utility_x86.cc revision d65c51a556e6649db4e18bd083c8fec37607a442
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "codegen_x86.h"
18#include "dex/quick/mir_to_lir-inl.h"
19#include "dex/dataflow_iterator-inl.h"
20#include "x86_lir.h"
21
22namespace art {
23
24/* This file contains codegen for the X86 ISA */
25
26LIR* X86Mir2Lir::OpFpRegCopy(RegStorage r_dest, RegStorage r_src) {
27  int opcode;
28  /* must be both DOUBLE or both not DOUBLE */
29  DCHECK(r_dest.IsFloat() || r_src.IsFloat());
30  DCHECK_EQ(r_dest.IsDouble(), r_src.IsDouble());
31  if (r_dest.IsDouble()) {
32    opcode = kX86MovsdRR;
33  } else {
34    if (r_dest.IsSingle()) {
35      if (r_src.IsSingle()) {
36        opcode = kX86MovssRR;
37      } else {  // Fpr <- Gpr
38        opcode = kX86MovdxrRR;
39      }
40    } else {  // Gpr <- Fpr
41      DCHECK(r_src.IsSingle()) << "Raw: 0x" << std::hex << r_src.GetRawBits();
42      opcode = kX86MovdrxRR;
43    }
44  }
45  DCHECK_NE((EncodingMap[opcode].flags & IS_BINARY_OP), 0ULL);
46  LIR* res = RawLIR(current_dalvik_offset_, opcode, r_dest.GetReg(), r_src.GetReg());
47  if (r_dest == r_src) {
48    res->flags.is_nop = true;
49  }
50  return res;
51}
52
53bool X86Mir2Lir::InexpensiveConstantInt(int32_t value) {
54  return true;
55}
56
57bool X86Mir2Lir::InexpensiveConstantFloat(int32_t value) {
58  return false;
59}
60
61bool X86Mir2Lir::InexpensiveConstantLong(int64_t value) {
62  return true;
63}
64
65bool X86Mir2Lir::InexpensiveConstantDouble(int64_t value) {
66  return value == 0;
67}
68
69/*
70 * Load a immediate using a shortcut if possible; otherwise
71 * grab from the per-translation literal pool.  If target is
72 * a high register, build constant into a low register and copy.
73 *
74 * No additional register clobbering operation performed. Use this version when
75 * 1) r_dest is freshly returned from AllocTemp or
76 * 2) The codegen is under fixed register usage
77 */
78LIR* X86Mir2Lir::LoadConstantNoClobber(RegStorage r_dest, int value) {
79  RegStorage r_dest_save = r_dest;
80  if (r_dest.IsFloat()) {
81    if (value == 0) {
82      return NewLIR2(kX86XorpsRR, r_dest.GetReg(), r_dest.GetReg());
83    }
84    r_dest = AllocTemp();
85  }
86
87  LIR *res;
88  if (value == 0) {
89    res = NewLIR2(kX86Xor32RR, r_dest.GetReg(), r_dest.GetReg());
90  } else {
91    // Note, there is no byte immediate form of a 32 bit immediate move.
92    res = NewLIR2(kX86Mov32RI, r_dest.GetReg(), value);
93  }
94
95  if (r_dest_save.IsFloat()) {
96    NewLIR2(kX86MovdxrRR, r_dest_save.GetReg(), r_dest.GetReg());
97    FreeTemp(r_dest);
98  }
99
100  return res;
101}
102
103LIR* X86Mir2Lir::OpUnconditionalBranch(LIR* target) {
104  LIR* res = NewLIR1(kX86Jmp8, 0 /* offset to be patched during assembly*/);
105  res->target = target;
106  return res;
107}
108
109LIR* X86Mir2Lir::OpCondBranch(ConditionCode cc, LIR* target) {
110  LIR* branch = NewLIR2(kX86Jcc8, 0 /* offset to be patched */,
111                        X86ConditionEncoding(cc));
112  branch->target = target;
113  return branch;
114}
115
116LIR* X86Mir2Lir::OpReg(OpKind op, RegStorage r_dest_src) {
117  X86OpCode opcode = kX86Bkpt;
118  switch (op) {
119    case kOpNeg: opcode = kX86Neg32R; break;
120    case kOpNot: opcode = kX86Not32R; break;
121    case kOpRev: opcode = kX86Bswap32R; break;
122    case kOpBlx: opcode = kX86CallR; break;
123    default:
124      LOG(FATAL) << "Bad case in OpReg " << op;
125  }
126  return NewLIR1(opcode, r_dest_src.GetReg());
127}
128
129LIR* X86Mir2Lir::OpRegImm(OpKind op, RegStorage r_dest_src1, int value) {
130  X86OpCode opcode = kX86Bkpt;
131  bool byte_imm = IS_SIMM8(value);
132  DCHECK(!r_dest_src1.IsFloat());
133  if (r_dest_src1.Is64Bit()) {
134    switch (op) {
135      case kOpAdd: opcode = byte_imm ? kX86Add64RI8 : kX86Add64RI; break;
136      case kOpSub: opcode = byte_imm ? kX86Sub64RI8 : kX86Sub64RI; break;
137      default:
138        LOG(FATAL) << "Bad case in OpRegImm (64-bit) " << op;
139    }
140  } else {
141    switch (op) {
142      case kOpLsl: opcode = kX86Sal32RI; break;
143      case kOpLsr: opcode = kX86Shr32RI; break;
144      case kOpAsr: opcode = kX86Sar32RI; break;
145      case kOpAdd: opcode = byte_imm ? kX86Add32RI8 : kX86Add32RI; break;
146      case kOpOr:  opcode = byte_imm ? kX86Or32RI8  : kX86Or32RI;  break;
147      case kOpAdc: opcode = byte_imm ? kX86Adc32RI8 : kX86Adc32RI; break;
148      // case kOpSbb: opcode = kX86Sbb32RI; break;
149      case kOpAnd: opcode = byte_imm ? kX86And32RI8 : kX86And32RI; break;
150      case kOpSub: opcode = byte_imm ? kX86Sub32RI8 : kX86Sub32RI; break;
151      case kOpXor: opcode = byte_imm ? kX86Xor32RI8 : kX86Xor32RI; break;
152      case kOpCmp: opcode = byte_imm ? kX86Cmp32RI8 : kX86Cmp32RI; break;
153      case kOpMov:
154        /*
155         * Moving the constant zero into register can be specialized as an xor of the register.
