heap.cc revision a5b5c55c8585b7ce915f0c7e1f66d121a7f7a078
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "heap.h"
18
19#define ATRACE_TAG ATRACE_TAG_DALVIK
20#include <cutils/trace.h>
21
22#include <limits>
23#include <memory>
24#include <vector>
25
26#include "base/histogram-inl.h"
27#include "base/stl_util.h"
28#include "common_throws.h"
29#include "cutils/sched_policy.h"
30#include "debugger.h"
31#include "gc/accounting/atomic_stack.h"
32#include "gc/accounting/card_table-inl.h"
33#include "gc/accounting/heap_bitmap-inl.h"
34#include "gc/accounting/mod_union_table.h"
35#include "gc/accounting/mod_union_table-inl.h"
36#include "gc/accounting/remembered_set.h"
37#include "gc/accounting/space_bitmap-inl.h"
38#include "gc/collector/concurrent_copying.h"
39#include "gc/collector/mark_compact.h"
40#include "gc/collector/mark_sweep-inl.h"
41#include "gc/collector/partial_mark_sweep.h"
42#include "gc/collector/semi_space.h"
43#include "gc/collector/sticky_mark_sweep.h"
44#include "gc/reference_processor.h"
45#include "gc/space/bump_pointer_space.h"
46#include "gc/space/dlmalloc_space-inl.h"
47#include "gc/space/image_space.h"
48#include "gc/space/large_object_space.h"
49#include "gc/space/rosalloc_space-inl.h"
50#include "gc/space/space-inl.h"
51#include "gc/space/zygote_space.h"
52#include "entrypoints/quick/quick_alloc_entrypoints.h"
53#include "heap-inl.h"
54#include "image.h"
55#include "mirror/art_field-inl.h"
56#include "mirror/class-inl.h"
57#include "mirror/object.h"
58#include "mirror/object-inl.h"
59#include "mirror/object_array-inl.h"
60#include "mirror/reference-inl.h"
61#include "object_utils.h"
62#include "os.h"
63#include "reflection.h"
64#include "runtime.h"
65#include "ScopedLocalRef.h"
66#include "scoped_thread_state_change.h"
67#include "handle_scope-inl.h"
68#include "thread_list.h"
69#include "well_known_classes.h"
70
71namespace art {
72
73namespace gc {
74
75static constexpr size_t kCollectorTransitionStressIterations = 0;
76static constexpr size_t kCollectorTransitionStressWait = 10 * 1000;  // Microseconds
77static constexpr bool kGCALotMode = false;
78static constexpr size_t kGcAlotInterval = KB;
79// Minimum amount of remaining bytes before a concurrent GC is triggered.
80static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
81static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
82// Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more
83// relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator
84// threads (lower pauses, use less memory bandwidth).
85static constexpr double kStickyGcThroughputAdjustment = 1.0;
86// Whether or not we use the free list large object space.
87static constexpr bool kUseFreeListSpaceForLOS = false;
88// Whether or not we compact the zygote in PreZygoteFork.
89static constexpr bool kCompactZygote = kMovingCollector;
90static constexpr size_t kNonMovingSpaceCapacity = 64 * MB;
91// How many reserve entries are at the end of the allocation stack, these are only needed if the
92// allocation stack overflows.
93static constexpr size_t kAllocationStackReserveSize = 1024;
94// Default mark stack size in bytes.
95static const size_t kDefaultMarkStackSize = 64 * KB;
96
97Heap::Heap(size_t initial_size, size_t growth_limit, size_t min_free, size_t max_free,
98           double target_utilization, double foreground_heap_growth_multiplier, size_t capacity,
99           const std::string& image_file_name, const InstructionSet image_instruction_set,
100           CollectorType foreground_collector_type, CollectorType background_collector_type,
101           size_t parallel_gc_threads, size_t conc_gc_threads, bool low_memory_mode,
102           size_t long_pause_log_threshold, size_t long_gc_log_threshold,
103           bool ignore_max_footprint, bool use_tlab,
104           bool verify_pre_gc_heap, bool verify_pre_sweeping_heap, bool verify_post_gc_heap,
105           bool verify_pre_gc_rosalloc, bool verify_pre_sweeping_rosalloc,
106           bool verify_post_gc_rosalloc)
107    : non_moving_space_(nullptr),
108      rosalloc_space_(nullptr),
109      dlmalloc_space_(nullptr),
110      main_space_(nullptr),
111      collector_type_(kCollectorTypeNone),
112      foreground_collector_type_(foreground_collector_type),
113      background_collector_type_(background_collector_type),
114      desired_collector_type_(foreground_collector_type_),
115      heap_trim_request_lock_(nullptr),
116      last_trim_time_(0),
117      heap_transition_or_trim_target_time_(0),
118      heap_trim_request_pending_(false),
119      parallel_gc_threads_(parallel_gc_threads),
120      conc_gc_threads_(conc_gc_threads),
121      low_memory_mode_(low_memory_mode),
122      long_pause_log_threshold_(long_pause_log_threshold),
123      long_gc_log_threshold_(long_gc_log_threshold),
124      ignore_max_footprint_(ignore_max_footprint),
125      zygote_creation_lock_("zygote creation lock", kZygoteCreationLock),
126      have_zygote_space_(false),
127      large_object_threshold_(std::numeric_limits<size_t>::max()),  // Starts out disabled.
128      collector_type_running_(kCollectorTypeNone),
129      last_gc_type_(collector::kGcTypeNone),
130      next_gc_type_(collector::kGcTypePartial),
131      capacity_(capacity),
132      growth_limit_(growth_limit),
133      max_allowed_footprint_(initial_size),
134      native_footprint_gc_watermark_(initial_size),
135      native_footprint_limit_(2 * initial_size),
136      native_need_to_run_finalization_(false),
137      // Initially assume we perceive jank in case the process state is never updated.
138      process_state_(kProcessStateJankPerceptible),
139      concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
140      total_bytes_freed_ever_(0),
141      total_objects_freed_ever_(0),
142      num_bytes_allocated_(0),
143      native_bytes_allocated_(0),
144      gc_memory_overhead_(0),
145      verify_missing_card_marks_(false),
146      verify_system_weaks_(false),
147      verify_pre_gc_heap_(verify_pre_gc_heap),
148      verify_pre_sweeping_heap_(verify_pre_sweeping_heap),
149      verify_post_gc_heap_(verify_post_gc_heap),
150      verify_mod_union_table_(false),
151      verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
152      verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc),
153      verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
154      last_gc_time_ns_(NanoTime()),
155      allocation_rate_(0),
156      /* For GC a lot mode, we limit the allocations stacks to be kGcAlotInterval allocations. This
157       * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
158       * verification is enabled, we limit the size of allocation stacks to speed up their
159       * searching.
160       */
161      max_allocation_stack_size_(kGCALotMode ? kGcAlotInterval
162          : (kVerifyObjectSupport > kVerifyObjectModeFast) ? KB : MB),
163      current_allocator_(kAllocatorTypeDlMalloc),
164      current_non_moving_allocator_(kAllocatorTypeNonMoving),
165      bump_pointer_space_(nullptr),
166      temp_space_(nullptr),
167      min_free_(min_free),
168      max_free_(max_free),
169      target_utilization_(target_utilization),
170      foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier),
171      total_wait_time_(0),
172      total_allocation_time_(0),
173      verify_object_mode_(kVerifyObjectModeDisabled),
174      disable_moving_gc_count_(0),
175      running_on_valgrind_(Runtime::Current()->RunningOnValgrind()),
176      use_tlab_(use_tlab) {
177  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
178    LOG(INFO) << "Heap() entering";
179  }
180  const bool is_zygote = Runtime::Current()->IsZygote();
181  // If we aren't the zygote, switch to the default non zygote allocator. This may update the
182  // entrypoints.
183  if (!is_zygote) {
184    large_object_threshold_ = kDefaultLargeObjectThreshold;
185    // Background compaction is currently not supported for command line runs.
186    if (background_collector_type_ != foreground_collector_type_) {
187      VLOG(heap) << "Disabling background compaction for non zygote";
188      background_collector_type_ = foreground_collector_type_;
189    }
190  }
191  ChangeCollector(desired_collector_type_);
192
193  live_bitmap_.reset(new accounting::HeapBitmap(this));
194  mark_bitmap_.reset(new accounting::HeapBitmap(this));
195  // Requested begin for the alloc space, to follow the mapped image and oat files
196  byte* requested_alloc_space_begin = nullptr;
197  if (!image_file_name.empty()) {
198    space::ImageSpace* image_space = space::ImageSpace::Create(image_file_name.c_str(),
199                                                               image_instruction_set);
200    CHECK(image_space != nullptr) << "Failed to create space for " << image_file_name;
201    AddSpace(image_space);
202    // Oat files referenced by image files immediately follow them in memory, ensure alloc space
203    // isn't going to get in the middle
204    byte* oat_file_end_addr = image_space->GetImageHeader().GetOatFileEnd();
205    CHECK_GT(oat_file_end_addr, image_space->End());
206    requested_alloc_space_begin = AlignUp(oat_file_end_addr, kPageSize);
207  }
208  if (is_zygote) {
209    // Reserve the address range before we create the non moving space to make sure bitmaps don't
210    // take it.
211    std::string error_str;
212    MemMap* mem_map = MemMap::MapAnonymous(
213        "main space", requested_alloc_space_begin + kNonMovingSpaceCapacity, capacity,
214        PROT_READ | PROT_WRITE, true, &error_str);
215    CHECK(mem_map != nullptr) << error_str;
216    // Non moving space is always dlmalloc since we currently don't have support for multiple
217    // rosalloc spaces.
218    non_moving_space_ = space::DlMallocSpace::Create(
219        "zygote / non moving space", initial_size, kNonMovingSpaceCapacity, kNonMovingSpaceCapacity,
220        requested_alloc_space_begin, false);
221    non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
222    CreateMainMallocSpace(mem_map, initial_size, growth_limit, capacity);
223  } else {
224    std::string error_str;
225    MemMap* mem_map = MemMap::MapAnonymous("main/non-moving space", requested_alloc_space_begin,
226                                           capacity, PROT_READ | PROT_WRITE, true, &error_str);
227    CHECK(mem_map != nullptr) << error_str;
228    // Create the main free list space, which doubles as the non moving space. We can do this since
229    // non zygote means that we won't have any background compaction.
230    CreateMainMallocSpace(mem_map, initial_size, growth_limit, capacity);
231    non_moving_space_ = main_space_;
232  }
233  CHECK(non_moving_space_ != nullptr);
234
235  // We need to create the bump pointer if the foreground collector is a compacting GC. We only
236  // create the bump pointer space if we are not a moving foreground collector but have a moving
237  // background collector since the heap transition code will create the temp space by recycling
238  // the bitmap from the main space.
239  if (kMovingCollector &&
240      (IsMovingGc(foreground_collector_type_) || IsMovingGc(background_collector_type_))) {
241    // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
242    // Divide by 2 for a temporary fix for reducing virtual memory usage.
243    const size_t bump_pointer_space_capacity = capacity / 2;
244    bump_pointer_space_ = space::BumpPointerSpace::Create("Bump pointer space",
245                                                          bump_pointer_space_capacity, nullptr);
246    CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
247    AddSpace(bump_pointer_space_);
248    temp_space_ = space::BumpPointerSpace::Create("Bump pointer space 2",
249                                                  bump_pointer_space_capacity, nullptr);
250    CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
251    AddSpace(temp_space_);
252  }
253  if (non_moving_space_ != main_space_) {
254    AddSpace(non_moving_space_);
255  }
256  if (main_space_ != nullptr) {
257    AddSpace(main_space_);
258  }
259
260  // Allocate the large object space.
261  if (kUseFreeListSpaceForLOS) {
262    large_object_space_ = space::FreeListSpace::Create("large object space", nullptr, capacity);
263  } else {
264    large_object_space_ = space::LargeObjectMapSpace::Create("large object space");
265  }
266  CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
267  AddSpace(large_object_space_);
268
269  // Compute heap capacity. Continuous spaces are sorted in order of Begin().
270  CHECK(!continuous_spaces_.empty());
271
272  // Relies on the spaces being sorted.
