utility_x86.cc revision dd7624d2b9e599d57762d12031b10b89defc9807
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "codegen_x86.h"
18#include "dex/quick/mir_to_lir-inl.h"
19#include "dex/dataflow_iterator-inl.h"
20#include "x86_lir.h"
21
22namespace art {
23
24/* This file contains codegen for the X86 ISA */
25
26LIR* X86Mir2Lir::OpFpRegCopy(RegStorage r_dest, RegStorage r_src) {
27  int opcode;
28  /* must be both DOUBLE or both not DOUBLE */
29  DCHECK_EQ(X86_DOUBLEREG(r_dest.GetReg()), X86_DOUBLEREG(r_src.GetReg()));
30  if (X86_DOUBLEREG(r_dest.GetReg())) {
31    opcode = kX86MovsdRR;
32  } else {
33    if (X86_SINGLEREG(r_dest.GetReg())) {
34      if (X86_SINGLEREG(r_src.GetReg())) {
35        opcode = kX86MovssRR;
36      } else {  // Fpr <- Gpr
37        opcode = kX86MovdxrRR;
38      }
39    } else {  // Gpr <- Fpr
40      DCHECK(X86_SINGLEREG(r_src.GetReg()));
41      opcode = kX86MovdrxRR;
42    }
43  }
44  DCHECK_NE((EncodingMap[opcode].flags & IS_BINARY_OP), 0ULL);
45  LIR* res = RawLIR(current_dalvik_offset_, opcode, r_dest.GetReg(), r_src.GetReg());
46  if (r_dest == r_src) {
47    res->flags.is_nop = true;
48  }
49  return res;
50}
51
52bool X86Mir2Lir::InexpensiveConstantInt(int32_t value) {
53  return true;
54}
55
56bool X86Mir2Lir::InexpensiveConstantFloat(int32_t value) {
57  return false;
58}
59
60bool X86Mir2Lir::InexpensiveConstantLong(int64_t value) {
61  return true;
62}
63
64bool X86Mir2Lir::InexpensiveConstantDouble(int64_t value) {
65  return value == 0;
66}
67
68/*
69 * Load a immediate using a shortcut if possible; otherwise
70 * grab from the per-translation literal pool.  If target is
71 * a high register, build constant into a low register and copy.
72 *
73 * No additional register clobbering operation performed. Use this version when
74 * 1) r_dest is freshly returned from AllocTemp or
75 * 2) The codegen is under fixed register usage
76 */
77LIR* X86Mir2Lir::LoadConstantNoClobber(RegStorage r_dest, int value) {
78  RegStorage r_dest_save = r_dest;
79  if (X86_FPREG(r_dest.GetReg())) {
80    if (value == 0) {
81      return NewLIR2(kX86XorpsRR, r_dest.GetReg(), r_dest.GetReg());
82    }
83    DCHECK(X86_SINGLEREG(r_dest.GetReg()));
84    r_dest = AllocTemp();
85  }
86
87  LIR *res;
88  if (value == 0) {
89    res = NewLIR2(kX86Xor32RR, r_dest.GetReg(), r_dest.GetReg());
90  } else {
91    // Note, there is no byte immediate form of a 32 bit immediate move.
92    res = NewLIR2(kX86Mov32RI, r_dest.GetReg(), value);
93  }
94
95  if (X86_FPREG(r_dest_save.GetReg())) {
96    NewLIR2(kX86MovdxrRR, r_dest_save.GetReg(), r_dest.GetReg());
97    FreeTemp(r_dest);
98  }
99
100  return res;
101}
102
103LIR* X86Mir2Lir::OpUnconditionalBranch(LIR* target) {
104  LIR* res = NewLIR1(kX86Jmp8, 0 /* offset to be patched during assembly*/);
105  res->target = target;
106  return res;
107}
108
109LIR* X86Mir2Lir::OpCondBranch(ConditionCode cc, LIR* target) {
110  LIR* branch = NewLIR2(kX86Jcc8, 0 /* offset to be patched */,
111                        X86ConditionEncoding(cc));
112  branch->target = target;
113  return branch;
114}
115
116LIR* X86Mir2Lir::OpReg(OpKind op, RegStorage r_dest_src) {
117  X86OpCode opcode = kX86Bkpt;
118  switch (op) {
119    case kOpNeg: opcode = kX86Neg32R; break;
120    case kOpNot: opcode = kX86Not32R; break;
121    case kOpRev: opcode = kX86Bswap32R; break;
122    case kOpBlx: opcode = kX86CallR; break;
123    default:
124      LOG(FATAL) << "Bad case in OpReg " << op;
125  }
126  return NewLIR1(opcode, r_dest_src.GetReg());
127}
128
129LIR* X86Mir2Lir::OpRegImm(OpKind op, RegStorage r_dest_src1, int value) {
130  X86OpCode opcode = kX86Bkpt;
131  bool byte_imm = IS_SIMM8(value);
132  DCHECK(!X86_FPREG(r_dest_src1.GetReg()));
133  switch (op) {
134    case kOpLsl: opcode = kX86Sal32RI; break;
135    case kOpLsr: opcode = kX86Shr32RI; break;
136    case kOpAsr: opcode = kX86Sar32RI; break;
137    case kOpAdd: opcode = byte_imm ? kX86Add32RI8 : kX86Add32RI; break;
138    case kOpOr:  opcode = byte_imm ? kX86Or32RI8  : kX86Or32RI;  break;
139    case kOpAdc: opcode = byte_imm ? kX86Adc32RI8 : kX86Adc32RI; break;
140    // case kOpSbb: opcode = kX86Sbb32RI; break;
141    case kOpAnd: opcode = byte_imm ? kX86And32RI8 : kX86And32RI; break;
142    case kOpSub: opcode = byte_imm ? kX86Sub32RI8 : kX86Sub32RI; break;
143    case kOpXor: opcode = byte_imm ? kX86Xor32RI8 : kX86Xor32RI; break;
144    case kOpCmp: opcode = byte_imm ? kX86Cmp32RI8 : kX86Cmp32RI; break;
145    case kOpMov:
146      /*
147       * Moving the constant zero into register can be specialized as an xor of the register.