156         * However, that sets eflags while the move does not. For that reason here, always do
157         * the move and if caller is flexible, they should be calling LoadConstantNoClobber instead.
158         */
159        opcode = kX86Mov32RI;
160        break;
161      case kOpMul:
162        opcode = byte_imm ? kX86Imul32RRI8 : kX86Imul32RRI;
163        return NewLIR3(opcode, r_dest_src1.GetReg(), r_dest_src1.GetReg(), value);
164      default:
165        LOG(FATAL) << "Bad case in OpRegImm " << op;
166    }
167  }
168  CHECK(!r_dest_src1.Is64Bit() || X86Mir2Lir::EncodingMap[opcode].kind == kReg64Imm) << "OpRegImm(" << op << ")";
169  return NewLIR2(opcode, r_dest_src1.GetReg(), value);
170}
171
172LIR* X86Mir2Lir::OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) {
173    X86OpCode opcode = kX86Nop;
174    bool src2_must_be_cx = false;
175    switch (op) {
176        // X86 unary opcodes
177      case kOpMvn:
178        OpRegCopy(r_dest_src1, r_src2);
179        return OpReg(kOpNot, r_dest_src1);
180      case kOpNeg:
181        OpRegCopy(r_dest_src1, r_src2);
182        return OpReg(kOpNeg, r_dest_src1);
183      case kOpRev:
184        OpRegCopy(r_dest_src1, r_src2);
185        return OpReg(kOpRev, r_dest_src1);
186      case kOpRevsh:
187        OpRegCopy(r_dest_src1, r_src2);
188        OpReg(kOpRev, r_dest_src1);
189        return OpRegImm(kOpAsr, r_dest_src1, 16);
190        // X86 binary opcodes
191      case kOpSub: opcode = kX86Sub32RR; break;
192      case kOpSbc: opcode = kX86Sbb32RR; break;
193      case kOpLsl: opcode = kX86Sal32RC; src2_must_be_cx = true; break;
194      case kOpLsr: opcode = kX86Shr32RC; src2_must_be_cx = true; break;
195      case kOpAsr: opcode = kX86Sar32RC; src2_must_be_cx = true; break;
196      case kOpMov: opcode = kX86Mov32RR; break;
197      case kOpCmp: opcode = kX86Cmp32RR; break;
198      case kOpAdd: opcode = kX86Add32RR; break;
199      case kOpAdc: opcode = kX86Adc32RR; break;
200      case kOpAnd: opcode = kX86And32RR; break;
201      case kOpOr:  opcode = kX86Or32RR; break;
202      case kOpXor: opcode = kX86Xor32RR; break;
203      case kOp2Byte:
204        // TODO: there are several instances of this check.  A utility function perhaps?
205        // TODO: Similar to Arm's reg < 8 check.  Perhaps add attribute checks to RegStorage?
206        // Use shifts instead of a byte operand if the source can't be byte accessed.
