can't encode rbp as base
401      if (r_src1 == r_src2) {
402        OpRegCopy(r_dest, r_src1);
403        return OpRegImm(kOpLsl, r_dest, 1);
404      } else if (r_src1 != rBP) {
405        return NewLIR5(kX86Lea32RA, r_dest, r_src1 /* base */,
406                       r_src2 /* index */, 0 /* scale */, 0 /* disp */);
407      } else {
408        return NewLIR5(kX86Lea32RA, r_dest, r_src2 /* base */,
409                       r_src1 /* index */, 0 /* scale */, 0 /* disp */);
410      }
411    } else {
412      OpRegCopy(r_dest, r_src1);
413      return OpRegReg(op, r_dest, r_src2);
414    }
415  } else if (r_dest == r_src1) {
416    return OpRegReg(op, r_dest, r_src2);
417  } else {  // r_dest == r_src2
418    switch (op) {
419      case kOpSub:  // non-commutative
420        OpReg(kOpNeg, r_dest);
421        op = kOpAdd;
422        break;
423      case kOpSbc:
424      case kOpLsl: case kOpLsr: case kOpAsr: case kOpRor: {
425        int t_reg = AllocTemp();
426        OpRegCopy(t_reg, r_src1);
427        OpRegReg(op, t_reg, r_src2);
428        LIR* res = OpRegCopy(r_dest, t_reg);
429        FreeTemp(t_reg);
430        return res;
431      }
432      case kOpAdd:  // commutative
433      case kOpOr:
434      case kOpAdc:
435      case kOpAnd:
436      case kOpXor:
437        break;
438      default:
439        LOG(FATAL) << "Bad case in OpRegRegReg " << op;
440    }
441    return OpRegReg(op, r_dest, r_src1);
442  }
443}
444
445LIR* X86Mir2Lir::OpRegRegImm(OpKind op, int r_dest, int r_src,
446                 int value) {
447  if (op == kOpMul) {
448    X86OpCode opcode = IS_SIMM8(value) ? kX86Imul32RRI8 : kX86Imul32RRI;
449    return NewLIR3(opcode, r_dest, r_src, value);
450  } else if (op == kOpAnd) {
451    if (value == 0xFF && r_src < 4) {
452      return NewLIR2(kX86Movzx8RR, r_dest, r_src);
453    } else if (value == 0xFFFF) {
454      return NewLIR2(kX86Movzx16RR, r_dest, r_src);
455    }
456  }
457  if (r_dest != r_src) {
458    if (false && op == kOpLsl && value >= 0 && value <= 3) {  // lea shift special case
459      // TODO: fix bug in LEA encoding when disp == 0
460      return NewLIR5(kX86Lea32RA, r_dest,  r5sib_no_base /* base */,
461                     r_src /* index */, value /* scale */, 0 /* disp */);
462    } else if (op == kOpAdd) {  // lea add special case
463      return NewLIR5(kX86Lea32RA, r_dest, r_src /* base */,
464                     r4sib_no_index /* index */, 0 /* scale */, value /* disp */);
465    }
466    OpRegCopy(r_dest, r_src);
467  }
468  return OpRegImm(op, r_dest, value);
469}
470
471LIR* X86Mir2Lir::OpThreadMem(OpKind op, ThreadOffset thread_offset) {
472  X86OpCode opcode = kX86Bkpt;
473  switch (op) {
474    case kOpBlx: opcode = kX86CallT;  break;
475    case kOpBx: opcode = kX86JmpT;  break;
476    default:
477      LOG(FATAL) << "Bad opcode: " << op;
478      break;
479  }
480  return NewLIR1(opcode, thread_offset.Int32Value());
481}
482
483LIR* X86Mir2Lir::OpMem(OpKind op, int rBase, int disp) {
484  X86OpCode opcode = kX86Bkpt;
485  switch (op) {
486    case kOpBlx: opcode = kX86CallM;  break;
487    default:
488      LOG(FATAL) << "Bad opcode: " << op;
489      break;
490  }
491  return NewLIR2(opcode, rBase, disp);
492}
493
494LIR* X86Mir2Lir::LoadConstantWide(int r_dest_lo, int r_dest_hi, int64_t value) {
495    int32_t val_lo = Low32Bits(value);
496    int32_t val_hi = High32Bits(value);
497    LIR *res;
498    if (X86_FPREG(r_dest_lo)) {
499      DCHECK(X86_FPREG(r_dest_hi));  // ignore r_dest_hi
500      DCHECK_EQ(r_dest_lo, r_dest_hi);
501      if (value == 0) {
502        return NewLIR2(kX86XorpsRR, r_dest_lo, r_dest_lo);
503      } else if (base_of_code_ != nullptr) {
504        // We will load the value from the literal area.