148       * However, that sets eflags while the move does not. For that reason here, always do
149       * the move and if caller is flexible, they should be calling LoadConstantNoClobber instead.
150       */
151      opcode = kX86Mov32RI;
152      break;
153    case kOpMul:
154      opcode = byte_imm ? kX86Imul32RRI8 : kX86Imul32RRI;
155      return NewLIR3(opcode, r_dest_src1.GetReg(), r_dest_src1.GetReg(), value);
156    default:
157      LOG(FATAL) << "Bad case in OpRegImm " << op;
158  }
159  return NewLIR2(opcode, r_dest_src1.GetReg(), value);
160}
161
162LIR* X86Mir2Lir::OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) {
163    X86OpCode opcode = kX86Nop;
164    bool src2_must_be_cx = false;
165    switch (op) {
166        // X86 unary opcodes
167      case kOpMvn:
168        OpRegCopy(r_dest_src1, r_src2);
169        return OpReg(kOpNot, r_dest_src1);
170      case kOpNeg:
171        OpRegCopy(r_dest_src1, r_src2);
172        return OpReg(kOpNeg, r_dest_src1);
173      case kOpRev:
174        OpRegCopy(r_dest_src1, r_src2);
175        return OpReg(kOpRev, r_dest_src1);
176      case kOpRevsh:
177        OpRegCopy(r_dest_src1, r_src2);
178        OpReg(kOpRev, r_dest_src1);
179        return OpRegImm(kOpAsr, r_dest_src1, 16);
180        // X86 binary opcodes
181      case kOpSub: opcode = kX86Sub32RR; break;
182      case kOpSbc: opcode = kX86Sbb32RR; break;
183      case kOpLsl: opcode = kX86Sal32RC; src2_must_be_cx = true; break;
184      case kOpLsr: opcode = kX86Shr32RC; src2_must_be_cx = true; break;
185      case kOpAsr: opcode = kX86Sar32RC; src2_must_be_cx = true; break;
186      case kOpMov: opcode = kX86Mov32RR; break;
187      case kOpCmp: opcode = kX86Cmp32RR; break;
188      case kOpAdd: opcode = kX86Add32RR; break;
189      case kOpAdc: opcode = kX86Adc32RR; break;
190      case kOpAnd: opcode = kX86And32RR; break;
191      case kOpOr:  opcode = kX86Or32RR; break;
192      case kOpXor: opcode = kX86Xor32RR; break;
193      case kOp2Byte:
194        // Use shifts instead of a byte operand if the source can't be byte accessed.