207        if (r_src2.GetRegNum() >= rs_rX86_SP.GetRegNum()) {
208          NewLIR2(kX86Mov32RR, r_dest_src1.GetReg(), r_src2.GetReg());
209          NewLIR2(kX86Sal32RI, r_dest_src1.GetReg(), 24);
210          return NewLIR2(kX86Sar32RI, r_dest_src1.GetReg(), 24);
211        } else {
212          opcode = kX86Movsx8RR;
213        }
214        break;
215      case kOp2Short: opcode = kX86Movsx16RR; break;
216      case kOp2Char: opcode = kX86Movzx16RR; break;
217      case kOpMul: opcode = kX86Imul32RR; break;
218      default:
219        LOG(FATAL) << "Bad case in OpRegReg " << op;
220        break;
221    }
222    CHECK(!src2_must_be_cx || r_src2.GetReg() == rs_rCX.GetReg());
223    return NewLIR2(opcode, r_dest_src1.GetReg(), r_src2.GetReg());
224}
225
226LIR* X86Mir2Lir::OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset, MoveType move_type) {
227  DCHECK(!r_base.IsFloat());
228  X86OpCode opcode = kX86Nop;
229  int dest = r_dest.IsPair() ? r_dest.GetLowReg() : r_dest.GetReg();
230  switch (move_type) {
231    case kMov8GP:
232      CHECK(!r_dest.IsFloat());
233      opcode = kX86Mov8RM;
234      break;
235    case kMov16GP:
236      CHECK(!r_dest.IsFloat());
237      opcode = kX86Mov16RM;
238      break;
239    case kMov32GP:
240      CHECK(!r_dest.IsFloat());
241      opcode = kX86Mov32RM;
242      break;
243    case kMov32FP:
244      CHECK(r_dest.IsFloat());
245      opcode = kX86MovssRM;
246      break;
247    case kMov64FP:
248      CHECK(r_dest.IsFloat());
249      opcode = kX86MovsdRM;
250      break;
251    case kMovU128FP:
252      CHECK(r_dest.IsFloat());
253      opcode = kX86MovupsRM;
254      break;
255    case kMovA128FP:
256      CHECK(r_dest.IsFloat());
257      opcode = kX86MovapsRM;
258      break;
259    case kMovLo128FP:
260      CHECK(r_dest.IsFloat());
261      opcode = kX86MovlpsRM;
262      break;
263    case kMovHi128FP:
264      CHECK(r_dest.IsFloat());
265      opcode = kX86MovhpsRM;
266      break;
267    case kMov64GP:
268    case kMovLo64FP:
269    case kMovHi64FP:
270    default:
271      LOG(FATAL) << "Bad case in OpMovRegMem";
272      break;
273  }
274
275  return NewLIR3(opcode, dest, r_base.GetReg(), offset);
276}
277
278LIR* X86Mir2Lir::OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src, MoveType move_type) {
279  DCHECK(!r_base.IsFloat());
280  int src = r_src.IsPair() ? r_src.GetLowReg() : r_src.GetReg();
281
282  X86OpCode opcode = kX86Nop;
283  switch (move_type) {
284    case kMov8GP:
285      CHECK(!r_src.IsFloat());
286      opcode = kX86Mov8MR;
287      break;
288    case kMov16GP:
289      CHECK(!r_src.IsFloat());
290      opcode = kX86Mov16MR;
291      break;
292    case kMov32GP:
293      CHECK(!r_src.IsFloat());
294      opcode = kX86Mov32MR;
295      break;
296    case kMov32FP:
297      CHECK(r_src.IsFloat());
298      opcode = kX86MovssMR;
299      break;
300    case kMov64FP:
301      CHECK(r_src.IsFloat());
302      opcode = kX86MovsdMR;
303      break;
304    case kMovU128FP:
305      CHECK(r_src.IsFloat());
306      opcode = kX86MovupsMR;
307      break;
308    case kMovA128FP:
309      CHECK(r_src.IsFloat());
310      opcode = kX86MovapsMR;
311      break;
312    case kMovLo128FP:
313      CHECK(r_src.IsFloat());
314      opcode = kX86MovlpsMR;
315      break;
316    case kMovHi128FP:
317      CHECK(r_src.IsFloat());
318      opcode = kX86MovhpsMR;
319      break;
320    case kMov64GP:
321    case kMovLo64FP:
322    case kMovHi64FP:
323    default:
324      LOG(FATAL) << "Bad case in OpMovMemReg";
325      break;
326  }
327
328  return NewLIR3(opcode, r_base.GetReg(), offset, src);
329}
330
331LIR* X86Mir2Lir::OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) {
332  // The only conditional reg to reg operation supported is Cmov
333  DCHECK_EQ(op, kOpCmov);
334  return NewLIR3(kX86Cmov32RRC, r_dest.GetReg(), r_src.GetReg(), X86ConditionEncoding(cc));
335}
336
337LIR* X86Mir2Lir::OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset) {
338  X86OpCode opcode = kX86Nop;
339  switch (op) {
340      // X86 binary opcodes
341    case kOpSub: opcode = kX86Sub32RM; break;
342    case kOpMov: opcode = kX86Mov32RM; break;
343    case kOpCmp: opcode = kX86Cmp32RM; break;
344    case kOpAdd: opcode = kX86Add32RM; break;
345    case kOpAnd: opcode = kX86And32RM; break;
346    case kOpOr:  opcode = kX86Or32RM; break;
347    case kOpXor: opcode = kX86Xor32RM; break;
348    case kOp2Byte: opcode = kX86Movsx8RM; break;
349    case kOp2Short: opcode = kX86Movsx16RM; break;
350    case kOp2Char: opcode = kX86Movzx16RM; break;
351    case kOpMul:
352    default:
353      LOG(FATAL) << "Bad case in OpRegMem " << op;
354      break;
355  }
356  LIR *l = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), offset);
357  if (r_base == rs_rX86_SP) {