273  byte* heap_begin = continuous_spaces_.front()->Begin();
274  byte* heap_end = continuous_spaces_.back()->Limit();
275  size_t heap_capacity = heap_end - heap_begin;
276
277  // Allocate the card table.
278  card_table_.reset(accounting::CardTable::Create(heap_begin, heap_capacity));
279  CHECK(card_table_.get() != NULL) << "Failed to create card table";
280
281  // Card cache for now since it makes it easier for us to update the references to the copying
282  // spaces.
283  accounting::ModUnionTable* mod_union_table =
284      new accounting::ModUnionTableToZygoteAllocspace("Image mod-union table", this,
285                                                      GetImageSpace());
286  CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
287  AddModUnionTable(mod_union_table);
288
289  if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) {
290    accounting::RememberedSet* non_moving_space_rem_set =
291        new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
292    CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
293    AddRememberedSet(non_moving_space_rem_set);
294  }
295
296  // TODO: Count objects in the image space here.
297  num_bytes_allocated_.StoreRelaxed(0);
298
299  mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize,
300                                                    kDefaultMarkStackSize));
301  const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize;
302  allocation_stack_.reset(accounting::ObjectStack::Create(
303      "allocation stack", max_allocation_stack_size_, alloc_stack_capacity));
304  live_stack_.reset(accounting::ObjectStack::Create(
305      "live stack", max_allocation_stack_size_, alloc_stack_capacity));
306
307  // It's still too early to take a lock because there are no threads yet, but we can create locks
308  // now. We don't create it earlier to make it clear that you can't use locks during heap
309  // initialization.
310  gc_complete_lock_ = new Mutex("GC complete lock");
311  gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
312                                                *gc_complete_lock_));
313  heap_trim_request_lock_ = new Mutex("Heap trim request lock");
314  last_gc_size_ = GetBytesAllocated();
315
316  if (ignore_max_footprint_) {
317    SetIdealFootprint(std::numeric_limits<size_t>::max());
318    concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
319  }
320  CHECK_NE(max_allowed_footprint_, 0U);
321
322  // Create our garbage collectors.
323  for (size_t i = 0; i < 2; ++i) {
324    const bool concurrent = i != 0;
325    garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
326    garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
327    garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
328  }
329  if (kMovingCollector) {
330    // TODO: Clean this up.
331    bool generational = foreground_collector_type_ == kCollectorTypeGSS;
332    semi_space_collector_ = new collector::SemiSpace(this, generational,
333                                                     generational ? "generational" : "");
334    garbage_collectors_.push_back(semi_space_collector_);
335    concurrent_copying_collector_ = new collector::ConcurrentCopying(this);
336    garbage_collectors_.push_back(concurrent_copying_collector_);
337    mark_compact_collector_ = new collector::MarkCompact(this);
338    garbage_collectors_.push_back(mark_compact_collector_);
339  }
340
341  if (GetImageSpace() != nullptr && main_space_ != nullptr) {
342    // Check that there's no gap between the image space and the main
343    // space so that the immune region won't break (eg. due to a large
344    // object allocated in the gap).
345    bool no_gap = MemMap::CheckNoGaps(GetImageSpace()->GetMemMap(), main_space_->GetMemMap());
346    if (!no_gap) {
347      MemMap::DumpMaps(LOG(ERROR));
348      LOG(FATAL) << "There's a gap between the image space and the main space";
349    }
350  }
351
352  if (running_on_valgrind_) {
353    Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
354  }
355
356  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
357    LOG(INFO) << "Heap() exiting";
358  }
359}
360
361void Heap::CreateMainMallocSpace(MemMap* mem_map, size_t initial_size, size_t growth_limit,
362                                 size_t capacity) {
363  // Is background compaction is enabled?
364  bool can_move_objects = IsMovingGc(background_collector_type_) !=
365      IsMovingGc(foreground_collector_type_);
366  // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will
367  // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact
368  // from the main space to the zygote space. If background compaction is enabled, always pass in
369  // that we can move objets.
370  if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) {
371    // After the zygote we want this to be false if we don't have background compaction enabled so
372    // that getting primitive array elements is faster.
373    can_move_objects = !have_zygote_space_;
374  }
375  if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) {
376    RemoveRememberedSet(main_space_);
377  }
378  if (kUseRosAlloc) {
379    rosalloc_space_ = space::RosAllocSpace::CreateFromMemMap(
380        mem_map, "main rosalloc space", kDefaultStartingSize, initial_size, growth_limit, capacity,
381        low_memory_mode_, can_move_objects);
382    main_space_ = rosalloc_space_;
383    CHECK(main_space_ != nullptr) << "Failed to create rosalloc space";
384  } else {
385    dlmalloc_space_ = space::DlMallocSpace::CreateFromMemMap(
386        mem_map, "main dlmalloc space", kDefaultStartingSize, initial_size, growth_limit, capacity,
387        can_move_objects);
388    main_space_ = dlmalloc_space_;
389    CHECK(main_space_ != nullptr) << "Failed to create dlmalloc space";
390  }
391  main_space_->SetFootprintLimit(main_space_->Capacity());
392  if (collector::SemiSpace::kUseRememberedSet) {
393    accounting::RememberedSet* main_space_rem_set =
394        new accounting::RememberedSet("Main space remembered set", this, main_space_);
395    CHECK(main_space_rem_set != nullptr) << "Failed to create main space remembered set";
396    AddRememberedSet(main_space_rem_set);
397  }
398  VLOG(heap) << "Created main space " << main_space_;
399}
400
401void Heap::ChangeAllocator(AllocatorType allocator) {
402  if (current_allocator_ != allocator) {
403    // These two allocators are only used internally and don't have any entrypoints.
404    CHECK_NE(allocator, kAllocatorTypeLOS);
405    CHECK_NE(allocator, kAllocatorTypeNonMoving);
406    current_allocator_ = allocator;
407    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
408    SetQuickAllocEntryPointsAllocator(current_allocator_);
409    Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
410  }
411}
412
413void Heap::DisableCompaction() {
414  if (IsMovingGc(foreground_collector_type_)) {
415    foreground_collector_type_  = kCollectorTypeCMS;
416  }
417  if (IsMovingGc(background_collector_type_)) {
418    background_collector_type_ = foreground_collector_type_;
419  }
420  TransitionCollector(foreground_collector_type_);
421}
422
423std::string Heap::SafeGetClassDescriptor(mirror::Class* klass) {
424  if (!IsValidContinuousSpaceObjectAddress(klass)) {
425    return StringPrintf("<non heap address klass %p>", klass);
426  }
427  mirror::Class* component_type = klass->GetComponentType<kVerifyNone>();
428  if (IsValidContinuousSpaceObjectAddress(component_type) && klass->IsArrayClass<kVerifyNone>()) {
429    std::string result("[");
430    result += SafeGetClassDescriptor(component_type);
431    return result;
432  } else if (UNLIKELY(klass->IsPrimitive<kVerifyNone>())) {
433    return Primitive::Descriptor(klass->GetPrimitiveType<kVerifyNone>());
434  } else if (UNLIKELY(klass->IsProxyClass<kVerifyNone>())) {
435    return Runtime::Current()->GetClassLinker()->GetDescriptorForProxy(klass);
436  } else {
437    mirror::DexCache* dex_cache = klass->GetDexCache<kVerifyNone>();
438    if (!IsValidContinuousSpaceObjectAddress(dex_cache)) {
439      return StringPrintf("<non heap address dex_cache %p>", dex_cache);
440    }
441    const DexFile* dex_file = dex_cache->GetDexFile();
442    uint16_t class_def_idx = klass->GetDexClassDefIndex();
443    if (class_def_idx == DexFile::kDexNoIndex16) {
444      return "<class def not found>";
445    }
446    const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_idx);
447    const DexFile::TypeId& type_id = dex_file->GetTypeId(class_def.class_idx_);
448    return dex_file->GetTypeDescriptor(type_id);
449  }
450}
451
452std::string Heap::SafePrettyTypeOf(mirror::Object* obj) {
453  if (obj == nullptr) {
454    return "null";
455  }
456  mirror::Class* klass = obj->GetClass<kVerifyNone>();
457  if (klass == nullptr) {
458    return "(class=null)";
459  }
460  std::string result(SafeGetClassDescriptor(klass));
461  if (obj->IsClass()) {
462    result += "<" + SafeGetClassDescriptor(obj->AsClass<kVerifyNone>()) + ">";
463  }
464  return result;
465}
466
467void Heap::DumpObject(std::ostream& stream, mirror::Object* obj) {
468  if (obj == nullptr) {
469    stream << "(obj=null)";
470    return;
471  }
472  if (IsAligned<kObjectAlignment>(obj)) {
473    space::Space* space = nullptr;
474    // Don't use find space since it only finds spaces which actually contain objects instead of
475    // spaces which may contain objects (e.g. cleared bump pointer spaces).
476    for (const auto& cur_space : continuous_spaces_) {
477      if (cur_space->HasAddress(obj)) {
478        space = cur_space;
479        break;
480      }
481    }
482    // Unprotect all the spaces.
483    for (const auto& space : continuous_spaces_) {
484      mprotect(space->Begin(), space->Capacity(), PROT_READ | PROT_WRITE);
485    }
486    stream << "Object " << obj;
487    if (space != nullptr) {
488      stream << " in space " << *space;
489    }
490    mirror::Class* klass = obj->GetClass<kVerifyNone>();
491    stream << "\nclass=" << klass;
492    if (klass != nullptr) {
493      stream << " type= " << SafePrettyTypeOf(obj);
494    }
495    // Re-protect the address we faulted on.
496    mprotect(AlignDown(obj, kPageSize), kPageSize, PROT_NONE);
497  }
498}
499
500bool Heap::IsCompilingBoot() const {
501  for (const auto& space : continuous_spaces_) {
502    if (space->IsImageSpace() || space->IsZygoteSpace()) {
503      return false;
504    }
505  }
506  return true;
507}
508
509bool Heap::HasImageSpace() const {
510  for (const auto& space : continuous_spaces_) {
511    if (space->IsImageSpace()) {
512      return true;
513    }
514  }
515  return false;
516}
517
518void Heap::IncrementDisableMovingGC(Thread* self) {
519  // Need to do this holding the lock to prevent races where the GC is about to run / running when
520  // we attempt to disable it.
521  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
522  MutexLock mu(self, *gc_complete_lock_);
523  ++disable_moving_gc_count_;
524  if (IsMovingGc(collector_type_running_)) {
525    WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self);
526  }
527}
528
529void Heap::DecrementDisableMovingGC(Thread* self) {
530  MutexLock mu(self, *gc_complete_lock_);
531  CHECK_GE(disable_moving_gc_count_, 0U);
532  --disable_moving_gc_count_;
533}
534
535void Heap::UpdateProcessState(ProcessState process_state) {
536  if (process_state_ != process_state) {
537    process_state_ = process_state;
538    for (size_t i = 1; i <= kCollectorTransitionStressIterations; ++i) {
539      // Start at index 1 to avoid "is always false" warning.
540      // Have iteration 1 always transition the collector.
541      TransitionCollector((((i & 1) == 1) == (process_state_ == kProcessStateJankPerceptible))
542                          ? foreground_collector_type_ : background_collector_type_);
543      usleep(kCollectorTransitionStressWait);
544    }
545    if (process_state_ == kProcessStateJankPerceptible) {
546      // Transition back to foreground right away to prevent jank.
547      RequestCollectorTransition(foreground_collector_type_, 0);
548    } else {
549      // Don't delay for debug builds since we may want to stress test the GC.
550      RequestCollectorTransition(background_collector_type_, kIsDebugBuild ? 0 :
551          kCollectorTransitionWait);
552    }
553  }
554}
555
556void Heap::CreateThreadPool() {
557  const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
558  if (num_threads != 0) {
559    thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
560  }
561}
562
563void Heap::VisitObjects(ObjectCallback callback, void* arg) {
564  Thread* self = Thread::Current();
565  // GCs can move objects, so don't allow this.
566  const char* old_cause = self->StartAssertNoThreadSuspension("Visiting objects");
567  if (bump_pointer_space_ != nullptr) {
568    // Visit objects in bump pointer space.