195        if (r_src2.GetReg() >= 4) {
196          NewLIR2(kX86Mov32RR, r_dest_src1.GetReg(), r_src2.GetReg());
197          NewLIR2(kX86Sal32RI, r_dest_src1.GetReg(), 24);
198          return NewLIR2(kX86Sar32RI, r_dest_src1.GetReg(), 24);
199        } else {
200          opcode = kX86Movsx8RR;
201        }
202        break;
203      case kOp2Short: opcode = kX86Movsx16RR; break;
204      case kOp2Char: opcode = kX86Movzx16RR; break;
205      case kOpMul: opcode = kX86Imul32RR; break;
206      default:
207        LOG(FATAL) << "Bad case in OpRegReg " << op;
208        break;
209    }
210    CHECK(!src2_must_be_cx || r_src2.GetReg() == rCX);
211    return NewLIR2(opcode, r_dest_src1.GetReg(), r_src2.GetReg());
212}
213
214LIR* X86Mir2Lir::OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset, MoveType move_type) {
215  DCHECK(!(X86_FPREG(r_base.GetReg())));
216  X86OpCode opcode = kX86Nop;
217  int dest = r_dest.IsPair() ? r_dest.GetLowReg() : r_dest.GetReg();
218  switch (move_type) {
219    case kMov8GP:
220      CHECK(!X86_FPREG(dest));
221      opcode = kX86Mov8RM;
222      break;
223    case kMov16GP:
224      CHECK(!X86_FPREG(dest));
225      opcode = kX86Mov16RM;
226      break;
227    case kMov32GP:
228      CHECK(!X86_FPREG(dest));
229      opcode = kX86Mov32RM;
230      break;
231    case kMov32FP:
232      CHECK(X86_FPREG(dest));
233      opcode = kX86MovssRM;
234      break;
235    case kMov64FP:
236      CHECK(X86_FPREG(dest));
237      opcode = kX86MovsdRM;
238      break;
239    case kMovU128FP:
240      CHECK(X86_FPREG(dest));
241      opcode = kX86MovupsRM;
242      break;
243    case kMovA128FP:
244      CHECK(X86_FPREG(dest));
245      opcode = kX86MovapsRM;
246      break;
247    case kMovLo128FP:
248      CHECK(X86_FPREG(dest));
249      opcode = kX86MovlpsRM;
250      break;
251    case kMovHi128FP:
252      CHECK(X86_FPREG(dest));
253      opcode = kX86MovhpsRM;
254      break;
255    case kMov64GP:
256    case kMovLo64FP:
257    case kMovHi64FP:
258    default:
259      LOG(FATAL) << "Bad case in OpMovRegMem";
260      break;
261  }
262
263  return NewLIR3(opcode, dest, r_base.GetReg(), offset);
264}
265
266LIR* X86Mir2Lir::OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src, MoveType move_type) {
267  DCHECK(!(X86_FPREG(r_base.GetReg())));
268  int src = r_src.IsPair() ? r_src.GetLowReg() : r_src.GetReg();
269
270  X86OpCode opcode = kX86Nop;
271  switch (move_type) {
272    case kMov8GP:
273      CHECK(!X86_FPREG(src));
274      opcode = kX86Mov8MR;
275      break;
276    case kMov16GP:
277      CHECK(!X86_FPREG(src));
278      opcode = kX86Mov16MR;
279      break;
280    case kMov32GP:
281      CHECK(!X86_FPREG(src));
282      opcode = kX86Mov32MR;
283      break;
284    case kMov32FP:
285      CHECK(X86_FPREG(src));
286      opcode = kX86MovssMR;
287      break;
288    case kMov64FP:
289      CHECK(X86_FPREG(src));
290      opcode = kX86MovsdMR;
291      break;
292    case kMovU128FP:
293      CHECK(X86_FPREG(src));
294      opcode = kX86MovupsMR;
295      break;
296    case kMovA128FP:
297      CHECK(X86_FPREG(src));
298      opcode = kX86MovapsMR;
299      break;
300    case kMovLo128FP:
301      CHECK(X86_FPREG(src));
302      opcode = kX86MovlpsMR;
303      break;
304    case kMovHi128FP:
305      CHECK(X86_FPREG(src));
306      opcode = kX86MovhpsMR;
307      break;
308    case kMov64GP:
309    case kMovLo64FP:
310    case kMovHi64FP:
311    default:
312      LOG(FATAL) << "Bad case in OpMovMemReg";
313      break;
314  }
315
316  return NewLIR3(opcode, r_base.GetReg(), offset, src);
317}
318
319LIR* X86Mir2Lir::OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) {
320  // The only conditional reg to reg operation supported is Cmov
321  DCHECK_EQ(op, kOpCmov);
322  return NewLIR3(kX86Cmov32RRC, r_dest.GetReg(), r_src.GetReg(), X86ConditionEncoding(cc));
323}
324
325LIR* X86Mir2Lir::OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset) {
326  X86OpCode opcode = kX86Nop;
327  switch (op) {
328      // X86 binary opcodes
329    case kOpSub: opcode = kX86Sub32RM; break;
330    case kOpMov: opcode = kX86Mov32RM; break;
331    case kOpCmp: opcode = kX86Cmp32RM; break;
332    case kOpAdd: opcode = kX86Add32RM; break;
333    case kOpAnd: opcode = kX86And32RM; break;