358    AnnotateDalvikRegAccess(l, offset >> 2, true /* is_load */, false /* is_64bit */);
359  }
360  return l;
361}
362
363LIR* X86Mir2Lir::OpMemReg(OpKind op, RegLocation rl_dest, int r_value) {
364  DCHECK_NE(rl_dest.location, kLocPhysReg);
365  int displacement = SRegOffset(rl_dest.s_reg_low);
366  X86OpCode opcode = kX86Nop;
367  switch (op) {
368    case kOpSub: opcode = kX86Sub32MR; break;
369    case kOpMov: opcode = kX86Mov32MR; break;
370    case kOpCmp: opcode = kX86Cmp32MR; break;
371    case kOpAdd: opcode = kX86Add32MR; break;
372    case kOpAnd: opcode = kX86And32MR; break;
373    case kOpOr:  opcode = kX86Or32MR; break;
374    case kOpXor: opcode = kX86Xor32MR; break;
375    case kOpLsl: opcode = kX86Sal32MC; break;
376    case kOpLsr: opcode = kX86Shr32MC; break;
377    case kOpAsr: opcode = kX86Sar32MC; break;
378    default:
379      LOG(FATAL) << "Bad case in OpMemReg " << op;
380      break;
381  }
382  LIR *l = NewLIR3(opcode, rs_rX86_SP.GetReg(), displacement, r_value);
383  AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, false /* is_64bit */);
384  AnnotateDalvikRegAccess(l, displacement >> 2, false /* is_load */, false /* is_64bit */);
385  return l;
386}
387
388LIR* X86Mir2Lir::OpRegMem(OpKind op, RegStorage r_dest, RegLocation rl_value) {
389  DCHECK_NE(rl_value.location, kLocPhysReg);
390  int displacement = SRegOffset(rl_value.s_reg_low);
391  X86OpCode opcode = kX86Nop;
392  switch (op) {
393    case kOpSub: opcode = kX86Sub32RM; break;
394    case kOpMov: opcode = kX86Mov32RM; break;
395    case kOpCmp: opcode = kX86Cmp32RM; break;
396    case kOpAdd: opcode = kX86Add32RM; break;
397    case kOpAnd: opcode = kX86And32RM; break;
398    case kOpOr:  opcode = kX86Or32RM; break;
399    case kOpXor: opcode = kX86Xor32RM; break;
400    case kOpMul: opcode = kX86Imul32RM; break;
401    default:
402      LOG(FATAL) << "Bad case in OpRegMem " << op;
403      break;
404  }
405  LIR *l = NewLIR3(opcode, r_dest.GetReg(), rs_rX86_SP.GetReg(), displacement);
406  AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, false /* is_64bit */);
407  return l;
408}
409
410LIR* X86Mir2Lir::OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1,
411                             RegStorage r_src2) {
412  if (r_dest != r_src1 && r_dest != r_src2) {
413    if (op == kOpAdd) {  // lea special case, except can't encode rbp as base
414      if (r_src1 == r_src2) {
415        OpRegCopy(r_dest, r_src1);
416        return OpRegImm(kOpLsl, r_dest, 1);
417      } else if (r_src1 != rs_rBP) {
418        return NewLIR5(kX86Lea32RA, r_dest.GetReg(), r_src1.GetReg() /* base */,
419                       r_src2.GetReg() /* index */, 0 /* scale */, 0 /* disp */);
420      } else {
421        return NewLIR5(kX86Lea32RA, r_dest.GetReg(), r_src2.GetReg() /* base */,
422                       r_src1.GetReg() /* index */, 0 /* scale */, 0 /* disp */);
423      }
424    } else {
425      OpRegCopy(r_dest, r_src1);
426      return OpRegReg(op, r_dest, r_src2);
427    }
428  } else if (r_dest == r_src1) {
429    return OpRegReg(op, r_dest, r_src2);
430  } else {  // r_dest == r_src2
431    switch (op) {
432      case kOpSub:  // non-commutative
433        OpReg(kOpNeg, r_dest);
434        op = kOpAdd;
435        break;
436      case kOpSbc:
437      case kOpLsl: case kOpLsr: case kOpAsr: case kOpRor: {
438        RegStorage t_reg = AllocTemp();
439        OpRegCopy(t_reg, r_src1);
440        OpRegReg(op, t_reg, r_src2);
441        LIR* res = OpRegCopyNoInsert(r_dest, t_reg);
442        AppendLIR(res);
443        FreeTemp(t_reg);
444        return res;
445      }
446      case kOpAdd:  // commutative
447      case kOpOr:
448      case kOpAdc:
449      case kOpAnd:
450      case kOpXor:
451        break;
452      default:
453        LOG(FATAL) << "Bad case in OpRegRegReg " << op;
454    }
455    return OpRegReg(op, r_dest, r_src1);
456  }
457}
458
459LIR* X86Mir2Lir::OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src, int value) {
460  if (op == kOpMul) {
461    X86OpCode opcode = IS_SIMM8(value) ? kX86Imul32RRI8 : kX86Imul32RRI;
462    return NewLIR3(opcode, r_dest.GetReg(), r_src.GetReg(), value);
463  } else if (op == kOpAnd) {
464    if (value == 0xFF && r_src.Low4()) {
465      return NewLIR2(kX86Movzx8RR, r_dest.GetReg(), r_src.GetReg());
466    } else if (value == 0xFFFF) {
467      return NewLIR2(kX86Movzx16RR, r_dest.GetReg(), r_src.GetReg());
468    }
469  }
470  if (r_dest != r_src) {
471    if (false && op == kOpLsl && value >= 0 && value <= 3) {  // lea shift special case
472      // TODO: fix bug in LEA encoding when disp == 0
473      return NewLIR5(kX86Lea32RA, r_dest.GetReg(),  r5sib_no_base /* base */,
474                     r_src.GetReg() /* index */, value /* scale */, 0 /* disp */);
475    } else if (op == kOpAdd) {  // lea add special case