569    bump_pointer_space_->Walk(callback, arg);
570  }
571  // TODO: Switch to standard begin and end to use ranged a based loop.
572  for (mirror::Object** it = allocation_stack_->Begin(), **end = allocation_stack_->End();
573      it < end; ++it) {
574    mirror::Object* obj = *it;
575    if (obj != nullptr && obj->GetClass() != nullptr) {
576      // Avoid the race condition caused by the object not yet being written into the allocation
577      // stack or the class not yet being written in the object. Or, if kUseThreadLocalAllocationStack,
578      // there can be nulls on the allocation stack.
579      callback(obj, arg);
580    }
581  }
582  GetLiveBitmap()->Walk(callback, arg);
583  self->EndAssertNoThreadSuspension(old_cause);
584}
585
586void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
587  space::ContinuousSpace* space1 = rosalloc_space_ != nullptr ? rosalloc_space_ : non_moving_space_;
588  space::ContinuousSpace* space2 = dlmalloc_space_ != nullptr ? dlmalloc_space_ : non_moving_space_;
589  // This is just logic to handle a case of either not having a rosalloc or dlmalloc space.
590  // TODO: Generalize this to n bitmaps?
591  if (space1 == nullptr) {
592    DCHECK(space2 != nullptr);
593    space1 = space2;
594  }
595  if (space2 == nullptr) {
596    DCHECK(space1 != nullptr);
597    space2 = space1;
598  }
599  MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
600                 large_object_space_->GetLiveBitmap(), stack);
601}
602
603void Heap::DeleteThreadPool() {
604  thread_pool_.reset(nullptr);
605}
606
607void Heap::AddSpace(space::Space* space) {
608  DCHECK(space != nullptr);
609  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
610  if (space->IsContinuousSpace()) {
611    DCHECK(!space->IsDiscontinuousSpace());
612    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
613    // Continuous spaces don't necessarily have bitmaps.
614    accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
615    accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
616    if (live_bitmap != nullptr) {
617      DCHECK(mark_bitmap != nullptr);
618      live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
619      mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
620    }
621    continuous_spaces_.push_back(continuous_space);
622    // Ensure that spaces remain sorted in increasing order of start address.
623    std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
624              [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
625      return a->Begin() < b->Begin();
626    });
627  } else {
628    DCHECK(space->IsDiscontinuousSpace());
629    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
630    live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
631    mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
632    discontinuous_spaces_.push_back(discontinuous_space);
633  }
634  if (space->IsAllocSpace()) {
635    alloc_spaces_.push_back(space->AsAllocSpace());
636  }
637}
638
639void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) {
640  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
641  if (continuous_space->IsDlMallocSpace()) {
642    dlmalloc_space_ = continuous_space->AsDlMallocSpace();
643  } else if (continuous_space->IsRosAllocSpace()) {
644    rosalloc_space_ = continuous_space->AsRosAllocSpace();
645  }
646}
647
648void Heap::RemoveSpace(space::Space* space) {
649  DCHECK(space != nullptr);
650  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
651  if (space->IsContinuousSpace()) {
652    DCHECK(!space->IsDiscontinuousSpace());
653    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
654    // Continuous spaces don't necessarily have bitmaps.
655    accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
656    accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
657    if (live_bitmap != nullptr) {
658      DCHECK(mark_bitmap != nullptr);
659      live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
660      mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
661    }
662    auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
663    DCHECK(it != continuous_spaces_.end());
664    continuous_spaces_.erase(it);
665  } else {
666    DCHECK(space->IsDiscontinuousSpace());
667    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
668    live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
669    mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
670    auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
671                        discontinuous_space);
672    DCHECK(it != discontinuous_spaces_.end());
673    discontinuous_spaces_.erase(it);
674  }
675  if (space->IsAllocSpace()) {
676    auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
677    DCHECK(it != alloc_spaces_.end());
678    alloc_spaces_.erase(it);
679  }
680}
681
682void Heap::RegisterGCAllocation(size_t bytes) {
683  if (this != nullptr) {
684    gc_memory_overhead_.FetchAndAddSequentiallyConsistent(bytes);
685  }
686}
687
688void Heap::RegisterGCDeAllocation(size_t bytes) {
689  if (this != nullptr) {
690    gc_memory_overhead_.FetchAndSubSequentiallyConsistent(bytes);
691  }
692}
693
694void Heap::DumpGcPerformanceInfo(std::ostream& os) {
695  // Dump cumulative timings.
696  os << "Dumping cumulative Gc timings\n";
697  uint64_t total_duration = 0;
698  // Dump cumulative loggers for each GC type.
699  uint64_t total_paused_time = 0;
700  for (auto& collector : garbage_collectors_) {
701    const CumulativeLogger& logger = collector->GetCumulativeTimings();
702    const size_t iterations = logger.GetIterations();
703    const Histogram<uint64_t>& pause_histogram = collector->GetPauseHistogram();
704    if (iterations != 0 && pause_histogram.SampleSize() != 0) {
705      os << ConstDumpable<CumulativeLogger>(logger);
706      const uint64_t total_ns = logger.GetTotalNs();
707      const uint64_t total_pause_ns = collector->GetTotalPausedTimeNs();
708      double seconds = NsToMs(logger.GetTotalNs()) / 1000.0;
709      const uint64_t freed_bytes = collector->GetTotalFreedBytes();
710      const uint64_t freed_objects = collector->GetTotalFreedObjects();
711      Histogram<uint64_t>::CumulativeData cumulative_data;
712      pause_histogram.CreateHistogram(&cumulative_data);
713      pause_histogram.PrintConfidenceIntervals(os, 0.99, cumulative_data);
714      os << collector->GetName() << " total time: " << PrettyDuration(total_ns)
715         << " mean time: " << PrettyDuration(total_ns / iterations) << "\n"
716         << collector->GetName() << " freed: " << freed_objects
717         << " objects with total size " << PrettySize(freed_bytes) << "\n"
718         << collector->GetName() << " throughput: " << freed_objects / seconds << "/s / "
719         << PrettySize(freed_bytes / seconds) << "/s\n";
720      total_duration += total_ns;
721      total_paused_time += total_pause_ns;
722    }
723    collector->ResetMeasurements();
724  }
725  uint64_t allocation_time =
726      static_cast<uint64_t>(total_allocation_time_.LoadRelaxed()) * kTimeAdjust;
727  if (total_duration != 0) {
728    const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
729    os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
730    os << "Mean GC size throughput: "
731       << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
732    os << "Mean GC object throughput: "
733       << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
734  }
735  size_t total_objects_allocated = GetObjectsAllocatedEver();
736  os << "Total number of allocations: " << total_objects_allocated << "\n";
737  size_t total_bytes_allocated = GetBytesAllocatedEver();
738  os << "Total bytes allocated " << PrettySize(total_bytes_allocated) << "\n";
739  if (kMeasureAllocationTime) {
740    os << "Total time spent allocating: " << PrettyDuration(allocation_time) << "\n";
741    os << "Mean allocation time: " << PrettyDuration(allocation_time / total_objects_allocated)
742       << "\n";
743  }
744  os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
745  os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
746  os << "Approximate GC data structures memory overhead: " << gc_memory_overhead_.LoadRelaxed();
747  BaseMutex::DumpAll(os);
748}
749
750Heap::~Heap() {
751  VLOG(heap) << "Starting ~Heap()";
752  STLDeleteElements(&garbage_collectors_);
753  // If we don't reset then the mark stack complains in its destructor.
754  allocation_stack_->Reset();
755  live_stack_->Reset();
756  STLDeleteValues(&mod_union_tables_);
757  STLDeleteValues(&remembered_sets_);
758  STLDeleteElements(&continuous_spaces_);
759  STLDeleteElements(&discontinuous_spaces_);
760  delete gc_complete_lock_;
761  delete heap_trim_request_lock_;
762  VLOG(heap) << "Finished ~Heap()";
763}
764
765space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(const mirror::Object* obj,
766                                                            bool fail_ok) const {
767  for (const auto& space : continuous_spaces_) {
768    if (space->Contains(obj)) {
769      return space;
770    }
771  }
772  if (!fail_ok) {
773    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
774  }
775  return NULL;
776}
777
778space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(const mirror::Object* obj,
779                                                                  bool fail_ok) const {
780  for (const auto& space : discontinuous_spaces_) {
781    if (space->Contains(obj)) {
782      return space;
783    }
784  }
785  if (!fail_ok) {
786    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
787  }
788  return NULL;
789}
790
791space::Space* Heap::FindSpaceFromObject(const mirror::Object* obj, bool fail_ok) const {
792  space::Space* result = FindContinuousSpaceFromObject(obj, true);
793  if (result != NULL) {
794    return result;
795  }
796  return FindDiscontinuousSpaceFromObject(obj, true);
797}
798
799space::ImageSpace* Heap::GetImageSpace() const {
800  for (const auto& space : continuous_spaces_) {
801    if (space->IsImageSpace()) {
802      return space->AsImageSpace();
803    }
804  }
805  return NULL;
806}
807
808static void MSpaceChunkCallback(void* start, void* end, size_t used_bytes, void* arg) {
809  size_t chunk_size = reinterpret_cast<uint8_t*>(end) - reinterpret_cast<uint8_t*>(start);
810  if (used_bytes < chunk_size) {
811    size_t chunk_free_bytes = chunk_size - used_bytes;
812    size_t& max_contiguous_allocation = *reinterpret_cast<size_t*>(arg);
813    max_contiguous_allocation = std::max(max_contiguous_allocation, chunk_free_bytes);
814  }
815}
816
817void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, bool large_object_allocation) {
818  std::ostringstream oss;
819  size_t total_bytes_free = GetFreeMemory();
820  oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
821      << " free bytes";
822  // If the allocation failed due to fragmentation, print out the largest continuous allocation.
823  if (!large_object_allocation && total_bytes_free >= byte_count) {
824    size_t max_contiguous_allocation = 0;
825    for (const auto& space : continuous_spaces_) {
826      if (space->IsMallocSpace()) {
827        // To allow the Walk/InspectAll() to exclusively-lock the mutator
828        // lock, temporarily release the shared access to the mutator
829        // lock here by transitioning to the suspended state.
830        Locks::mutator_lock_->AssertSharedHeld(self);
831        self->TransitionFromRunnableToSuspended(kSuspended);
832        space->AsMallocSpace()->Walk(MSpaceChunkCallback, &max_contiguous_allocation);
833        self->TransitionFromSuspendedToRunnable();
834        Locks::mutator_lock_->AssertSharedHeld(self);
835      }
836    }
837    oss << "; failed due to fragmentation (largest possible contiguous allocation "
838        <<  max_contiguous_allocation << " bytes)";
839  }
840  self->ThrowOutOfMemoryError(oss.str().c_str());
841}
842
843void Heap::DoPendingTransitionOrTrim() {
844  Thread* self = Thread::Current();
845  CollectorType desired_collector_type;
846  // Wait until we reach the desired transition time.
847  while (true) {
848    uint64_t wait_time;
849    {
850      MutexLock mu(self, *heap_trim_request_lock_);
851      desired_collector_type = desired_collector_type_;
852      uint64_t current_time = NanoTime();
853      if (current_time >= heap_transition_or_trim_target_time_) {
854        break;
855      }
856      wait_time = heap_transition_or_trim_target_time_ - current_time;
857    }
858    ScopedThreadStateChange tsc(self, kSleeping);
859    usleep(wait_time / 1000);  // Usleep takes microseconds.
860  }
861  // Transition the collector if the desired collector type is not the same as the current
862  // collector type.
863  TransitionCollector(desired_collector_type);
864  if (!CareAboutPauseTimes()) {
865    // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care
866    // about pauses.
867    Runtime* runtime = Runtime::Current();
868    runtime->GetThreadList()->SuspendAll();
869    uint64_t start_time = NanoTime();
870    size_t count = runtime->GetMonitorList()->DeflateMonitors();
871    VLOG(heap) << "Deflating " << count << " monitors took "
872        << PrettyDuration(NanoTime() - start_time);
873    runtime->GetThreadList()->ResumeAll();
874  }
875  // Do a heap trim if it is needed.