334    case kOpOr:  opcode = kX86Or32RM; break;
335    case kOpXor: opcode = kX86Xor32RM; break;
336    case kOp2Byte: opcode = kX86Movsx8RM; break;
337    case kOp2Short: opcode = kX86Movsx16RM; break;
338    case kOp2Char: opcode = kX86Movzx16RM; break;
339    case kOpMul:
340    default:
341      LOG(FATAL) << "Bad case in OpRegMem " << op;
342      break;
343  }
344  LIR *l = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), offset);
345  if (r_base == rs_rX86_SP) {
346    AnnotateDalvikRegAccess(l, offset >> 2, true /* is_load */, false /* is_64bit */);
347  }
348  return l;
349}
350
351LIR* X86Mir2Lir::OpMemReg(OpKind op, RegLocation rl_dest, int r_value) {
352  DCHECK_NE(rl_dest.location, kLocPhysReg);
353  int displacement = SRegOffset(rl_dest.s_reg_low);
354  X86OpCode opcode = kX86Nop;
355  switch (op) {
356    case kOpSub: opcode = kX86Sub32MR; break;
357    case kOpMov: opcode = kX86Mov32MR; break;
358    case kOpCmp: opcode = kX86Cmp32MR; break;
359    case kOpAdd: opcode = kX86Add32MR; break;
360    case kOpAnd: opcode = kX86And32MR; break;
361    case kOpOr:  opcode = kX86Or32MR; break;
362    case kOpXor: opcode = kX86Xor32MR; break;
363    case kOpLsl: opcode = kX86Sal32MC; break;
364    case kOpLsr: opcode = kX86Shr32MC; break;
365    case kOpAsr: opcode = kX86Sar32MC; break;
366    default:
367      LOG(FATAL) << "Bad case in OpMemReg " << op;
368      break;
369  }
370  LIR *l = NewLIR3(opcode, rX86_SP, displacement, r_value);
371  AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, false /* is_64bit */);
372  AnnotateDalvikRegAccess(l, displacement >> 2, false /* is_load */, false /* is_64bit */);
373  return l;
374}
375
376LIR* X86Mir2Lir::OpRegMem(OpKind op, RegStorage r_dest, RegLocation rl_value) {
377  DCHECK_NE(rl_value.location, kLocPhysReg);
378  int displacement = SRegOffset(rl_value.s_reg_low);
379  X86OpCode opcode = kX86Nop;
380  switch (op) {
381    case kOpSub: opcode = kX86Sub32RM; break;
382    case kOpMov: opcode = kX86Mov32RM; break;
383    case kOpCmp: opcode = kX86Cmp32RM; break;
384    case kOpAdd: opcode = kX86Add32RM; break;
385    case kOpAnd: opcode = kX86And32RM; break;
386    case kOpOr:  opcode = kX86Or32RM; break;
387    case kOpXor: opcode = kX86Xor32RM; break;
388    case kOpMul: opcode = kX86Imul32RM; break;
389    default:
390      LOG(FATAL) << "Bad case in OpRegMem " << op;
391      break;
392  }
393  LIR *l = NewLIR3(opcode, r_dest.GetReg(), rX86_SP, displacement);
394  AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, false /* is_64bit */);
395  return l;
396}
397
398LIR* X86Mir2Lir::OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1,
399                             RegStorage r_src2) {
400  if (r_dest != r_src1 && r_dest != r_src2) {
401    if (op == kOpAdd) {  // lea special case, except can't encode rbp as base
402      if (r_src1 == r_src2) {
403        OpRegCopy(r_dest, r_src1);
404        return OpRegImm(kOpLsl, r_dest, 1);
405      } else if (r_src1 != rs_rBP) {
406        return NewLIR5(kX86Lea32RA, r_dest.GetReg(), r_src1.GetReg() /* base */,
407                       r_src2.GetReg() /* index */, 0 /* scale */, 0 /* disp */);
408      } else {
409        return NewLIR5(kX86Lea32RA, r_dest.GetReg(), r_src2.GetReg() /* base */,
410                       r_src1.GetReg() /* index */, 0 /* scale */, 0 /* disp */);
411      }
412    } else {
413      OpRegCopy(r_dest, r_src1);
414      return OpRegReg(op, r_dest, r_src2);
415    }
416  } else if (r_dest == r_src1) {
417    return OpRegReg(op, r_dest, r_src2);
418  } else {  // r_dest == r_src2
419    switch (op) {
420      case kOpSub:  // non-commutative
421        OpReg(kOpNeg, r_dest);
422        op = kOpAdd;
423        break;
424      case kOpSbc:
425      case kOpLsl: case kOpLsr: case kOpAsr: case kOpRor: {
426        RegStorage t_reg = AllocTemp();
427        OpRegCopy(t_reg, r_src1);
428        OpRegReg(op, t_reg, r_src2);
429        LIR* res = OpRegCopy(r_dest, t_reg);
430        FreeTemp(t_reg);
431        return res;
432      }
433      case kOpAdd:  // commutative
434      case kOpOr:
435      case kOpAdc:
436      case kOpAnd:
437      case kOpXor:
438        break;
439      default:
440        LOG(FATAL) << "Bad case in OpRegRegReg " << op;
441    }
442    return OpRegReg(op, r_dest, r_src1);
443  }
444}
445