476      return NewLIR5(kX86Lea32RA, r_dest.GetReg(), r_src.GetReg() /* base */,
477                     rs_rX86_SP.GetReg()/*r4sib_no_index*/ /* index */, 0 /* scale */, value /* disp */);
478    }
479    OpRegCopy(r_dest, r_src);
480  }
481  return OpRegImm(op, r_dest, value);
482}
483
484LIR* X86Mir2Lir::OpThreadMem(OpKind op, ThreadOffset<4> thread_offset) {
485  DCHECK_EQ(kX86, cu_->instruction_set);
486  X86OpCode opcode = kX86Bkpt;
487  switch (op) {
488    case kOpBlx: opcode = kX86CallT;  break;
489    case kOpBx: opcode = kX86JmpT;  break;
490    default:
491      LOG(FATAL) << "Bad opcode: " << op;
492      break;
493  }
494  return NewLIR1(opcode, thread_offset.Int32Value());
495}
496
497LIR* X86Mir2Lir::OpThreadMem(OpKind op, ThreadOffset<8> thread_offset) {
498  DCHECK_EQ(kX86_64, cu_->instruction_set);
499  X86OpCode opcode = kX86Bkpt;
500  switch (op) {
501    case kOpBlx: opcode = kX86CallT;  break;
502    case kOpBx: opcode = kX86JmpT;  break;
503    default:
504      LOG(FATAL) << "Bad opcode: " << op;
505      break;
506  }
507  return NewLIR1(opcode, thread_offset.Int32Value());
508}
509
510LIR* X86Mir2Lir::OpMem(OpKind op, RegStorage r_base, int disp) {
511  X86OpCode opcode = kX86Bkpt;
512  switch (op) {
513    case kOpBlx: opcode = kX86CallM;  break;
514    default:
515      LOG(FATAL) << "Bad opcode: " << op;
516      break;
517  }
518  return NewLIR2(opcode, r_base.GetReg(), disp);
519}
520
521LIR* X86Mir2Lir::LoadConstantWide(RegStorage r_dest, int64_t value) {
522    int32_t val_lo = Low32Bits(value);
523    int32_t val_hi = High32Bits(value);
524    int32_t low_reg_val = r_dest.IsPair() ? r_dest.GetLowReg() : r_dest.GetReg();
525    LIR *res;
526    bool is_fp = RegStorage::IsFloat(low_reg_val);
527    // TODO: clean this up once we fully recognize 64-bit storage containers.
528    if (is_fp) {
529      if (value == 0) {
530        return NewLIR2(kX86XorpsRR, low_reg_val, low_reg_val);
531      } else if (base_of_code_ != nullptr) {
532        // We will load the value from the literal area.
533        LIR* data_target = ScanLiteralPoolWide(literal_list_, val_lo, val_hi);
534        if (data_target == NULL) {
535          data_target = AddWideData(&literal_list_, val_lo, val_hi);
536        }
537
538        // Address the start of the method
539        RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
540        rl_method = LoadValue(rl_method, kCoreReg);
541
542        // Load the proper value from the literal area.
543        // We don't know the proper offset for the value, so pick one that will force
544        // 4 byte offset.  We will fix this up in the assembler later to have the right
545        // value.
546        res = LoadBaseDisp(rl_method.reg, 256 /* bogus */, RegStorage::Solo64(low_reg_val),
547                           kDouble);
548        res->target = data_target;
549        res->flags.fixup = kFixupLoad;
550        SetMemRefType(res, true, kLiteral);
551        store_method_addr_used_ = true;
552      } else {
553        if (val_lo == 0) {
554          res = NewLIR2(kX86XorpsRR, low_reg_val, low_reg_val);
555        } else {
556          res = LoadConstantNoClobber(RegStorage::Solo32(low_reg_val), val_lo);
557        }
558        if (val_hi != 0) {
559          RegStorage r_dest_hi = AllocTempDouble();
560          LoadConstantNoClobber(r_dest_hi, val_hi);
561          NewLIR2(kX86PunpckldqRR, low_reg_val, r_dest_hi.GetReg());
562          FreeTemp(r_dest_hi);
563        }
564      }
565    } else {
566      res = LoadConstantNoClobber(r_dest.GetLow(), val_lo);
567      LoadConstantNoClobber(r_dest.GetHigh(), val_hi);
568    }
569    return res;
570}
571
572LIR* X86Mir2Lir::LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
573                                     int displacement, RegStorage r_dest, OpSize size) {
574  LIR *load = NULL;
575  LIR *load2 = NULL;
576  bool is_array = r_index.Valid();
577  bool pair = r_dest.IsPair();
578  bool is64bit = ((size == k64) || (size == kDouble));
579  X86OpCode opcode = kX86Nop;
580  switch (size) {
581    case k64:
582    case kDouble:
583      if (r_dest.IsFloat()) {
584        opcode = is_array ? kX86MovsdRA : kX86MovsdRM;
585      } else {
586        opcode = is_array ? kX86Mov32RA  : kX86Mov32RM;
587      }
588      // TODO: double store is to unaligned address
589      DCHECK_EQ((displacement & 0x3), 0);
590      break;
591    case kWord:
592      if (Gen64Bit()) {
593        opcode = is_array ? kX86Mov64RA  : kX86Mov64RM;
594        CHECK_EQ(is_array, false);
595        CHECK_EQ(r_dest.IsFloat(), false);
596        break;
597      }  // else fall-through to k32 case
598    case k32:
599    case kSingle:
600    case kReference:  // TODO: update for reference decompression on 64-bit targets.