505        LIR* data_target = ScanLiteralPoolWide(literal_list_, val_lo, val_hi);
506        if (data_target == NULL) {
507          data_target = AddWideData(&literal_list_, val_lo, val_hi);
508        }
509
510        // Address the start of the method
511        RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
512        rl_method = LoadValue(rl_method, kCoreReg);
513
514        // Load the proper value from the literal area.
515        // We don't know the proper offset for the value, so pick one that will force
516        // 4 byte offset.  We will fix this up in the assembler later to have the right
517        // value.
518        res = LoadBaseDisp(rl_method.reg.GetReg(), 256 /* bogus */, r_dest_lo, kDouble, INVALID_SREG);
519        res->target = data_target;
520        res->flags.fixup = kFixupLoad;
521        SetMemRefType(res, true, kLiteral);
522        store_method_addr_used_ = true;
523      } else {
524        if (val_lo == 0) {
525          res = NewLIR2(kX86XorpsRR, r_dest_lo, r_dest_lo);
526        } else {
527          res = LoadConstantNoClobber(r_dest_lo, val_lo);
528        }
529        if (val_hi != 0) {
530          r_dest_hi = AllocTempDouble();
531          LoadConstantNoClobber(r_dest_hi, val_hi);
532          NewLIR2(kX86PunpckldqRR, r_dest_lo, r_dest_hi);
533          FreeTemp(r_dest_hi);
534        }
535      }
536    } else {
537      res = LoadConstantNoClobber(r_dest_lo, val_lo);
538      LoadConstantNoClobber(r_dest_hi, val_hi);
539    }
540    return res;
541}
542
543LIR* X86Mir2Lir::LoadBaseIndexedDisp(int rBase, int r_index, int scale,
544                                     int displacement, int r_dest, int r_dest_hi, OpSize size,
545                                     int s_reg) {
546  LIR *load = NULL;
547  LIR *load2 = NULL;
548  bool is_array = r_index != INVALID_REG;
549  bool pair = false;
550  bool is64bit = false;
551  X86OpCode opcode = kX86Nop;
552  switch (size) {
553    case kLong:
554    case kDouble:
555      is64bit = true;
556      if (X86_FPREG(r_dest)) {
557        opcode = is_array ? kX86MovsdRA : kX86MovsdRM;
558      } else {
559        pair = true;
560        opcode = is_array ? kX86Mov32RA  : kX86Mov32RM;
561      }
562      // TODO: double store is to unaligned address
563      DCHECK_EQ((displacement & 0x3), 0);
564      break;
565    case kWord:
566    case kSingle:
567      opcode = is_array ? kX86Mov32RA : kX86Mov32RM;
568      if (X86_FPREG(r_dest)) {
569        opcode = is_array ? kX86MovssRA : kX86MovssRM;
570        DCHECK(X86_SINGLEREG(r_dest));
571      }
572      DCHECK_EQ((displacement & 0x3), 0);
573      break;
574    case kUnsignedHalf:
575      opcode = is_array ? kX86Movzx16RA : kX86Movzx16RM;
576      DCHECK_EQ((displacement & 0x1), 0);
577      break;
578    case kSignedHalf:
579      opcode = is_array ? kX86Movsx16RA : kX86Movsx16RM;
580      DCHECK_EQ((displacement & 0x1), 0);
581      break;
582    case kUnsignedByte:
583      opcode = is_array ? kX86Movzx8RA : kX86Movzx8RM;
584      break;
585    case kSignedByte:
586      opcode = is_array ? kX86Movsx8RA : kX86Movsx8RM;
587      break;
588    default:
589      LOG(FATAL) << "Bad case in LoadBaseIndexedDispBody";
590  }
591
592  if (!is_array) {
593    if (!pair) {
594      load = NewLIR3(opcode, r_dest, rBase, displacement + LOWORD_OFFSET);
595    } else {
596      if (rBase == r_dest) {
597        load2 = NewLIR3(opcode, r_dest_hi, rBase,
598                        displacement + HIWORD_OFFSET);
599        load = NewLIR3(opcode, r_dest, rBase, displacement + LOWORD_OFFSET);
600      } else {
601        load = NewLIR3(opcode, r_dest, rBase, displacement + LOWORD_OFFSET);
602        load2 = NewLIR3(opcode, r_dest_hi, rBase,
603                        displacement + HIWORD_OFFSET);
604      }
605    }
606    if (rBase == rX86_SP) {
607      AnnotateDalvikRegAccess(load, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
608                              true /* is_load */, is64bit);
609      if (pair) {
610        AnnotateDalvikRegAccess(load2, (displacement + HIWORD_OFFSET) >> 2,
611                                true /* is_load */, is64bit);
612      }
613    }
614  } else {
615    if (!pair) {
616      load = NewLIR5(opcode, r_dest, rBase, r_index, scale,
617                     displacement + LOWORD_OFFSET);
618    } else {
619      if (rBase == r_dest) {
620        if (r_dest_hi == r_index) {
621          // We can't use either register for the first load.