446LIR* X86Mir2Lir::OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src, int value) {
447  if (op == kOpMul) {
448    X86OpCode opcode = IS_SIMM8(value) ? kX86Imul32RRI8 : kX86Imul32RRI;
449    return NewLIR3(opcode, r_dest.GetReg(), r_src.GetReg(), value);
450  } else if (op == kOpAnd) {
451    if (value == 0xFF && r_src.GetReg() < 4) {
452      return NewLIR2(kX86Movzx8RR, r_dest.GetReg(), r_src.GetReg());
453    } else if (value == 0xFFFF) {
454      return NewLIR2(kX86Movzx16RR, r_dest.GetReg(), r_src.GetReg());
455    }
456  }
457  if (r_dest != r_src) {
458    if (false && op == kOpLsl && value >= 0 && value <= 3) {  // lea shift special case
459      // TODO: fix bug in LEA encoding when disp == 0
460      return NewLIR5(kX86Lea32RA, r_dest.GetReg(),  r5sib_no_base /* base */,
461                     r_src.GetReg() /* index */, value /* scale */, 0 /* disp */);
462    } else if (op == kOpAdd) {  // lea add special case
463      return NewLIR5(kX86Lea32RA, r_dest.GetReg(), r_src.GetReg() /* base */,
464                     r4sib_no_index /* index */, 0 /* scale */, value /* disp */);
465    }
466    OpRegCopy(r_dest, r_src);
467  }
468  return OpRegImm(op, r_dest, value);
469}
470
471LIR* X86Mir2Lir::OpThreadMem(OpKind op, ThreadOffset<4> thread_offset) {
472  X86OpCode opcode = kX86Bkpt;
473  switch (op) {
474    case kOpBlx: opcode = kX86CallT;  break;
475    case kOpBx: opcode = kX86JmpT;  break;
476    default:
477      LOG(FATAL) << "Bad opcode: " << op;
478      break;
479  }
480  return NewLIR1(opcode, thread_offset.Int32Value());
481}
482
483LIR* X86Mir2Lir::OpMem(OpKind op, RegStorage r_base, int disp) {
484  X86OpCode opcode = kX86Bkpt;
485  switch (op) {
486    case kOpBlx: opcode = kX86CallM;  break;
487    default:
488      LOG(FATAL) << "Bad opcode: " << op;
489      break;
490  }
491  return NewLIR2(opcode, r_base.GetReg(), disp);
492}
493
494LIR* X86Mir2Lir::LoadConstantWide(RegStorage r_dest, int64_t value) {
495    int32_t val_lo = Low32Bits(value);
496    int32_t val_hi = High32Bits(value);
497    int32_t low_reg_val = r_dest.IsPair() ? r_dest.GetLowReg() : r_dest.GetReg();
498    LIR *res;
499    bool is_fp = X86_FPREG(low_reg_val);
500    // TODO: clean this up once we fully recognize 64-bit storage containers.
501    if (is_fp) {
502      if (value == 0) {
503        return NewLIR2(kX86XorpsRR, low_reg_val, low_reg_val);
504      } else if (base_of_code_ != nullptr) {
505        // We will load the value from the literal area.
506        LIR* data_target = ScanLiteralPoolWide(literal_list_, val_lo, val_hi);
507        if (data_target == NULL) {
508          data_target = AddWideData(&literal_list_, val_lo, val_hi);
509        }
510
511        // Address the start of the method
512        RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
513        rl_method = LoadValue(rl_method, kCoreReg);
514
515        // Load the proper value from the literal area.
516        // We don't know the proper offset for the value, so pick one that will force
517        // 4 byte offset.  We will fix this up in the assembler later to have the right
518        // value.
519        res = LoadBaseDisp(rl_method.reg, 256 /* bogus */, RegStorage::Solo64(low_reg_val),
520                           kDouble, INVALID_SREG);
521        res->target = data_target;
522        res->flags.fixup = kFixupLoad;
523        SetMemRefType(res, true, kLiteral);
524        store_method_addr_used_ = true;
525      } else {
526        if (val_lo == 0) {
527          res = NewLIR2(kX86XorpsRR, low_reg_val, low_reg_val);
528        } else {
529          res = LoadConstantNoClobber(RegStorage::Solo32(low_reg_val), val_lo);
530        }
531        if (val_hi != 0) {
532          // FIXME: clean up when AllocTempDouble no longer returns a pair.
533          RegStorage r_dest_hi = AllocTempDouble();
534          LoadConstantNoClobber(RegStorage::Solo32(r_dest_hi.GetLowReg()), val_hi);
535          NewLIR2(kX86PunpckldqRR, low_reg_val, r_dest_hi.GetLowReg());
536          FreeTemp(r_dest_hi);
537        }
538      }
539    } else {
540      res = LoadConstantNoClobber(r_dest.GetLow(), val_lo);
541      LoadConstantNoClobber(r_dest.GetHigh(), val_hi);
542    }
543    return res;
544}
545
546// FIXME: don't split r_dest into two storage units.