601      opcode = is_array ? kX86Mov32RA : kX86Mov32RM;
602      if (r_dest.IsFloat()) {
603        opcode = is_array ? kX86MovssRA : kX86MovssRM;
604        DCHECK(r_dest.IsFloat());
605      }
606      DCHECK_EQ((displacement & 0x3), 0);
607      break;
608    case kUnsignedHalf:
609      opcode = is_array ? kX86Movzx16RA : kX86Movzx16RM;
610      DCHECK_EQ((displacement & 0x1), 0);
611      break;
612    case kSignedHalf:
613      opcode = is_array ? kX86Movsx16RA : kX86Movsx16RM;
614      DCHECK_EQ((displacement & 0x1), 0);
615      break;
616    case kUnsignedByte:
617      opcode = is_array ? kX86Movzx8RA : kX86Movzx8RM;
618      break;
619    case kSignedByte:
620      opcode = is_array ? kX86Movsx8RA : kX86Movsx8RM;
621      break;
622    default:
623      LOG(FATAL) << "Bad case in LoadBaseIndexedDispBody";
624  }
625
626  if (!is_array) {
627    if (!pair) {
628      load = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), displacement + LOWORD_OFFSET);
629    } else {
630      DCHECK(!r_dest.IsFloat());  // Make sure we're not still using a pair here.
631      if (r_base == r_dest.GetLow()) {
632        load2 = NewLIR3(opcode, r_dest.GetHighReg(), r_base.GetReg(),
633                        displacement + HIWORD_OFFSET);
634        load = NewLIR3(opcode, r_dest.GetLowReg(), r_base.GetReg(), displacement + LOWORD_OFFSET);
635      } else {
636        load = NewLIR3(opcode, r_dest.GetLowReg(), r_base.GetReg(), displacement + LOWORD_OFFSET);
637        load2 = NewLIR3(opcode, r_dest.GetHighReg(), r_base.GetReg(),
638                        displacement + HIWORD_OFFSET);
639      }
640    }
641    if (r_base == rs_rX86_SP) {
642      AnnotateDalvikRegAccess(load, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
643                              true /* is_load */, is64bit);
644      if (pair) {
645        AnnotateDalvikRegAccess(load2, (displacement + HIWORD_OFFSET) >> 2,
646                                true /* is_load */, is64bit);
647      }
648    }
649  } else {
650    if (!pair) {
651      load = NewLIR5(opcode, r_dest.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
652                     displacement + LOWORD_OFFSET);
653    } else {
654      DCHECK(!r_dest.IsFloat());  // Make sure we're not still using a pair here.
655      if (r_base == r_dest.GetLow()) {
656        if (r_dest.GetHigh() == r_index) {
657          // We can't use either register for the first load.
658          RegStorage temp = AllocTemp();
659          load2 = NewLIR5(opcode, temp.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
660                          displacement + HIWORD_OFFSET);
661          load = NewLIR5(opcode, r_dest.GetLowReg(), r_base.GetReg(), r_index.GetReg(), scale,
662                         displacement + LOWORD_OFFSET);
663          OpRegCopy(r_dest.GetHigh(), temp);
664          FreeTemp(temp);
665        } else {
666          load2 = NewLIR5(opcode, r_dest.GetHighReg(), r_base.GetReg(), r_index.GetReg(), scale,
667                          displacement + HIWORD_OFFSET);
668          load = NewLIR5(opcode, r_dest.GetLowReg(), r_base.GetReg(), r_index.GetReg(), scale,
669                         displacement + LOWORD_OFFSET);
670        }
671      } else {
672        if (r_dest.GetLow() == r_index) {
673          // We can't use either register for the first load.
674          RegStorage temp = AllocTemp();
675          load = NewLIR5(opcode, temp.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
676                         displacement + LOWORD_OFFSET);
677          load2 = NewLIR5(opcode, r_dest.GetHighReg(), r_base.GetReg(), r_index.GetReg(), scale,
678                          displacement + HIWORD_OFFSET);
679          OpRegCopy(r_dest.GetLow(), temp);
680          FreeTemp(temp);
681        } else {
682          load = NewLIR5(opcode, r_dest.GetLowReg(), r_base.GetReg(), r_index.GetReg(), scale,
683                         displacement + LOWORD_OFFSET);
684          load2 = NewLIR5(opcode, r_dest.GetHighReg(), r_base.GetReg(), r_index.GetReg(), scale,
685                          displacement + HIWORD_OFFSET);
686        }
687      }
688    }
689  }
690
691  return load;
692}
693
694/* Load value from base + scaled index. */
695LIR* X86Mir2Lir::LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
696                                 int scale, OpSize size) {
697  return LoadBaseIndexedDisp(r_base, r_index, scale, 0, r_dest, size);
698}
699
700LIR* X86Mir2Lir::LoadBaseDispVolatile(RegStorage r_base, int displacement, RegStorage r_dest,
701                                      OpSize size) {
702  // LoadBaseDisp() will emit correct insn for atomic load on x86
703  // assuming r_dest is correctly prepared using RegClassForFieldLoadStore().