876  Trim();
877}
878
879void Heap::Trim() {
880  Thread* self = Thread::Current();
881  {
882    MutexLock mu(self, *heap_trim_request_lock_);
883    if (!heap_trim_request_pending_ || last_trim_time_ + kHeapTrimWait >= NanoTime()) {
884      return;
885    }
886    last_trim_time_ = NanoTime();
887    heap_trim_request_pending_ = false;
888  }
889  {
890    // Need to do this before acquiring the locks since we don't want to get suspended while
891    // holding any locks.
892    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
893    // Pretend we are doing a GC to prevent background compaction from deleting the space we are
894    // trimming.
895    MutexLock mu(self, *gc_complete_lock_);
896    // Ensure there is only one GC at a time.
897    WaitForGcToCompleteLocked(kGcCauseTrim, self);
898    collector_type_running_ = kCollectorTypeHeapTrim;
899  }
900  uint64_t start_ns = NanoTime();
901  // Trim the managed spaces.
902  uint64_t total_alloc_space_allocated = 0;
903  uint64_t total_alloc_space_size = 0;
904  uint64_t managed_reclaimed = 0;
905  for (const auto& space : continuous_spaces_) {
906    if (space->IsMallocSpace()) {
907      gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
908      if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) {
909        // Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock
910        // for a long period of time.
911        managed_reclaimed += malloc_space->Trim();
912      }
913      total_alloc_space_size += malloc_space->Size();
914    }
915  }
916  total_alloc_space_allocated = GetBytesAllocated() - large_object_space_->GetBytesAllocated();
917  if (bump_pointer_space_ != nullptr) {
918    total_alloc_space_allocated -= bump_pointer_space_->Size();
919  }
920  const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
921      static_cast<float>(total_alloc_space_size);
922  uint64_t gc_heap_end_ns = NanoTime();
923  // We never move things in the native heap, so we can finish the GC at this point.
924  FinishGC(self, collector::kGcTypeNone);
925  size_t native_reclaimed = 0;
926  // Only trim the native heap if we don't care about pauses.
927  if (!CareAboutPauseTimes()) {
928#if defined(USE_DLMALLOC)
929    // Trim the native heap.
930    dlmalloc_trim(0);
931    dlmalloc_inspect_all(DlmallocMadviseCallback, &native_reclaimed);
932#elif defined(USE_JEMALLOC)
933    // Jemalloc does it's own internal trimming.
934#else
935    UNIMPLEMENTED(WARNING) << "Add trimming support";
936#endif
937  }
938  uint64_t end_ns = NanoTime();
939  VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
940      << ", advised=" << PrettySize(managed_reclaimed) << ") and native (duration="
941      << PrettyDuration(end_ns - gc_heap_end_ns) << ", advised=" << PrettySize(native_reclaimed)
942      << ") heaps. Managed heap utilization of " << static_cast<int>(100 * managed_utilization)
943      << "%.";
944}
945
946bool Heap::IsValidObjectAddress(const mirror::Object* obj) const {
947  // Note: we deliberately don't take the lock here, and mustn't test anything that would require
948  // taking the lock.
949  if (obj == nullptr) {
950    return true;
951  }
952  return IsAligned<kObjectAlignment>(obj) && FindSpaceFromObject(obj, true) != nullptr;
953}
954
955bool Heap::IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const {
956  return FindContinuousSpaceFromObject(obj, true) != nullptr;
957}
958
959bool Heap::IsValidContinuousSpaceObjectAddress(const mirror::Object* obj) const {
960  if (obj == nullptr || !IsAligned<kObjectAlignment>(obj)) {
961    return false;
962  }
963  for (const auto& space : continuous_spaces_) {
964    if (space->HasAddress(obj)) {
965      return true;
966    }
967  }
968  return false;
969}
970
971bool Heap::IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack,
972                              bool search_live_stack, bool sorted) {
973  if (UNLIKELY(!IsAligned<kObjectAlignment>(obj))) {
974    return false;
975  }
976  if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj)) {
977    mirror::Class* klass = obj->GetClass<kVerifyNone>();
978    if (obj == klass) {
979      // This case happens for java.lang.Class.
980      return true;
981    }
982    return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
983  } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj)) {
984    // If we are in the allocated region of the temp space, then we are probably live (e.g. during
985    // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
986    return temp_space_->Contains(obj);
987  }
988  space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
989  space::DiscontinuousSpace* d_space = nullptr;
990  if (c_space != nullptr) {
991    if (c_space->GetLiveBitmap()->Test(obj)) {
992      return true;
993    }
994  } else {
995    d_space = FindDiscontinuousSpaceFromObject(obj, true);
996    if (d_space != nullptr) {
997      if (d_space->GetLiveBitmap()->Test(obj)) {
998        return true;
999      }
1000    }
1001  }
1002  // This is covering the allocation/live stack swapping that is done without mutators suspended.
1003  for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
1004    if (i > 0) {
1005      NanoSleep(MsToNs(10));
1006    }
1007    if (search_allocation_stack) {
1008      if (sorted) {
1009        if (allocation_stack_->ContainsSorted(obj)) {
1010          return true;
1011        }
1012      } else if (allocation_stack_->Contains(obj)) {
1013        return true;
1014      }
1015    }
1016
1017    if (search_live_stack) {
1018      if (sorted) {
1019        if (live_stack_->ContainsSorted(obj)) {
1020          return true;
1021        }
1022      } else if (live_stack_->Contains(obj)) {
1023        return true;
1024      }
1025    }
1026  }
1027  // We need to check the bitmaps again since there is a race where we mark something as live and
1028  // then clear the stack containing it.
1029  if (c_space != nullptr) {
1030    if (c_space->GetLiveBitmap()->Test(obj)) {
1031      return true;
1032    }
1033  } else {
1034    d_space = FindDiscontinuousSpaceFromObject(obj, true);
1035    if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj)) {
1036      return true;
1037    }
1038  }
1039  return false;
1040}
1041
1042void Heap::DumpSpaces(std::ostream& stream) {
1043  for (const auto& space : continuous_spaces_) {
1044    accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1045    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1046    stream << space << " " << *space << "\n";
1047    if (live_bitmap != nullptr) {
1048      stream << live_bitmap << " " << *live_bitmap << "\n";
1049    }
1050    if (mark_bitmap != nullptr) {
1051      stream << mark_bitmap << " " << *mark_bitmap << "\n";
1052    }
1053  }
1054  for (const auto& space : discontinuous_spaces_) {
1055    stream << space << " " << *space << "\n";
1056  }
1057}
1058
1059void Heap::VerifyObjectBody(mirror::Object* obj) {
1060  if (this == nullptr && verify_object_mode_ == kVerifyObjectModeDisabled) {
1061    return;
1062  }
1063  // Ignore early dawn of the universe verifications.
1064  if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_.LoadRelaxed()) < 10 * KB)) {
1065    return;
1066  }
1067  CHECK(IsAligned<kObjectAlignment>(obj)) << "Object isn't aligned: " << obj;
1068  mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(mirror::Object::ClassOffset());
1069  CHECK(c != nullptr) << "Null class in object " << obj;
1070  CHECK(IsAligned<kObjectAlignment>(c)) << "Class " << c << " not aligned in object " << obj;
1071  CHECK(VerifyClassClass(c));
1072
1073  if (verify_object_mode_ > kVerifyObjectModeFast) {
1074    // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
1075    if (!IsLiveObjectLocked(obj)) {
1076      DumpSpaces();
1077      LOG(FATAL) << "Object is dead: " << obj;
1078    }
1079  }
1080}
1081
1082void Heap::VerificationCallback(mirror::Object* obj, void* arg) {
1083  reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj);
1084}
1085
1086void Heap::VerifyHeap() {
1087  ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1088  GetLiveBitmap()->Walk(Heap::VerificationCallback, this);
1089}
1090
1091void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) {
1092  // Use signed comparison since freed bytes can be negative when background compaction foreground
1093  // transitions occurs. This is caused by the moving objects from a bump pointer space to a
1094  // free list backed space typically increasing memory footprint due to padding and binning.
1095  DCHECK_LE(freed_bytes, static_cast<int64_t>(num_bytes_allocated_.LoadRelaxed()));
1096  // Note: This relies on 2s complement for handling negative freed_bytes.
1097  num_bytes_allocated_.FetchAndSubSequentiallyConsistent(static_cast<ssize_t>(freed_bytes));
1098  if (Runtime::Current()->HasStatsEnabled()) {
1099    RuntimeStats* thread_stats = Thread::Current()->GetStats();
1100    thread_stats->freed_objects += freed_objects;
1101    thread_stats->freed_bytes += freed_bytes;
1102    // TODO: Do this concurrently.
1103    RuntimeStats* global_stats = Runtime::Current()->GetStats();
1104    global_stats->freed_objects += freed_objects;
1105    global_stats->freed_bytes += freed_bytes;
1106  }
1107}
1108
1109mirror::Object* Heap::AllocateInternalWithGc(Thread* self, AllocatorType allocator,
1110                                             size_t alloc_size, size_t* bytes_allocated,
1111                                             size_t* usable_size,
1112                                             mirror::Class** klass) {
1113  bool was_default_allocator = allocator == GetCurrentAllocator();
1114  DCHECK(klass != nullptr);
1115  StackHandleScope<1> hs(self);
1116  HandleWrapper<mirror::Class> h(hs.NewHandleWrapper(klass));
1117  klass = nullptr;  // Invalidate for safety.
1118  // The allocation failed. If the GC is running, block until it completes, and then retry the
1119  // allocation.
1120  collector::GcType last_gc = WaitForGcToComplete(kGcCauseForAlloc, self);
1121  if (last_gc != collector::kGcTypeNone) {
1122    // If we were the default allocator but the allocator changed while we were suspended,
1123    // abort the allocation.
1124    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1125      return nullptr;
1126    }
1127    // A GC was in progress and we blocked, retry allocation now that memory has been freed.
1128    mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1129                                                     usable_size);
1130    if (ptr != nullptr) {
1131      return ptr;
1132    }
1133  }
1134
1135  collector::GcType tried_type = next_gc_type_;
1136  const bool gc_ran =
1137      CollectGarbageInternal(tried_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1138  if (was_default_allocator && allocator != GetCurrentAllocator()) {
1139    return nullptr;
1140  }
1141  if (gc_ran) {
1142    mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1143                                                     usable_size);
1144    if (ptr != nullptr) {
1145      return ptr;
1146    }
1147  }
1148
1149  // Loop through our different Gc types and try to Gc until we get enough free memory.
1150  for (collector::GcType gc_type : gc_plan_) {
1151    if (gc_type == tried_type) {
1152      continue;
1153    }
1154    // Attempt to run the collector, if we succeed, re-try the allocation.
1155    const bool gc_ran =
1156        CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1157    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1158      return nullptr;
1159    }
1160    if (gc_ran) {
1161      // Did we free sufficient memory for the allocation to succeed?
1162      mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1163                                                       usable_size);
1164      if (ptr != nullptr) {
1165        return ptr;
1166      }
1167    }
1168  }
1169  // Allocations have failed after GCs;  this is an exceptional state.
1170  // Try harder, growing the heap if necessary.
1171  mirror::Object* ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1172                                                  usable_size);
1173  if (ptr != nullptr) {
1174    return ptr;
1175  }
1176  // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
1177  // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
1178  // VM spec requires that all SoftReferences have been collected and cleared before throwing
1179  // OOME.
1180  VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
1181           << " allocation";
1182  // TODO: Run finalization, but this may cause more allocations to occur.
1183  // We don't need a WaitForGcToComplete here either.