622          int temp = AllocTemp();
623          load2 = NewLIR5(opcode, temp, rBase, r_index, scale,
624                          displacement + HIWORD_OFFSET);
625          load = NewLIR5(opcode, r_dest, rBase, r_index, scale,
626                         displacement + LOWORD_OFFSET);
627          OpRegCopy(r_dest_hi, temp);
628          FreeTemp(temp);
629        } else {
630          load2 = NewLIR5(opcode, r_dest_hi, rBase, r_index, scale,
631                          displacement + HIWORD_OFFSET);
632          load = NewLIR5(opcode, r_dest, rBase, r_index, scale,
633                         displacement + LOWORD_OFFSET);
634        }
635      } else {
636        if (r_dest == r_index) {
637          // We can't use either register for the first load.
638          int temp = AllocTemp();
639          load = NewLIR5(opcode, temp, rBase, r_index, scale,
640                         displacement + LOWORD_OFFSET);
641          load2 = NewLIR5(opcode, r_dest_hi, rBase, r_index, scale,
642                          displacement + HIWORD_OFFSET);
643          OpRegCopy(r_dest, temp);
644          FreeTemp(temp);
645        } else {
646          load = NewLIR5(opcode, r_dest, rBase, r_index, scale,
647                         displacement + LOWORD_OFFSET);
648          load2 = NewLIR5(opcode, r_dest_hi, rBase, r_index, scale,
649                          displacement + HIWORD_OFFSET);
650        }
651      }
652    }
653  }
654
655  return load;
656}
657
658/* Load value from base + scaled index. */
659LIR* X86Mir2Lir::LoadBaseIndexed(int rBase,
660                     int r_index, int r_dest, int scale, OpSize size) {
661  return LoadBaseIndexedDisp(rBase, r_index, scale, 0,
662                             r_dest, INVALID_REG, size, INVALID_SREG);
663}
664
665LIR* X86Mir2Lir::LoadBaseDisp(int rBase, int displacement,
666                  int r_dest, OpSize size, int s_reg) {
667  return LoadBaseIndexedDisp(rBase, INVALID_REG, 0, displacement,
668                             r_dest, INVALID_REG, size, s_reg);
669}
670
671LIR* X86Mir2Lir::LoadBaseDispWide(int rBase, int displacement,
672                      int r_dest_lo, int r_dest_hi, int s_reg) {
673  return LoadBaseIndexedDisp(rBase, INVALID_REG, 0, displacement,
674                             r_dest_lo, r_dest_hi, kLong, s_reg);
675}
676
677LIR* X86Mir2Lir::StoreBaseIndexedDisp(int rBase, int r_index, int scale,
678                                      int displacement, int r_src, int r_src_hi, OpSize size,
679                                      int s_reg) {
680  LIR *store = NULL;
681  LIR *store2 = NULL;
682  bool is_array = r_index != INVALID_REG;
683  bool pair = false;
684  bool is64bit = false;
685  X86OpCode opcode = kX86Nop;
686  switch (size) {
687    case kLong:
688    case kDouble:
689      is64bit = true;
690      if (X86_FPREG(r_src)) {
691        opcode = is_array ? kX86MovsdAR : kX86MovsdMR;
692      } else {
693        pair = true;
694        opcode = is_array ? kX86Mov32AR  : kX86Mov32MR;
695      }
696      // TODO: double store is to unaligned address
697      DCHECK_EQ((displacement & 0x3), 0);
698      break;
699    case kWord:
700    case kSingle:
701      opcode = is_array ? kX86Mov32AR : kX86Mov32MR;
702      if (X86_FPREG(r_src)) {
703        opcode = is_array ? kX86MovssAR : kX86MovssMR;
704        DCHECK(X86_SINGLEREG(r_src));