547LIR* X86Mir2Lir::LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
548                                     int displacement, RegStorage r_dest, RegStorage r_dest_hi,
549                                     OpSize size, int s_reg) {
550  LIR *load = NULL;
551  LIR *load2 = NULL;
552  bool is_array = r_index.Valid();
553  bool pair = false;
554  bool is64bit = false;
555  X86OpCode opcode = kX86Nop;
556  switch (size) {
557    case kLong:
558    case kDouble:
559      // TODO: use regstorage attributes here.
560      is64bit = true;
561      if (X86_FPREG(r_dest.GetReg())) {
562        opcode = is_array ? kX86MovsdRA : kX86MovsdRM;
563      } else {
564        pair = true;
565        opcode = is_array ? kX86Mov32RA  : kX86Mov32RM;
566      }
567      // TODO: double store is to unaligned address
568      DCHECK_EQ((displacement & 0x3), 0);
569      break;
570    case kWord:
571    case kSingle:
572      opcode = is_array ? kX86Mov32RA : kX86Mov32RM;
573      if (X86_FPREG(r_dest.GetReg())) {
574        opcode = is_array ? kX86MovssRA : kX86MovssRM;
575        DCHECK(X86_SINGLEREG(r_dest.GetReg()));
576      }
577      DCHECK_EQ((displacement & 0x3), 0);
578      break;
579    case kUnsignedHalf:
580      opcode = is_array ? kX86Movzx16RA : kX86Movzx16RM;
581      DCHECK_EQ((displacement & 0x1), 0);
582      break;
583    case kSignedHalf:
584      opcode = is_array ? kX86Movsx16RA : kX86Movsx16RM;
585      DCHECK_EQ((displacement & 0x1), 0);
586      break;
587    case kUnsignedByte:
588      opcode = is_array ? kX86Movzx8RA : kX86Movzx8RM;
589      break;
590    case kSignedByte:
591      opcode = is_array ? kX86Movsx8RA : kX86Movsx8RM;
592      break;
593    default:
594      LOG(FATAL) << "Bad case in LoadBaseIndexedDispBody";
595  }
596
597  if (!is_array) {
598    if (!pair) {
599      load = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), displacement + LOWORD_OFFSET);
600    } else {
601      if (r_base == r_dest) {
602        load2 = NewLIR3(opcode, r_dest_hi.GetReg(), r_base.GetReg(),
603                        displacement + HIWORD_OFFSET);
604        load = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), displacement + LOWORD_OFFSET);
605      } else {
606        load = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), displacement + LOWORD_OFFSET);
607        load2 = NewLIR3(opcode, r_dest_hi.GetReg(), r_base.GetReg(),
608                        displacement + HIWORD_OFFSET);
609      }
610    }
611    if (r_base == rs_rX86_SP) {
612      AnnotateDalvikRegAccess(load, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
613                              true /* is_load */, is64bit);
614      if (pair) {
615        AnnotateDalvikRegAccess(load2, (displacement + HIWORD_OFFSET) >> 2,
616                                true /* is_load */, is64bit);
617      }
618    }
619  } else {
620    if (!pair) {
621      load = NewLIR5(opcode, r_dest.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
622                     displacement + LOWORD_OFFSET);
623    } else {
624      if (r_base == r_dest) {
625        if (r_dest_hi == r_index) {
626          // We can't use either register for the first load.
627          RegStorage temp = AllocTemp();
628          load2 = NewLIR5(opcode, temp.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
629                          displacement + HIWORD_OFFSET);
630          load = NewLIR5(opcode, r_dest.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
631                         displacement + LOWORD_OFFSET);
632          OpRegCopy(r_dest_hi, temp);
633          FreeTemp(temp);
634        } else {
635          load2 = NewLIR5(opcode, r_dest_hi.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
636                          displacement + HIWORD_OFFSET);
637          load = NewLIR5(opcode, r_dest.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
638                         displacement + LOWORD_OFFSET);
639        }
640      } else {
641        if (r_dest == r_index) {
642          // We can't use either register for the first load.