1184  DCHECK(!gc_plan_.empty());
1185  CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true);
1186  if (was_default_allocator && allocator != GetCurrentAllocator()) {
1187    return nullptr;
1188  }
1189  ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size);
1190  if (ptr == nullptr) {
1191    ThrowOutOfMemoryError(self, alloc_size, allocator == kAllocatorTypeLOS);
1192  }
1193  return ptr;
1194}
1195
1196void Heap::SetTargetHeapUtilization(float target) {
1197  DCHECK_GT(target, 0.0f);  // asserted in Java code
1198  DCHECK_LT(target, 1.0f);
1199  target_utilization_ = target;
1200}
1201
1202size_t Heap::GetObjectsAllocated() const {
1203  size_t total = 0;
1204  for (space::AllocSpace* space : alloc_spaces_) {
1205    total += space->GetObjectsAllocated();
1206  }
1207  return total;
1208}
1209
1210size_t Heap::GetObjectsAllocatedEver() const {
1211  return GetObjectsFreedEver() + GetObjectsAllocated();
1212}
1213
1214size_t Heap::GetBytesAllocatedEver() const {
1215  return GetBytesFreedEver() + GetBytesAllocated();
1216}
1217
1218class InstanceCounter {
1219 public:
1220  InstanceCounter(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, uint64_t* counts)
1221      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1222      : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) {
1223  }
1224  static void Callback(mirror::Object* obj, void* arg)
1225      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1226    InstanceCounter* instance_counter = reinterpret_cast<InstanceCounter*>(arg);
1227    mirror::Class* instance_class = obj->GetClass();
1228    CHECK(instance_class != nullptr);
1229    for (size_t i = 0; i < instance_counter->classes_.size(); ++i) {
1230      if (instance_counter->use_is_assignable_from_) {
1231        if (instance_counter->classes_[i]->IsAssignableFrom(instance_class)) {
1232          ++instance_counter->counts_[i];
1233        }
1234      } else if (instance_class == instance_counter->classes_[i]) {
1235        ++instance_counter->counts_[i];
1236      }
1237    }
1238  }
1239
1240 private:
1241  const std::vector<mirror::Class*>& classes_;
1242  bool use_is_assignable_from_;
1243  uint64_t* const counts_;
1244  DISALLOW_COPY_AND_ASSIGN(InstanceCounter);
1245};
1246
1247void Heap::CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
1248                          uint64_t* counts) {
1249  // Can't do any GC in this function since this may move classes.
1250  Thread* self = Thread::Current();
1251  auto* old_cause = self->StartAssertNoThreadSuspension("CountInstances");
1252  InstanceCounter counter(classes, use_is_assignable_from, counts);
1253  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1254  VisitObjects(InstanceCounter::Callback, &counter);
1255  self->EndAssertNoThreadSuspension(old_cause);
1256}
1257
1258class InstanceCollector {
1259 public:
1260  InstanceCollector(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
1261      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1262      : class_(c), max_count_(max_count), instances_(instances) {
1263  }
1264  static void Callback(mirror::Object* obj, void* arg)
1265      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1266    DCHECK(arg != nullptr);
1267    InstanceCollector* instance_collector = reinterpret_cast<InstanceCollector*>(arg);
1268    mirror::Class* instance_class = obj->GetClass();
1269    if (instance_class == instance_collector->class_) {
1270      if (instance_collector->max_count_ == 0 ||
1271          instance_collector->instances_.size() < instance_collector->max_count_) {
1272        instance_collector->instances_.push_back(obj);
1273      }
1274    }
1275  }
1276
1277 private:
1278  mirror::Class* class_;
1279  uint32_t max_count_;
1280  std::vector<mirror::Object*>& instances_;
1281  DISALLOW_COPY_AND_ASSIGN(InstanceCollector);
1282};
1283
1284void Heap::GetInstances(mirror::Class* c, int32_t max_count,
1285                        std::vector<mirror::Object*>& instances) {
1286  // Can't do any GC in this function since this may move classes.
1287  Thread* self = Thread::Current();
1288  auto* old_cause = self->StartAssertNoThreadSuspension("GetInstances");
1289  InstanceCollector collector(c, max_count, instances);
1290  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1291  VisitObjects(&InstanceCollector::Callback, &collector);
1292  self->EndAssertNoThreadSuspension(old_cause);
1293}
1294
1295class ReferringObjectsFinder {
1296 public:
1297  ReferringObjectsFinder(mirror::Object* object, int32_t max_count,
1298                         std::vector<mirror::Object*>& referring_objects)
1299      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1300      : object_(object), max_count_(max_count), referring_objects_(referring_objects) {
1301  }
1302
1303  static void Callback(mirror::Object* obj, void* arg)
1304      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1305    reinterpret_cast<ReferringObjectsFinder*>(arg)->operator()(obj);
1306  }
1307
1308  // For bitmap Visit.
1309  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
1310  // annotalysis on visitors.
1311  void operator()(mirror::Object* o) const NO_THREAD_SAFETY_ANALYSIS {
1312    o->VisitReferences<true>(*this, VoidFunctor());
1313  }
1314
1315  // For Object::VisitReferences.
1316  void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
1317      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1318    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
1319    if (ref == object_ && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
1320      referring_objects_.push_back(obj);
1321    }
1322  }
1323
1324 private:
1325  mirror::Object* object_;
1326  uint32_t max_count_;
1327  std::vector<mirror::Object*>& referring_objects_;
1328  DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
1329};
1330
1331void Heap::GetReferringObjects(mirror::Object* o, int32_t max_count,
1332                               std::vector<mirror::Object*>& referring_objects) {
1333  // Can't do any GC in this function since this may move the object o.
1334  Thread* self = Thread::Current();
1335  auto* old_cause = self->StartAssertNoThreadSuspension("GetReferringObjects");
1336  ReferringObjectsFinder finder(o, max_count, referring_objects);
1337  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1338  VisitObjects(&ReferringObjectsFinder::Callback, &finder);
1339  self->EndAssertNoThreadSuspension(old_cause);
1340}
1341
1342void Heap::CollectGarbage(bool clear_soft_references) {
1343  // Even if we waited for a GC we still need to do another GC since weaks allocated during the
1344  // last GC will not have necessarily been cleared.
1345  CollectGarbageInternal(gc_plan_.back(), kGcCauseExplicit, clear_soft_references);
1346}
1347
1348void Heap::TransitionCollector(CollectorType collector_type) {
1349  if (collector_type == collector_type_) {
1350    return;
1351  }
1352  VLOG(heap) << "TransitionCollector: " << static_cast<int>(collector_type_)
1353             << " -> " << static_cast<int>(collector_type);
1354  uint64_t start_time = NanoTime();
1355  uint32_t before_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
1356  Runtime* const runtime = Runtime::Current();
1357  ThreadList* const tl = runtime->GetThreadList();
1358  Thread* const self = Thread::Current();
1359  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1360  Locks::mutator_lock_->AssertNotHeld(self);
1361  const bool copying_transition =
1362      IsMovingGc(background_collector_type_) || IsMovingGc(foreground_collector_type_);
1363  // Busy wait until we can GC (StartGC can fail if we have a non-zero
1364  // compacting_gc_disable_count_, this should rarely occurs).
1365  for (;;) {
1366    {
1367      ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1368      MutexLock mu(self, *gc_complete_lock_);
1369      // Ensure there is only one GC at a time.
1370      WaitForGcToCompleteLocked(kGcCauseCollectorTransition, self);
1371      // If someone else beat us to it and changed the collector before we could, exit.
1372      // This is safe to do before the suspend all since we set the collector_type_running_ before
1373      // we exit the loop. If another thread attempts to do the heap transition before we exit,
1374      // then it would get blocked on WaitForGcToCompleteLocked.
1375      if (collector_type == collector_type_) {
1376        return;
1377      }
1378      // GC can be disabled if someone has a used GetPrimitiveArrayCritical but not yet released.
1379      if (!copying_transition || disable_moving_gc_count_ == 0) {
1380        // TODO: Not hard code in semi-space collector?
1381        collector_type_running_ = copying_transition ? kCollectorTypeSS : collector_type;
1382        break;
1383      }
1384    }
1385    usleep(1000);
1386  }
1387  if (runtime->IsShuttingDown(self)) {
1388    // Don't allow heap transitions to happen if the runtime is shutting down since these can
1389    // cause objects to get finalized.
1390    FinishGC(self, collector::kGcTypeNone);
1391    return;
1392  }
1393  tl->SuspendAll();
1394  switch (collector_type) {
1395    case kCollectorTypeSS:
1396      // Fall-through.
1397    case kCollectorTypeGSS: {
1398      if (!IsMovingGc(collector_type_)) {
1399        // We are transitioning from non moving GC -> moving GC, since we copied from the bump
1400        // pointer space last transition it will be protected.
1401        bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1402        Compact(bump_pointer_space_, main_space_);
1403        // Remove the main space so that we don't try to trim it, this doens't work for debug
1404        // builds since RosAlloc attempts to read the magic number from a protected page.
1405        RemoveSpace(main_space_);
1406      }
1407      break;
1408    }
1409    case kCollectorTypeMS:
1410      // Fall through.
1411    case kCollectorTypeCMS: {
1412      if (IsMovingGc(collector_type_)) {
1413        // Compact to the main space from the bump pointer space, don't need to swap semispaces.
1414        AddSpace(main_space_);
1415        main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1416        Compact(main_space_, bump_pointer_space_);
1417      }
1418      break;
1419    }
1420    default: {
1421      LOG(FATAL) << "Attempted to transition to invalid collector type "
1422                 << static_cast<size_t>(collector_type);
1423      break;
1424    }
1425  }
1426  ChangeCollector(collector_type);
1427  tl->ResumeAll();
1428  // Can't call into java code with all threads suspended.
1429  reference_processor_.EnqueueClearedReferences(self);
1430  uint64_t duration = NanoTime() - start_time;
1431  GrowForUtilization(semi_space_collector_);
1432  FinishGC(self, collector::kGcTypeFull);
1433  int32_t after_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
1434  int32_t delta_allocated = before_allocated - after_allocated;
1435  std::string saved_str;
1436  if (delta_allocated >= 0) {
1437    saved_str = " saved at least " + PrettySize(delta_allocated);
1438  } else {
1439    saved_str = " expanded " + PrettySize(-delta_allocated);
1440  }
1441  LOG(INFO) << "Heap transition to " << process_state_ << " took "
1442      << PrettyDuration(duration) << saved_str;
1443}
1444
1445void Heap::ChangeCollector(CollectorType collector_type) {
1446  // TODO: Only do this with all mutators suspended to avoid races.
1447  if (collector_type != collector_type_) {
1448    if (collector_type == kCollectorTypeMC) {
1449      // Don't allow mark compact unless support is compiled in.
1450      CHECK(kMarkCompactSupport);
1451    }
1452    collector_type_ = collector_type;
1453    gc_plan_.clear();
1454    switch (collector_type_) {
1455      case kCollectorTypeCC:  // Fall-through.
1456      case kCollectorTypeMC:  // Fall-through.
1457      case kCollectorTypeSS:  // Fall-through.
1458      case kCollectorTypeGSS: {
1459        gc_plan_.push_back(collector::kGcTypeFull);
1460        if (use_tlab_) {
1461          ChangeAllocator(kAllocatorTypeTLAB);
1462        } else {
1463          ChangeAllocator(kAllocatorTypeBumpPointer);
1464        }
1465        break;
1466      }
1467      case kCollectorTypeMS: {
1468        gc_plan_.push_back(collector::kGcTypeSticky);
1469        gc_plan_.push_back(collector::kGcTypePartial);
1470        gc_plan_.push_back(collector::kGcTypeFull);
1471        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1472        break;
1473      }
1474      case kCollectorTypeCMS: {
1475        gc_plan_.push_back(collector::kGcTypeSticky);
1476        gc_plan_.push_back(collector::kGcTypePartial);
1477        gc_plan_.push_back(collector::kGcTypeFull);
1478        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1479        break;
1480      }
1481      default: {
1482        LOG(FATAL) << "Unimplemented";
1483      }
1484    }
1485    if (IsGcConcurrent()) {
1486      concurrent_start_bytes_ =
1487          std::max(max_allowed_footprint_, kMinConcurrentRemainingBytes) - kMinConcurrentRemainingBytes;
1488    } else {
1489      concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
1490    }
1491  }
1492}
1493
1494// Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
1495class ZygoteCompactingCollector FINAL : public collector::SemiSpace {
1496 public:
1497  explicit ZygoteCompactingCollector(gc::Heap* heap) : SemiSpace(heap, false, "zygote collector"),
1498      bin_live_bitmap_(nullptr), bin_mark_bitmap_(nullptr) {
1499  }
1500
1501  void BuildBins(space::ContinuousSpace* space) {
1502    bin_live_bitmap_ = space->GetLiveBitmap();
1503    bin_mark_bitmap_ = space->GetMarkBitmap();
1504    BinContext context;
1505    context.prev_ = reinterpret_cast<uintptr_t>(space->Begin());
1506    context.collector_ = this;
1507    WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1508    // Note: This requires traversing the space in increasing order of object addresses.