705      }
706      DCHECK_EQ((displacement & 0x3), 0);
707      break;
708    case kUnsignedHalf:
709    case kSignedHalf:
710      opcode = is_array ? kX86Mov16AR : kX86Mov16MR;
711      DCHECK_EQ((displacement & 0x1), 0);
712      break;
713    case kUnsignedByte:
714    case kSignedByte:
715      opcode = is_array ? kX86Mov8AR : kX86Mov8MR;
716      break;
717    default:
718      LOG(FATAL) << "Bad case in StoreBaseIndexedDispBody";
719  }
720
721  if (!is_array) {
722    if (!pair) {
723      store = NewLIR3(opcode, rBase, displacement + LOWORD_OFFSET, r_src);
724    } else {
725      store = NewLIR3(opcode, rBase, displacement + LOWORD_OFFSET, r_src);
726      store2 = NewLIR3(opcode, rBase, displacement + HIWORD_OFFSET, r_src_hi);
727    }
728    if (rBase == rX86_SP) {
729      AnnotateDalvikRegAccess(store, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
730                              false /* is_load */, is64bit);
731      if (pair) {
732        AnnotateDalvikRegAccess(store2, (displacement + HIWORD_OFFSET) >> 2,
733                                false /* is_load */, is64bit);
734      }
735    }
736  } else {
737    if (!pair) {
738      store = NewLIR5(opcode, rBase, r_index, scale,
739                      displacement + LOWORD_OFFSET, r_src);
740    } else {
741      store = NewLIR5(opcode, rBase, r_index, scale,
742                      displacement + LOWORD_OFFSET, r_src);
743      store2 = NewLIR5(opcode, rBase, r_index, scale,
744                       displacement + HIWORD_OFFSET, r_src_hi);
745    }
746  }
747
748  return store;
749}
750
751/* store value base base + scaled index. */
752LIR* X86Mir2Lir::StoreBaseIndexed(int rBase, int r_index, int r_src,
753                      int scale, OpSize size) {
754  return StoreBaseIndexedDisp(rBase, r_index, scale, 0,
755                              r_src, INVALID_REG, size, INVALID_SREG);
756}
757
758LIR* X86Mir2Lir::StoreBaseDisp(int rBase, int displacement,
759                               int r_src, OpSize size) {
760    return StoreBaseIndexedDisp(rBase, INVALID_REG, 0,
761                                displacement, r_src, INVALID_REG, size,
762                                INVALID_SREG);
763}
764
765LIR* X86Mir2Lir::StoreBaseDispWide(int rBase, int displacement,
766                                   int r_src_lo, int r_src_hi) {
767  return StoreBaseIndexedDisp(rBase, INVALID_REG, 0, displacement,
768                              r_src_lo, r_src_hi, kLong, INVALID_SREG);
769}
770
771/*
772 * Copy a long value in Core registers to an XMM register
773 *
774 */
775void X86Mir2Lir::OpVectorRegCopyWide(uint8_t fp_reg, uint8_t low_reg, uint8_t high_reg) {
776  NewLIR2(kX86MovdxrRR, fp_reg, low_reg);
777  int tmp_reg = AllocTempDouble();
778  NewLIR2(kX86MovdxrRR, tmp_reg, high_reg);
779  NewLIR2(kX86PunpckldqRR, fp_reg, tmp_reg);
780  FreeTemp(tmp_reg);
781}
782
783LIR* X86Mir2Lir::OpCmpMemImmBranch(ConditionCode cond, int temp_reg, int base_reg,
784                                   int offset, int check_value, LIR* target) {
785    NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base_reg, offset,
786            check_value);
787    LIR* branch = OpCondBranch(cond, target);
788    return branch;
789}
790
791void X86Mir2Lir::AnalyzeMIR() {
792  // Assume we don't need a pointer to the base of the code.