643          RegStorage temp = AllocTemp();
644          load = NewLIR5(opcode, temp.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
645                         displacement + LOWORD_OFFSET);
646          load2 = NewLIR5(opcode, r_dest_hi.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
647                          displacement + HIWORD_OFFSET);
648          OpRegCopy(r_dest, temp);
649          FreeTemp(temp);
650        } else {
651          load = NewLIR5(opcode, r_dest.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
652                         displacement + LOWORD_OFFSET);
653          load2 = NewLIR5(opcode, r_dest_hi.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
654                          displacement + HIWORD_OFFSET);
655        }
656      }
657    }
658  }
659
660  return load;
661}
662
663/* Load value from base + scaled index. */
664LIR* X86Mir2Lir::LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
665                                 int scale, OpSize size) {
666  return LoadBaseIndexedDisp(r_base, r_index, scale, 0,
667                             r_dest, RegStorage::InvalidReg(), size, INVALID_SREG);
668}
669
670LIR* X86Mir2Lir::LoadBaseDisp(RegStorage r_base, int displacement,
671                  RegStorage r_dest, OpSize size, int s_reg) {
672  return LoadBaseIndexedDisp(r_base, RegStorage::InvalidReg(), 0, displacement,
673                             r_dest, RegStorage::InvalidReg(), size, s_reg);
674}
675
676LIR* X86Mir2Lir::LoadBaseDispWide(RegStorage r_base, int displacement, RegStorage r_dest,
677                                  int s_reg) {
678  return LoadBaseIndexedDisp(r_base, RegStorage::InvalidReg(), 0, displacement,
679                             r_dest.GetLow(), r_dest.GetHigh(), kLong, s_reg);
680}
681
682LIR* X86Mir2Lir::StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
683                                      int displacement, RegStorage r_src, RegStorage r_src_hi,
684                                      OpSize size, int s_reg) {
685  LIR *store = NULL;
686  LIR *store2 = NULL;
687  bool is_array = r_index.Valid();
688  // FIXME: use regstorage attributes in place of these.
689  bool pair = false;
690  bool is64bit = false;
691  X86OpCode opcode = kX86Nop;
692  switch (size) {
693    case kLong:
694    case kDouble:
695      is64bit = true;
696      if (X86_FPREG(r_src.GetReg())) {
697        opcode = is_array ? kX86MovsdAR : kX86MovsdMR;
698      } else {
699        pair = true;
700        opcode = is_array ? kX86Mov32AR  : kX86Mov32MR;
701      }
702      // TODO: double store is to unaligned address
703      DCHECK_EQ((displacement & 0x3), 0);
704      break;
705    case kWord:
706    case kSingle:
707      opcode = is_array ? kX86Mov32AR : kX86Mov32MR;
708      if (X86_FPREG(r_src.GetReg())) {
709        opcode = is_array ? kX86MovssAR : kX86MovssMR;
710        DCHECK(X86_SINGLEREG(r_src.GetReg()));
711      }
712      DCHECK_EQ((displacement & 0x3), 0);
713      break;
714    case kUnsignedHalf:
715    case kSignedHalf:
716      opcode = is_array ? kX86Mov16AR : kX86Mov16MR;
717      DCHECK_EQ((displacement & 0x1), 0);
718      break;
719    case kUnsignedByte:
720    case kSignedByte:
721      opcode = is_array ? kX86Mov8AR : kX86Mov8MR;
722      break;
723    default:
724      LOG(FATAL) << "Bad case in StoreBaseIndexedDispBody";
725  }
726
727  if (!is_array) {
728    if (!pair) {
729      store = NewLIR3(opcode, r_base.GetReg(), displacement + LOWORD_OFFSET, r_src.GetReg());
730    } else {
731      store = NewLIR3(opcode, r_base.GetReg(), displacement + LOWORD_OFFSET, r_src.GetReg());
732      store2 = NewLIR3(opcode, r_base.GetReg(), displacement + HIWORD_OFFSET, r_src_hi.GetReg());
733    }
734    if (r_base == rs_rX86_SP) {
735      AnnotateDalvikRegAccess(store, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
736                              false /* is_load */, is64bit);
737      if (pair) {
738        AnnotateDalvikRegAccess(store2, (displacement + HIWORD_OFFSET) >> 2,
739                                false /* is_load */, is64bit);
740      }
741    }
742  } else {
743    if (!pair) {
744      store = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale,
745                      displacement + LOWORD_OFFSET, r_src.GetReg());
746    } else {
747      store = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale,
748                      displacement + LOWORD_OFFSET, r_src.GetReg());
749      store2 = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale,
750                       displacement + HIWORD_OFFSET, r_src_hi.GetReg());
751    }
752  }
753
754  return store;
755}
756
757/* store value base base + scaled index. */
758LIR* X86Mir2Lir::StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
759                      int scale, OpSize size) {
760  return StoreBaseIndexedDisp(r_base, r_index, scale, 0,
761                              r_src, RegStorage::InvalidReg(), size, INVALID_SREG);
762}
763
764LIR* X86Mir2Lir::StoreBaseDisp(RegStorage r_base, int displacement,
765                               RegStorage r_src, OpSize size) {
766    return StoreBaseIndexedDisp(r_base, RegStorage::InvalidReg(), 0, displacement, r_src,
767                                RegStorage::InvalidReg(), size, INVALID_SREG);
768}
769
770LIR* X86Mir2Lir::StoreBaseDispWide(RegStorage r_base, int displacement, RegStorage r_src) {
771  return StoreBaseIndexedDisp(r_base, RegStorage::InvalidReg(), 0, displacement,
772                              r_src.GetLow(), r_src.GetHigh(), kLong, INVALID_SREG);
773}
774
775/*
776 * Copy a long value in Core registers to an XMM register
777 *
778 */
779void X86Mir2Lir::OpVectorRegCopyWide(uint8_t fp_reg, uint8_t low_reg, uint8_t high_reg) {
780  NewLIR2(kX86MovdxrRR, fp_reg, low_reg);
781  int tmp_reg = AllocTempDouble().GetLowReg();
782  NewLIR2(kX86MovdxrRR, tmp_reg, high_reg);
783  NewLIR2(kX86PunpckldqRR, fp_reg, tmp_reg);
784  FreeTemp(tmp_reg);
785}
786
787LIR* X86Mir2Lir::OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
788                                   int offset, int check_value, LIR* target) {
789    NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base_reg.GetReg(), offset,
790            check_value);
791    LIR* branch = OpCondBranch(cond, target);
792    return branch;
793}
794
795void X86Mir2Lir::AnalyzeMIR() {
796  // Assume we don't need a pointer to the base of the code.