1509    bin_live_bitmap_->Walk(Callback, reinterpret_cast<void*>(&context));
1510    // Add the last bin which spans after the last object to the end of the space.
1511    AddBin(reinterpret_cast<uintptr_t>(space->End()) - context.prev_, context.prev_);
1512  }
1513
1514 private:
1515  struct BinContext {
1516    uintptr_t prev_;  // The end of the previous object.
1517    ZygoteCompactingCollector* collector_;
1518  };
1519  // Maps from bin sizes to locations.
1520  std::multimap<size_t, uintptr_t> bins_;
1521  // Live bitmap of the space which contains the bins.
1522  accounting::ContinuousSpaceBitmap* bin_live_bitmap_;
1523  // Mark bitmap of the space which contains the bins.
1524  accounting::ContinuousSpaceBitmap* bin_mark_bitmap_;
1525
1526  static void Callback(mirror::Object* obj, void* arg)
1527      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1528    DCHECK(arg != nullptr);
1529    BinContext* context = reinterpret_cast<BinContext*>(arg);
1530    ZygoteCompactingCollector* collector = context->collector_;
1531    uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
1532    size_t bin_size = object_addr - context->prev_;
1533    // Add the bin consisting of the end of the previous object to the start of the current object.
1534    collector->AddBin(bin_size, context->prev_);
1535    context->prev_ = object_addr + RoundUp(obj->SizeOf(), kObjectAlignment);
1536  }
1537
1538  void AddBin(size_t size, uintptr_t position) {
1539    if (size != 0) {
1540      bins_.insert(std::make_pair(size, position));
1541    }
1542  }
1543
1544  virtual bool ShouldSweepSpace(space::ContinuousSpace* space) const {
1545    // Don't sweep any spaces since we probably blasted the internal accounting of the free list
1546    // allocator.
1547    return false;
1548  }
1549
1550  virtual mirror::Object* MarkNonForwardedObject(mirror::Object* obj)
1551      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
1552    size_t object_size = RoundUp(obj->SizeOf(), kObjectAlignment);
1553    mirror::Object* forward_address;
1554    // Find the smallest bin which we can move obj in.
1555    auto it = bins_.lower_bound(object_size);
1556    if (it == bins_.end()) {
1557      // No available space in the bins, place it in the target space instead (grows the zygote
1558      // space).
1559      size_t bytes_allocated;
1560      forward_address = to_space_->Alloc(self_, object_size, &bytes_allocated, nullptr);
1561      if (to_space_live_bitmap_ != nullptr) {
1562        to_space_live_bitmap_->Set(forward_address);
1563      } else {
1564        GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
1565        GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
1566      }
1567    } else {
1568      size_t size = it->first;
1569      uintptr_t pos = it->second;
1570      bins_.erase(it);  // Erase the old bin which we replace with the new smaller bin.
1571      forward_address = reinterpret_cast<mirror::Object*>(pos);
1572      // Set the live and mark bits so that sweeping system weaks works properly.
1573      bin_live_bitmap_->Set(forward_address);
1574      bin_mark_bitmap_->Set(forward_address);
1575      DCHECK_GE(size, object_size);
1576      AddBin(size - object_size, pos + object_size);  // Add a new bin with the remaining space.
1577    }
1578    // Copy the object over to its new location.
1579    memcpy(reinterpret_cast<void*>(forward_address), obj, object_size);
1580    if (kUseBakerOrBrooksReadBarrier) {
1581      obj->AssertReadBarrierPointer();
1582      if (kUseBrooksReadBarrier) {
1583        DCHECK_EQ(forward_address->GetReadBarrierPointer(), obj);
1584        forward_address->SetReadBarrierPointer(forward_address);
1585      }
1586      forward_address->AssertReadBarrierPointer();
1587    }
1588    return forward_address;
1589  }
1590};
1591
1592void Heap::UnBindBitmaps() {
1593  TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings());
1594  for (const auto& space : GetContinuousSpaces()) {
1595    if (space->IsContinuousMemMapAllocSpace()) {
1596      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1597      if (alloc_space->HasBoundBitmaps()) {
1598        alloc_space->UnBindBitmaps();
1599      }
1600    }
1601  }
1602}
1603
1604void Heap::PreZygoteFork() {
1605  CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
1606  Thread* self = Thread::Current();
1607  MutexLock mu(self, zygote_creation_lock_);
1608  // Try to see if we have any Zygote spaces.
1609  if (have_zygote_space_) {
1610    return;
1611  }
1612  VLOG(heap) << "Starting PreZygoteFork";
1613  // Trim the pages at the end of the non moving space.
1614  non_moving_space_->Trim();
1615  // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote
1616  // there.
1617  non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1618  // Change the collector to the post zygote one.
1619  if (kCompactZygote) {
1620    DCHECK(semi_space_collector_ != nullptr);
1621    // Temporarily disable rosalloc verification because the zygote
1622    // compaction will mess up the rosalloc internal metadata.
1623    ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
1624    ZygoteCompactingCollector zygote_collector(this);
1625    zygote_collector.BuildBins(non_moving_space_);
1626    // Create a new bump pointer space which we will compact into.
1627    space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
1628                                         non_moving_space_->Limit());
1629    // Compact the bump pointer space to a new zygote bump pointer space.
1630    bool reset_main_space = false;
1631    if (IsMovingGc(collector_type_)) {
1632      zygote_collector.SetFromSpace(bump_pointer_space_);
1633    } else {
1634      CHECK(main_space_ != nullptr);
1635      // Copy from the main space.
1636      zygote_collector.SetFromSpace(main_space_);
1637      reset_main_space = true;
1638    }
1639    zygote_collector.SetToSpace(&target_space);
1640    zygote_collector.SetSwapSemiSpaces(false);
1641    zygote_collector.Run(kGcCauseCollectorTransition, false);
1642    if (reset_main_space) {
1643      main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1644      madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED);
1645      MemMap* mem_map = main_space_->ReleaseMemMap();
1646      RemoveSpace(main_space_);
1647      space::Space* old_main_space = main_space_;
1648      CreateMainMallocSpace(mem_map, kDefaultInitialSize, mem_map->Size(), mem_map->Size());
1649      delete old_main_space;
1650      AddSpace(main_space_);
1651    } else {
1652      bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1653    }
1654    if (temp_space_ != nullptr) {
1655      CHECK(temp_space_->IsEmpty());
1656    }
1657    total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
1658    total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
1659    // Update the end and write out image.
1660    non_moving_space_->SetEnd(target_space.End());
1661    non_moving_space_->SetLimit(target_space.Limit());
1662    VLOG(heap) << "Zygote space size " << non_moving_space_->Size() << " bytes";
1663  }
1664  ChangeCollector(foreground_collector_type_);
1665  // Save the old space so that we can remove it after we complete creating the zygote space.
1666  space::MallocSpace* old_alloc_space = non_moving_space_;
1667  // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
1668  // the remaining available space.
1669  // Remove the old space before creating the zygote space since creating the zygote space sets
1670  // the old alloc space's bitmaps to nullptr.
1671  RemoveSpace(old_alloc_space);
1672  if (collector::SemiSpace::kUseRememberedSet) {
1673    // Sanity bound check.
1674    FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
1675    // Remove the remembered set for the now zygote space (the old
1676    // non-moving space). Note now that we have compacted objects into
1677    // the zygote space, the data in the remembered set is no longer
1678    // needed. The zygote space will instead have a mod-union table
1679    // from this point on.
1680    RemoveRememberedSet(old_alloc_space);
1681  }
1682  space::ZygoteSpace* zygote_space = old_alloc_space->CreateZygoteSpace("alloc space",
1683                                                                        low_memory_mode_,
1684                                                                        &non_moving_space_);
1685  delete old_alloc_space;
1686  CHECK(zygote_space != nullptr) << "Failed creating zygote space";
1687  AddSpace(zygote_space);
1688  non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
1689  AddSpace(non_moving_space_);
1690  have_zygote_space_ = true;
1691  // Enable large object space allocations.
1692  large_object_threshold_ = kDefaultLargeObjectThreshold;
1693  // Create the zygote space mod union table.
1694  accounting::ModUnionTable* mod_union_table =
1695      new accounting::ModUnionTableCardCache("zygote space mod-union table", this, zygote_space);
1696  CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
1697  AddModUnionTable(mod_union_table);
1698  if (collector::SemiSpace::kUseRememberedSet) {
1699    // Add a new remembered set for the post-zygote non-moving space.
1700    accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
1701        new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
1702                                      non_moving_space_);
1703    CHECK(post_zygote_non_moving_space_rem_set != nullptr)
1704        << "Failed to create post-zygote non-moving space remembered set";
1705    AddRememberedSet(post_zygote_non_moving_space_rem_set);
1706  }
1707}
1708
1709void Heap::FlushAllocStack() {
1710  MarkAllocStackAsLive(allocation_stack_.get());
1711  allocation_stack_->Reset();
1712}
1713
1714void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1,
1715                          accounting::ContinuousSpaceBitmap* bitmap2,
1716                          accounting::LargeObjectBitmap* large_objects,
1717                          accounting::ObjectStack* stack) {
1718  DCHECK(bitmap1 != nullptr);
1719  DCHECK(bitmap2 != nullptr);
1720  mirror::Object** limit = stack->End();
1721  for (mirror::Object** it = stack->Begin(); it != limit; ++it) {
1722    const mirror::Object* obj = *it;
1723    if (!kUseThreadLocalAllocationStack || obj != nullptr) {
1724      if (bitmap1->HasAddress(obj)) {
1725        bitmap1->Set(obj);
1726      } else if (bitmap2->HasAddress(obj)) {
1727        bitmap2->Set(obj);
1728      } else {
1729        large_objects->Set(obj);
1730      }
1731    }
1732  }
1733}
1734
1735void Heap::SwapSemiSpaces() {
1736  CHECK(bump_pointer_space_ != nullptr);
1737  CHECK(temp_space_ != nullptr);
1738  std::swap(bump_pointer_space_, temp_space_);
1739}
1740
1741void Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
1742                   space::ContinuousMemMapAllocSpace* source_space) {
1743  CHECK(kMovingCollector);
1744  if (target_space != source_space) {
1745    // Don't swap spaces since this isn't a typical semi space collection.
1746    semi_space_collector_->SetSwapSemiSpaces(false);
1747    semi_space_collector_->SetFromSpace(source_space);
1748    semi_space_collector_->SetToSpace(target_space);
1749    semi_space_collector_->Run(kGcCauseCollectorTransition, false);
1750  } else {
1751    CHECK(target_space->IsBumpPointerSpace())
1752        << "In-place compaction is only supported for bump pointer spaces";
1753    mark_compact_collector_->SetSpace(target_space->AsBumpPointerSpace());
1754    mark_compact_collector_->Run(kGcCauseCollectorTransition, false);
1755  }
1756}
1757
1758collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type, GcCause gc_cause,
1759                                               bool clear_soft_references) {
1760  Thread* self = Thread::Current();
1761  Runtime* runtime = Runtime::Current();
1762  // If the heap can't run the GC, silently fail and return that no GC was run.
1763  switch (gc_type) {
1764    case collector::kGcTypePartial: {
1765      if (!have_zygote_space_) {
1766        return collector::kGcTypeNone;
1767      }
1768      break;
1769    }
1770    default: {
1771      // Other GC types don't have any special cases which makes them not runnable. The main case
1772      // here is full GC.
1773    }
1774  }
1775  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1776  Locks::mutator_lock_->AssertNotHeld(self);
1777  if (self->IsHandlingStackOverflow()) {
1778    LOG(WARNING) << "Performing GC on a thread that is handling a stack overflow.";
1779  }
1780  bool compacting_gc;
1781  {
1782    gc_complete_lock_->AssertNotHeld(self);
1783    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1784    MutexLock mu(self, *gc_complete_lock_);
1785    // Ensure there is only one GC at a time.