704  return LoadBaseDisp(r_base, displacement, r_dest, size);
705}
706
707LIR* X86Mir2Lir::LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
708                              OpSize size) {
709  return LoadBaseIndexedDisp(r_base, RegStorage::InvalidReg(), 0, displacement, r_dest,
710                             size);
711}
712
713LIR* X86Mir2Lir::StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
714                                      int displacement, RegStorage r_src, OpSize size) {
715  LIR *store = NULL;
716  LIR *store2 = NULL;
717  bool is_array = r_index.Valid();
718  bool pair = r_src.IsPair();
719  bool is64bit = (size == k64) || (size == kDouble);
720  X86OpCode opcode = kX86Nop;
721  switch (size) {
722    case k64:
723    case kDouble:
724      if (r_src.IsFloat()) {
725        opcode = is_array ? kX86MovsdAR : kX86MovsdMR;
726      } else {
727        if (Gen64Bit()) {
728          opcode = is_array ? kX86Mov64AR  : kX86Mov64MR;
729        } else {
730          // TODO(64): pair = true;
731          opcode = is_array ? kX86Mov32AR  : kX86Mov32MR;
732        }
733      }
734      // TODO: double store is to unaligned address
735      DCHECK_EQ((displacement & 0x3), 0);
736      break;
737    case kWord:
738      if (Gen64Bit()) {
739        opcode = is_array ? kX86Mov64AR  : kX86Mov64MR;
740        CHECK_EQ(is_array, false);
741        CHECK_EQ(r_src.IsFloat(), false);
742        break;
743      }  // else fall-through to k32 case
744    case k32:
745    case kSingle:
746    case kReference:
747      opcode = is_array ? kX86Mov32AR : kX86Mov32MR;
748      if (r_src.IsFloat()) {
749        opcode = is_array ? kX86MovssAR : kX86MovssMR;
750        DCHECK(r_src.IsSingle());
751      }
752      DCHECK_EQ((displacement & 0x3), 0);
753      break;
754    case kUnsignedHalf:
755    case kSignedHalf:
756      opcode = is_array ? kX86Mov16AR : kX86Mov16MR;
757      DCHECK_EQ((displacement & 0x1), 0);
758      break;
759    case kUnsignedByte:
760    case kSignedByte:
761      opcode = is_array ? kX86Mov8AR : kX86Mov8MR;
762      break;
763    default:
764      LOG(FATAL) << "Bad case in StoreBaseIndexedDispBody";
765  }
766
767  if (!is_array) {
768    if (!pair) {
769      store = NewLIR3(opcode, r_base.GetReg(), displacement + LOWORD_OFFSET, r_src.GetReg());
770    } else {
771      DCHECK(!r_src.IsFloat());  // Make sure we're not still using a pair here.
772      store = NewLIR3(opcode, r_base.GetReg(), displacement + LOWORD_OFFSET, r_src.GetLowReg());
773      store2 = NewLIR3(opcode, r_base.GetReg(), displacement + HIWORD_OFFSET, r_src.GetHighReg());
774    }
775    if (r_base == rs_rX86_SP) {
776      AnnotateDalvikRegAccess(store, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
777                              false /* is_load */, is64bit);
778      if (pair) {
779        AnnotateDalvikRegAccess(store2, (displacement + HIWORD_OFFSET) >> 2,
780                                false /* is_load */, is64bit);
781      }
782    }
783  } else {
784    if (!pair) {
785      store = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale,
786                      displacement + LOWORD_OFFSET, r_src.GetReg());
787    } else {
788      DCHECK(!r_src.IsFloat());  // Make sure we're not still using a pair here.
789      store = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale,
790                      displacement + LOWORD_OFFSET, r_src.GetLowReg());
791      store2 = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale,
792                       displacement + HIWORD_OFFSET, r_src.GetHighReg());
793    }
794  }
795  return store;
796}
797
798/* store value base base + scaled index. */
799LIR* X86Mir2Lir::StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
800                      int scale, OpSize size) {
801  return StoreBaseIndexedDisp(r_base, r_index, scale, 0, r_src, size);
802}
803
804LIR* X86Mir2Lir::StoreBaseDispVolatile(RegStorage r_base, int displacement,
805                                       RegStorage r_src, OpSize size) {
806  // StoreBaseDisp() will emit correct insn for atomic store on x86
807  // assuming r_dest is correctly prepared using RegClassForFieldLoadStore().
808  return StoreBaseDisp(r_base, displacement, r_src, size);
809}
810
811LIR* X86Mir2Lir::StoreBaseDisp(RegStorage r_base, int displacement,
812                               RegStorage r_src, OpSize size) {
813  return StoreBaseIndexedDisp(r_base, RegStorage::InvalidReg(), 0, displacement, r_src, size);
814}
815
816LIR* X86Mir2Lir::OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
817                                   int offset, int check_value, LIR* target) {
818    NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base_reg.GetReg(), offset,
819            check_value);
820    LIR* branch = OpCondBranch(cond, target);
821    return branch;
822}
823
824void X86Mir2Lir::AnalyzeMIR() {
825  // Assume we don't need a pointer to the base of the code.