797  cu_->NewTimingSplit("X86 MIR Analysis");
798  store_method_addr_ = false;
799
800  // Walk the MIR looking for interesting items.
801  PreOrderDfsIterator iter(mir_graph_);
802  BasicBlock* curr_bb = iter.Next();
803  while (curr_bb != NULL) {
804    AnalyzeBB(curr_bb);
805    curr_bb = iter.Next();
806  }
807
808  // Did we need a pointer to the method code?
809  if (store_method_addr_) {
810    base_of_code_ = mir_graph_->GetNewCompilerTemp(kCompilerTempVR, false);
811  } else {
812    base_of_code_ = nullptr;
813  }
814}
815
816void X86Mir2Lir::AnalyzeBB(BasicBlock * bb) {
817  if (bb->block_type == kDead) {
818    // Ignore dead blocks
819    return;
820  }
821
822  for (MIR *mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
823    int opcode = mir->dalvikInsn.opcode;
824    if (opcode >= kMirOpFirst) {
825      AnalyzeExtendedMIR(opcode, bb, mir);
826    } else {
827      AnalyzeMIR(opcode, bb, mir);
828    }
829  }
830}
831
832
833void X86Mir2Lir::AnalyzeExtendedMIR(int opcode, BasicBlock * bb, MIR *mir) {
834  switch (opcode) {
835    // Instructions referencing doubles.
836    case kMirOpFusedCmplDouble:
837    case kMirOpFusedCmpgDouble:
838      AnalyzeFPInstruction(opcode, bb, mir);
839      break;
840    default:
841      // Ignore the rest.
842      break;
843  }
844}
845
846void X86Mir2Lir::AnalyzeMIR(int opcode, BasicBlock * bb, MIR *mir) {
847  // Looking for
848  // - Do we need a pointer to the code (used for packed switches and double lits)?
849
850  switch (opcode) {
851    // Instructions referencing doubles.
852    case Instruction::CMPL_DOUBLE:
853    case Instruction::CMPG_DOUBLE:
854    case Instruction::NEG_DOUBLE:
855    case Instruction::ADD_DOUBLE:
856    case Instruction::SUB_DOUBLE:
857    case Instruction::MUL_DOUBLE:
858    case Instruction::DIV_DOUBLE:
859    case Instruction::REM_DOUBLE:
860    case Instruction::ADD_DOUBLE_2ADDR:
861    case Instruction::SUB_DOUBLE_2ADDR:
862    case Instruction::MUL_DOUBLE_2ADDR:
863    case Instruction::DIV_DOUBLE_2ADDR:
864    case Instruction::REM_DOUBLE_2ADDR:
865      AnalyzeFPInstruction(opcode, bb, mir);
866      break;
867
868    // Packed switches and array fills need a pointer to the base of the method.
869    case Instruction::FILL_ARRAY_DATA:
870    case Instruction::PACKED_SWITCH:
871      store_method_addr_ = true;
872      break;
873    default:
874      // Other instructions are not interesting yet.
875      break;
876  }
877}
878
879void X86Mir2Lir::AnalyzeFPInstruction(int opcode, BasicBlock * bb, MIR *mir) {
880  // Look at all the uses, and see if they are double constants.
881  uint64_t attrs = mir_graph_->oat_data_flow_attributes_[opcode];
882  int next_sreg = 0;
883  if (attrs & DF_UA) {
884    if (attrs & DF_A_WIDE) {
885      AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg));
886      next_sreg += 2;
887    } else {
888      next_sreg++;
889    }
890  }
891  if (attrs & DF_UB) {
892    if (attrs & DF_B_WIDE) {
893      AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg));
894      next_sreg += 2;
895    } else {
896      next_sreg++;
897    }
898  }
899  if (attrs & DF_UC) {
900    if (attrs & DF_C_WIDE) {
901      AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg));
902    }
903  }
904}
905
906void X86Mir2Lir::AnalyzeDoubleUse(RegLocation use) {
907  // If this is a double literal, we will want it in the literal pool.
908  if (use.is_const) {
909    store_method_addr_ = true;
910  }
911}
912
913}  // namespace art
914