1786    WaitForGcToCompleteLocked(gc_cause, self);
1787    compacting_gc = IsMovingGc(collector_type_);
1788    // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
1789    if (compacting_gc && disable_moving_gc_count_ != 0) {
1790      LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
1791      return collector::kGcTypeNone;
1792    }
1793    collector_type_running_ = collector_type_;
1794  }
1795
1796  if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
1797    ++runtime->GetStats()->gc_for_alloc_count;
1798    ++self->GetStats()->gc_for_alloc_count;
1799  }
1800  uint64_t gc_start_time_ns = NanoTime();
1801  uint64_t gc_start_size = GetBytesAllocated();
1802  // Approximate allocation rate in bytes / second.
1803  uint64_t ms_delta = NsToMs(gc_start_time_ns - last_gc_time_ns_);
1804  // Back to back GCs can cause 0 ms of wait time in between GC invocations.
1805  if (LIKELY(ms_delta != 0)) {
1806    allocation_rate_ = ((gc_start_size - last_gc_size_) * 1000) / ms_delta;
1807    VLOG(heap) << "Allocation rate: " << PrettySize(allocation_rate_) << "/s";
1808  }
1809
1810  DCHECK_LT(gc_type, collector::kGcTypeMax);
1811  DCHECK_NE(gc_type, collector::kGcTypeNone);
1812
1813  collector::GarbageCollector* collector = nullptr;
1814  // TODO: Clean this up.
1815  if (compacting_gc) {
1816    DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
1817           current_allocator_ == kAllocatorTypeTLAB);
1818    switch (collector_type_) {
1819      case kCollectorTypeSS:
1820        // Fall-through.
1821      case kCollectorTypeGSS:
1822        semi_space_collector_->SetFromSpace(bump_pointer_space_);
1823        semi_space_collector_->SetToSpace(temp_space_);
1824        semi_space_collector_->SetSwapSemiSpaces(true);
1825        collector = semi_space_collector_;
1826        break;
1827      case kCollectorTypeCC:
1828        collector = concurrent_copying_collector_;
1829        break;
1830      case kCollectorTypeMC:
1831        mark_compact_collector_->SetSpace(bump_pointer_space_);
1832        collector = mark_compact_collector_;
1833        break;
1834      default:
1835        LOG(FATAL) << "Invalid collector type " << static_cast<size_t>(collector_type_);
1836    }
1837    if (collector != mark_compact_collector_) {
1838      temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1839      CHECK(temp_space_->IsEmpty());
1840    }
1841    gc_type = collector::kGcTypeFull;  // TODO: Not hard code this in.
1842  } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
1843      current_allocator_ == kAllocatorTypeDlMalloc) {
1844    collector = FindCollectorByGcType(gc_type);
1845  } else {
1846    LOG(FATAL) << "Invalid current allocator " << current_allocator_;
1847  }
1848  CHECK(collector != nullptr)
1849      << "Could not find garbage collector with collector_type="
1850      << static_cast<size_t>(collector_type_) << " and gc_type=" << gc_type;
1851  collector->Run(gc_cause, clear_soft_references || runtime->IsZygote());
1852  total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
1853  total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
1854  RequestHeapTrim();
1855  // Enqueue cleared references.
1856  reference_processor_.EnqueueClearedReferences(self);
1857  // Grow the heap so that we know when to perform the next GC.
1858  GrowForUtilization(collector);
1859  const size_t duration = GetCurrentGcIteration()->GetDurationNs();
1860  const std::vector<uint64_t>& pause_times = GetCurrentGcIteration()->GetPauseTimes();
1861  // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC
1862  // (mutator time blocked >= long_pause_log_threshold_).
1863  bool log_gc = gc_cause == kGcCauseExplicit;
1864  if (!log_gc && CareAboutPauseTimes()) {
1865    // GC for alloc pauses the allocating thread, so consider it as a pause.
1866    log_gc = duration > long_gc_log_threshold_ ||
1867        (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
1868    for (uint64_t pause : pause_times) {
1869      log_gc = log_gc || pause >= long_pause_log_threshold_;
1870    }
1871  }
1872  if (log_gc) {
1873    const size_t percent_free = GetPercentFree();
1874    const size_t current_heap_size = GetBytesAllocated();
1875    const size_t total_memory = GetTotalMemory();
1876    std::ostringstream pause_string;
1877    for (size_t i = 0; i < pause_times.size(); ++i) {
1878        pause_string << PrettyDuration((pause_times[i] / 1000) * 1000)
1879                     << ((i != pause_times.size() - 1) ? "," : "");
1880    }
1881    LOG(INFO) << gc_cause << " " << collector->GetName()
1882              << " GC freed "  << current_gc_iteration_.GetFreedObjects() << "("
1883              << PrettySize(current_gc_iteration_.GetFreedBytes()) << ") AllocSpace objects, "
1884              << current_gc_iteration_.GetFreedLargeObjects() << "("
1885              << PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, "
1886              << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
1887              << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
1888              << " total " << PrettyDuration((duration / 1000) * 1000);
1889    VLOG(heap) << ConstDumpable<TimingLogger>(*current_gc_iteration_.GetTimings());
1890  }
1891  FinishGC(self, gc_type);
1892  // Inform DDMS that a GC completed.
1893  Dbg::GcDidFinish();
1894  return gc_type;
1895}
1896
1897void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
1898  MutexLock mu(self, *gc_complete_lock_);
1899  collector_type_running_ = kCollectorTypeNone;
1900  if (gc_type != collector::kGcTypeNone) {
1901    last_gc_type_ = gc_type;
1902  }
1903  // Wake anyone who may have been waiting for the GC to complete.
1904  gc_complete_cond_->Broadcast(self);
1905}
1906
1907static void RootMatchesObjectVisitor(mirror::Object** root, void* arg, uint32_t /*thread_id*/,
1908                                     RootType /*root_type*/) {
1909  mirror::Object* obj = reinterpret_cast<mirror::Object*>(arg);
1910  if (*root == obj) {
1911    LOG(INFO) << "Object " << obj << " is a root";
1912  }
1913}
1914
1915class ScanVisitor {
1916 public:
1917  void operator()(const mirror::Object* obj) const {
1918    LOG(ERROR) << "Would have rescanned object " << obj;
1919  }
1920};
1921
1922// Verify a reference from an object.
1923class VerifyReferenceVisitor {
1924 public:
1925  explicit VerifyReferenceVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
1926      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
1927      : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
1928
1929  size_t GetFailureCount() const {
1930    return fail_count_->LoadSequentiallyConsistent();
1931  }
1932
1933  void operator()(mirror::Class* klass, mirror::Reference* ref) const
1934      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1935    if (verify_referent_) {
1936      VerifyReference(ref, ref->GetReferent(), mirror::Reference::ReferentOffset());
1937    }
1938  }
1939
1940  void operator()(mirror::Object* obj, MemberOffset offset, bool /*is_static*/) const
1941      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1942    VerifyReference(obj, obj->GetFieldObject<mirror::Object>(offset), offset);
1943  }
1944
1945  bool IsLive(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
1946    return heap_->IsLiveObjectLocked(obj, true, false, true);
1947  }
1948
1949  static void VerifyRootCallback(mirror::Object** root, void* arg, uint32_t thread_id,
1950                                 RootType root_type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1951    VerifyReferenceVisitor* visitor = reinterpret_cast<VerifyReferenceVisitor*>(arg);
1952    if (!visitor->VerifyReference(nullptr, *root, MemberOffset(0))) {
1953      LOG(ERROR) << "Root " << *root << " is dead with type " << PrettyTypeOf(*root)
1954          << " thread_id= " << thread_id << " root_type= " << root_type;
1955    }
1956  }
1957
1958 private:
1959  // TODO: Fix the no thread safety analysis.
1960  // Returns false on failure.
1961  bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const
1962      NO_THREAD_SAFETY_ANALYSIS {
1963    if (ref == nullptr || IsLive(ref)) {
1964      // Verify that the reference is live.
1965      return true;
1966    }
1967    if (fail_count_->FetchAndAddSequentiallyConsistent(1) == 0) {
1968      // Print message on only on first failure to prevent spam.
1969      LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
1970    }
1971    if (obj != nullptr) {
1972      // Only do this part for non roots.
1973      accounting::CardTable* card_table = heap_->GetCardTable();
1974      accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
1975      accounting::ObjectStack* live_stack = heap_->live_stack_.get();
1976      byte* card_addr = card_table->CardFromAddr(obj);
1977      LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
1978                 << offset << "\n card value = " << static_cast<int>(*card_addr);
1979      if (heap_->IsValidObjectAddress(obj->GetClass())) {
1980        LOG(ERROR) << "Obj type " << PrettyTypeOf(obj);
1981      } else {
1982        LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
1983      }
1984
1985      // Attmept to find the class inside of the recently freed objects.
1986      space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
1987      if (ref_space != nullptr && ref_space->IsMallocSpace()) {
1988        space::MallocSpace* space = ref_space->AsMallocSpace();
1989        mirror::Class* ref_class = space->FindRecentFreedObject(ref);
1990        if (ref_class != nullptr) {
1991          LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
1992                     << PrettyClass(ref_class);
1993        } else {
1994          LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
1995        }
1996      }
1997
1998      if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
1999          ref->GetClass()->IsClass()) {
2000        LOG(ERROR) << "Ref type " << PrettyTypeOf(ref);
2001      } else {
2002        LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
2003                   << ") is not a valid heap address";
2004      }
2005
2006      card_table->CheckAddrIsInCardTable(reinterpret_cast<const byte*>(obj));
2007      void* cover_begin = card_table->AddrFromCard(card_addr);
2008      void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
2009          accounting::CardTable::kCardSize);
2010      LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
2011          << "-" << cover_end;
2012      accounting::ContinuousSpaceBitmap* bitmap =
2013          heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
2014
2015      if (bitmap == nullptr) {
2016        LOG(ERROR) << "Object " << obj << " has no bitmap";
2017        if (!VerifyClassClass(obj->GetClass())) {
2018          LOG(ERROR) << "Object " << obj << " failed class verification!";
2019        }
2020      } else {
2021        // Print out how the object is live.
2022        if (bitmap->Test(obj)) {
2023          LOG(ERROR) << "Object " << obj << " found in live bitmap";
2024        }
2025        if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
2026          LOG(ERROR) << "Object " << obj << " found in allocation stack";
2027        }
2028        if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
2029          LOG(ERROR) << "Object " << obj << " found in live stack";
2030        }
2031        if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
2032          LOG(ERROR) << "Ref " << ref << " found in allocation stack";
2033        }
2034        if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
2035          LOG(ERROR) << "Ref " << ref << " found in live stack";
2036        }
2037        // Attempt to see if the card table missed the reference.
2038        ScanVisitor scan_visitor;
2039        byte* byte_cover_begin = reinterpret_cast<byte*>(card_table->AddrFromCard(card_addr));
2040        card_table->Scan(bitmap, byte_cover_begin,
2041                         byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
2042      }
2043
2044      // Search to see if any of the roots reference our object.
2045      void* arg = const_cast<void*>(reinterpret_cast<const void*>(obj));
2046      Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg);
2047
2048      // Search to see if any of the roots reference our reference.
2049      arg = const_cast<void*>(reinterpret_cast<const void*>(ref));
2050      Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg);
2051    }
2052    return false;
2053  }
2054
2055  Heap* const heap_;
2056  Atomic<size_t>* const fail_count_;
2057  const bool verify_referent_;
2058};
2059
2060// Verify all references within an object, for use with HeapBitmap::Visit.
2061class VerifyObjectVisitor {
2062 public:
2063  explicit VerifyObjectVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
2064      : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {
2065  }
2066
2067  void operator()(mirror::Object* obj) const
2068      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2069    // Note: we are verifying the references in obj but not obj itself, this is because obj must
2070    // be live or else how did we find it in the live bitmap?
2071    VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_);
2072    // The class doesn't count as a reference but we should verify it anyways.