826  cu_->NewTimingSplit("X86 MIR Analysis");
827  store_method_addr_ = false;
828
829  // Walk the MIR looking for interesting items.
830  PreOrderDfsIterator iter(mir_graph_);
831  BasicBlock* curr_bb = iter.Next();
832  while (curr_bb != NULL) {
833    AnalyzeBB(curr_bb);
834    curr_bb = iter.Next();
835  }
836
837  // Did we need a pointer to the method code?
838  if (store_method_addr_) {
839    base_of_code_ = mir_graph_->GetNewCompilerTemp(kCompilerTempVR, false);
840  } else {
841    base_of_code_ = nullptr;
842  }
843}
844
845void X86Mir2Lir::AnalyzeBB(BasicBlock * bb) {
846  if (bb->block_type == kDead) {
847    // Ignore dead blocks
848    return;
849  }
850
851  for (MIR *mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
852    int opcode = mir->dalvikInsn.opcode;
853    if (opcode >= kMirOpFirst) {
854      AnalyzeExtendedMIR(opcode, bb, mir);
855    } else {
856      AnalyzeMIR(opcode, bb, mir);
857    }
858  }
859}
860
861
862void X86Mir2Lir::AnalyzeExtendedMIR(int opcode, BasicBlock * bb, MIR *mir) {
863  switch (opcode) {
864    // Instructions referencing doubles.
865    case kMirOpFusedCmplDouble:
866    case kMirOpFusedCmpgDouble:
867      AnalyzeFPInstruction(opcode, bb, mir);
868      break;
869    case kMirOpConstVector:
870      store_method_addr_ = true;
871      break;
872    default:
873      // Ignore the rest.
874      break;
875  }
876}
877
878void X86Mir2Lir::AnalyzeMIR(int opcode, BasicBlock * bb, MIR *mir) {
879  // Looking for
880  // - Do we need a pointer to the code (used for packed switches and double lits)?
881
882  switch (opcode) {
883    // Instructions referencing doubles.
884    case Instruction::CMPL_DOUBLE:
885    case Instruction::CMPG_DOUBLE:
886    case Instruction::NEG_DOUBLE:
887    case Instruction::ADD_DOUBLE:
888    case Instruction::SUB_DOUBLE:
889    case Instruction::MUL_DOUBLE:
890    case Instruction::DIV_DOUBLE:
891    case Instruction::REM_DOUBLE:
892    case Instruction::ADD_DOUBLE_2ADDR:
893    case Instruction::SUB_DOUBLE_2ADDR:
894    case Instruction::MUL_DOUBLE_2ADDR:
895    case Instruction::DIV_DOUBLE_2ADDR:
896    case Instruction::REM_DOUBLE_2ADDR:
897      AnalyzeFPInstruction(opcode, bb, mir);
898      break;
899
900    // Packed switches and array fills need a pointer to the base of the method.
901    case Instruction::FILL_ARRAY_DATA:
902    case Instruction::PACKED_SWITCH:
903      store_method_addr_ = true;
904      break;
905    default:
906      // Other instructions are not interesting yet.
907      break;
908  }
909}
910
911void X86Mir2Lir::AnalyzeFPInstruction(int opcode, BasicBlock * bb, MIR *mir) {
912  // Look at all the uses, and see if they are double constants.
913  uint64_t attrs = MIRGraph::GetDataFlowAttributes(static_cast<Instruction::Code>(opcode));
914  int next_sreg = 0;
915  if (attrs & DF_UA) {
916    if (attrs & DF_A_WIDE) {
917      AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg));
918      next_sreg += 2;
919    } else {
920      next_sreg++;
921    }
922  }
923  if (attrs & DF_UB) {
924    if (attrs & DF_B_WIDE) {
925      AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg));
926      next_sreg += 2;
927    } else {
928      next_sreg++;
929    }
930  }
931  if (attrs & DF_UC) {
932    if (attrs & DF_C_WIDE) {
933      AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg));
934    }
935  }
936}
937
938void X86Mir2Lir::AnalyzeDoubleUse(RegLocation use) {
939  // If this is a double literal, we will want it in the literal pool.
940  if (use.is_const) {
941    store_method_addr_ = true;
942  }
943}
944
945RegLocation X86Mir2Lir::UpdateLocTyped(RegLocation loc, int reg_class) {
946  loc = UpdateLoc(loc);
947  if ((loc.location == kLocPhysReg) && (loc.fp != loc.reg.IsFloat())) {
948    if (GetRegInfo(loc.reg)->IsTemp()) {
949      Clobber(loc.reg);
950      FreeTemp(loc.reg);
951      loc.reg = RegStorage::InvalidReg();
952      loc.location = kLocDalvikFrame;
953    }
954  }
955  return loc;
956}
957
958RegLocation X86Mir2Lir::UpdateLocWideTyped(RegLocation loc, int reg_class) {
959  loc = UpdateLocWide(loc);
960  if ((loc.location == kLocPhysReg) && (loc.fp != loc.reg.IsFloat())) {
961    if (GetRegInfo(loc.reg)->IsTemp()) {
962      Clobber(loc.reg);
963      FreeTemp(loc.reg);
964      loc.reg = RegStorage::InvalidReg();
965      loc.location = kLocDalvikFrame;
966    }
967  }
968  return loc;
969}
970
971}  // namespace art
972