793  cu_->NewTimingSplit("X86 MIR Analysis");
794  store_method_addr_ = false;
795
796  // Walk the MIR looking for interesting items.
797  PreOrderDfsIterator iter(mir_graph_);
798  BasicBlock* curr_bb = iter.Next();
799  while (curr_bb != NULL) {
800    AnalyzeBB(curr_bb);
801    curr_bb = iter.Next();
802  }
803
804  // Did we need a pointer to the method code?
805  if (store_method_addr_) {
806    base_of_code_ = mir_graph_->GetNewCompilerTemp(kCompilerTempVR, false);
807  } else {
808    base_of_code_ = nullptr;
809  }
810}
811
812void X86Mir2Lir::AnalyzeBB(BasicBlock * bb) {
813  if (bb->block_type == kDead) {
814    // Ignore dead blocks
815    return;
816  }
817
818  for (MIR *mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
819    int opcode = mir->dalvikInsn.opcode;
820    if (opcode >= kMirOpFirst) {
821      AnalyzeExtendedMIR(opcode, bb, mir);
822    } else {
823      AnalyzeMIR(opcode, bb, mir);
824    }
825  }
826}
827
828
829void X86Mir2Lir::AnalyzeExtendedMIR(int opcode, BasicBlock * bb, MIR *mir) {
830  switch (opcode) {
831    // Instructions referencing doubles.
832    case kMirOpFusedCmplDouble:
833    case kMirOpFusedCmpgDouble:
834      AnalyzeFPInstruction(opcode, bb, mir);
835      break;
836    default:
837      // Ignore the rest.
838      break;
839  }
840}
841
842void X86Mir2Lir::AnalyzeMIR(int opcode, BasicBlock * bb, MIR *mir) {
843  // Looking for
844  // - Do we need a pointer to the code (used for packed switches and double lits)?
845
846  switch (opcode) {
847    // Instructions referencing doubles.
848    case Instruction::CMPL_DOUBLE:
849    case Instruction::CMPG_DOUBLE:
850    case Instruction::NEG_DOUBLE:
851    case Instruction::ADD_DOUBLE:
852    case Instruction::SUB_DOUBLE:
853    case Instruction::MUL_DOUBLE:
854    case Instruction::DIV_DOUBLE:
855    case Instruction::REM_DOUBLE:
856    case Instruction::ADD_DOUBLE_2ADDR:
857    case Instruction::SUB_DOUBLE_2ADDR:
858    case Instruction::MUL_DOUBLE_2ADDR:
859    case Instruction::DIV_DOUBLE_2ADDR:
860    case Instruction::REM_DOUBLE_2ADDR:
861      AnalyzeFPInstruction(opcode, bb, mir);
862      break;
863
864    // Packed switches and array fills need a pointer to the base of the method.
865    case Instruction::FILL_ARRAY_DATA:
866    case Instruction::PACKED_SWITCH:
867      store_method_addr_ = true;
868      break;
869    default:
870      // Other instructions are not interesting yet.
871      break;
872  }
873}
874
875void X86Mir2Lir::AnalyzeFPInstruction(int opcode, BasicBlock * bb, MIR *mir) {
876  // Look at all the uses, and see if they are double constants.
877  uint64_t attrs = mir_graph_->oat_data_flow_attributes_[opcode];
878  int next_sreg = 0;
879  if (attrs & DF_UA) {
880    if (attrs & DF_A_WIDE) {
881      AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg));
882      next_sreg += 2;
883    } else {
884      next_sreg++;
885    }
886  }
887  if (attrs & DF_UB) {
888    if (attrs & DF_B_WIDE) {
889      AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg));
890      next_sreg += 2;
891    } else {
892      next_sreg++;
893    }
894  }
895  if (attrs & DF_UC) {
896    if (attrs & DF_C_WIDE) {
897      AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg));
898    }
899  }
900}
901
902void X86Mir2Lir::AnalyzeDoubleUse(RegLocation use) {
903  // If this is a double literal, we will want it in the literal pool.
904  if (use.is_const) {
905    store_method_addr_ = true;
906  }
907}
908
909}  // namespace art
910