2073    obj->VisitReferences<true>(visitor, visitor);
2074  }
2075
2076  static void VisitCallback(mirror::Object* obj, void* arg)
2077      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2078    VerifyObjectVisitor* visitor = reinterpret_cast<VerifyObjectVisitor*>(arg);
2079    visitor->operator()(obj);
2080  }
2081
2082  size_t GetFailureCount() const {
2083    return fail_count_->LoadSequentiallyConsistent();
2084  }
2085
2086 private:
2087  Heap* const heap_;
2088  Atomic<size_t>* const fail_count_;
2089  const bool verify_referent_;
2090};
2091
2092void Heap::PushOnAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
2093  // Slow path, the allocation stack push back must have already failed.
2094  DCHECK(!allocation_stack_->AtomicPushBack(*obj));
2095  do {
2096    // TODO: Add handle VerifyObject.
2097    StackHandleScope<1> hs(self);
2098    HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2099    // Push our object into the reserve region of the allocaiton stack. This is only required due
2100    // to heap verification requiring that roots are live (either in the live bitmap or in the
2101    // allocation stack).
2102    CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
2103    CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
2104  } while (!allocation_stack_->AtomicPushBack(*obj));
2105}
2106
2107void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
2108  // Slow path, the allocation stack push back must have already failed.
2109  DCHECK(!self->PushOnThreadLocalAllocationStack(*obj));
2110  mirror::Object** start_address;
2111  mirror::Object** end_address;
2112  while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address,
2113                                            &end_address)) {
2114    // TODO: Add handle VerifyObject.
2115    StackHandleScope<1> hs(self);
2116    HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2117    // Push our object into the reserve region of the allocaiton stack. This is only required due
2118    // to heap verification requiring that roots are live (either in the live bitmap or in the
2119    // allocation stack).
2120    CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
2121    // Push into the reserve allocation stack.
2122    CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
2123  }
2124  self->SetThreadLocalAllocationStack(start_address, end_address);
2125  // Retry on the new thread-local allocation stack.
2126  CHECK(self->PushOnThreadLocalAllocationStack(*obj));  // Must succeed.
2127}
2128
2129// Must do this with mutators suspended since we are directly accessing the allocation stacks.
2130size_t Heap::VerifyHeapReferences(bool verify_referents) {
2131  Thread* self = Thread::Current();
2132  Locks::mutator_lock_->AssertExclusiveHeld(self);
2133  // Lets sort our allocation stacks so that we can efficiently binary search them.
2134  allocation_stack_->Sort();
2135  live_stack_->Sort();
2136  // Since we sorted the allocation stack content, need to revoke all
2137  // thread-local allocation stacks.
2138  RevokeAllThreadLocalAllocationStacks(self);
2139  Atomic<size_t> fail_count_(0);
2140  VerifyObjectVisitor visitor(this, &fail_count_, verify_referents);
2141  // Verify objects in the allocation stack since these will be objects which were:
2142  // 1. Allocated prior to the GC (pre GC verification).
2143  // 2. Allocated during the GC (pre sweep GC verification).
2144  // We don't want to verify the objects in the live stack since they themselves may be
2145  // pointing to dead objects if they are not reachable.
2146  VisitObjects(VerifyObjectVisitor::VisitCallback, &visitor);
2147  // Verify the roots:
2148  Runtime::Current()->VisitRoots(VerifyReferenceVisitor::VerifyRootCallback, &visitor);
2149  if (visitor.GetFailureCount() > 0) {
2150    // Dump mod-union tables.
2151    for (const auto& table_pair : mod_union_tables_) {
2152      accounting::ModUnionTable* mod_union_table = table_pair.second;
2153      mod_union_table->Dump(LOG(ERROR) << mod_union_table->GetName() << ": ");
2154    }
2155    // Dump remembered sets.
2156    for (const auto& table_pair : remembered_sets_) {
2157      accounting::RememberedSet* remembered_set = table_pair.second;
2158      remembered_set->Dump(LOG(ERROR) << remembered_set->GetName() << ": ");
2159    }
2160    DumpSpaces();
2161  }
2162  return visitor.GetFailureCount();
2163}
2164
2165class VerifyReferenceCardVisitor {
2166 public:
2167  VerifyReferenceCardVisitor(Heap* heap, bool* failed)
2168      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_,
2169                            Locks::heap_bitmap_lock_)
2170      : heap_(heap), failed_(failed) {
2171  }
2172
2173  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
2174  // annotalysis on visitors.
2175  void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const
2176      NO_THREAD_SAFETY_ANALYSIS {
2177    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
2178    // Filter out class references since changing an object's class does not mark the card as dirty.
2179    // Also handles large objects, since the only reference they hold is a class reference.
2180    if (ref != nullptr && !ref->IsClass()) {
2181      accounting::CardTable* card_table = heap_->GetCardTable();
2182      // If the object is not dirty and it is referencing something in the live stack other than
2183      // class, then it must be on a dirty card.
2184      if (!card_table->AddrIsInCardTable(obj)) {
2185        LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
2186        *failed_ = true;
2187      } else if (!card_table->IsDirty(obj)) {
2188        // TODO: Check mod-union tables.
2189        // Card should be either kCardDirty if it got re-dirtied after we aged it, or
2190        // kCardDirty - 1 if it didnt get touched since we aged it.
2191        accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2192        if (live_stack->ContainsSorted(ref)) {
2193          if (live_stack->ContainsSorted(obj)) {
2194            LOG(ERROR) << "Object " << obj << " found in live stack";
2195          }
2196          if (heap_->GetLiveBitmap()->Test(obj)) {
2197            LOG(ERROR) << "Object " << obj << " found in live bitmap";
2198          }
2199          LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj)
2200                    << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack";
2201
2202          // Print which field of the object is dead.
2203          if (!obj->IsObjectArray()) {
2204            mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass();
2205            CHECK(klass != NULL);
2206            mirror::ObjectArray<mirror::ArtField>* fields = is_static ? klass->GetSFields()
2207                                                                      : klass->GetIFields();
2208            CHECK(fields != NULL);
2209            for (int32_t i = 0; i < fields->GetLength(); ++i) {
2210              mirror::ArtField* cur = fields->Get(i);
2211              if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
2212                LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
2213                          << PrettyField(cur);
2214                break;
2215              }
2216            }
2217          } else {
2218            mirror::ObjectArray<mirror::Object>* object_array =
2219                obj->AsObjectArray<mirror::Object>();
2220            for (int32_t i = 0; i < object_array->GetLength(); ++i) {
2221              if (object_array->Get(i) == ref) {
2222                LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
2223              }
2224            }
2225          }
2226
2227          *failed_ = true;
2228        }
2229      }
2230    }
2231  }
2232
2233 private:
2234  Heap* const heap_;
2235  bool* const failed_;
2236};
2237
2238class VerifyLiveStackReferences {
2239 public:
2240  explicit VerifyLiveStackReferences(Heap* heap)
2241      : heap_(heap),
2242        failed_(false) {}
2243
2244  void operator()(mirror::Object* obj) const
2245      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2246    VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
2247    obj->VisitReferences<true>(visitor, VoidFunctor());
2248  }
2249
2250  bool Failed() const {
2251    return failed_;
2252  }
2253
2254 private:
2255  Heap* const heap_;
2256  bool failed_;
2257};
2258
2259bool Heap::VerifyMissingCardMarks() {
2260  Thread* self = Thread::Current();
2261  Locks::mutator_lock_->AssertExclusiveHeld(self);
2262
2263  // We need to sort the live stack since we binary search it.
2264  live_stack_->Sort();
2265  // Since we sorted the allocation stack content, need to revoke all
2266  // thread-local allocation stacks.
2267  RevokeAllThreadLocalAllocationStacks(self);
2268  VerifyLiveStackReferences visitor(this);
2269  GetLiveBitmap()->Visit(visitor);
2270
2271  // We can verify objects in the live stack since none of these should reference dead objects.
2272  for (mirror::Object** it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
2273    if (!kUseThreadLocalAllocationStack || *it != nullptr) {
2274      visitor(*it);
2275    }
2276  }
2277
2278  if (visitor.Failed()) {
2279    DumpSpaces();
2280    return false;
2281  }
2282  return true;
2283}
2284
2285void Heap::SwapStacks(Thread* self) {
2286  if (kUseThreadLocalAllocationStack) {
2287    live_stack_->AssertAllZero();
2288  }
2289  allocation_stack_.swap(live_stack_);
2290}
2291
2292void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
2293  // This must be called only during the pause.
2294  CHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
2295  MutexLock mu(self, *Locks::runtime_shutdown_lock_);
2296  MutexLock mu2(self, *Locks::thread_list_lock_);
2297  std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
2298  for (Thread* t : thread_list) {
2299    t->RevokeThreadLocalAllocationStack();
2300  }
2301}
2302
2303void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() {
2304  if (kIsDebugBuild) {
2305    if (bump_pointer_space_ != nullptr) {
2306      bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
2307    }
2308  }
2309}
2310
2311accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
2312  auto it = mod_union_tables_.find(space);
2313  if (it == mod_union_tables_.end()) {
2314    return nullptr;
2315  }
2316  return it->second;
2317}
2318
2319accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
2320  auto it = remembered_sets_.find(space);
2321  if (it == remembered_sets_.end()) {
2322    return nullptr;
2323  }
2324  return it->second;
2325}
2326
2327void Heap::ProcessCards(TimingLogger* timings, bool use_rem_sets) {
2328  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2329  // Clear cards and keep track of cards cleared in the mod-union table.
2330  for (const auto& space : continuous_spaces_) {
2331    accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
2332    accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
2333    if (table != nullptr) {
2334      const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
2335          "ImageModUnionClearCards";
2336      TimingLogger::ScopedTiming t(name, timings);
2337      table->ClearCards();
2338    } else if (use_rem_sets && rem_set != nullptr) {
2339      DCHECK(collector::SemiSpace::kUseRememberedSet && collector_type_ == kCollectorTypeGSS)
2340          << static_cast<int>(collector_type_);
2341      TimingLogger::ScopedTiming t("AllocSpaceRemSetClearCards", timings);
2342      rem_set->ClearCards();
2343    } else if (space->GetType() != space::kSpaceTypeBumpPointerSpace) {
2344      TimingLogger::ScopedTiming t("AllocSpaceClearCards", timings);
2345      // No mod union table for the AllocSpace. Age the cards so that the GC knows that these cards
2346      // were dirty before the GC started.
2347      // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
2348      // -> clean(cleaning thread).
2349      // The races are we either end up with: Aged card, unaged card. Since we have the checkpoint
2350      // roots and then we scan / update mod union tables after. We will always scan either card.
2351      // If we end up with the non aged card, we scan it it in the pause.
2352      card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(),
2353                                     VoidFunctor());
2354    }
2355  }
2356}
2357
2358static void IdentityMarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>*, void*) {
2359}
2360
2361void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) {
2362  Thread* const self = Thread::Current();
2363  TimingLogger* const timings = current_gc_iteration_.GetTimings();
2364  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2365  if (verify_pre_gc_heap_) {
2366    TimingLogger::ScopedTiming t("(Paused)PreGcVerifyHeapReferences", timings);
2367    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2368    size_t failures = VerifyHeapReferences();
2369    if (failures > 0) {
2370      LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
2371          << " failures";
2372    }
2373  }
2374  // Check that all objects which reference things in the live stack are on dirty cards.
2375  if (verify_missing_card_marks_) {
2376    TimingLogger::ScopedTiming t("(Paused)PreGcVerifyMissingCardMarks", timings);
2377    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2378    SwapStacks(self);
2379    // Sort the live stack so that we can quickly binary search it later.
2380    if (!VerifyMissingCardMarks()) {
2381      LOG(FATAL) << "Pre " << gc->GetName() << " missing card mark verification failed";
2382    }
2383    SwapStacks(self);
2384  }
2385  if (verify_mod_union_table_) {
2386    TimingLogger::ScopedTiming t("(Paused)PreGcVerifyModUnionTables", timings);
2387    ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
2388    for (const auto& table_pair : mod_union_tables_) {
2389      accounting::ModUnionTable* mod_union_table = table_pair.second;
2390      mod_union_table->UpdateAndMarkReferences(IdentityMarkHeapReferenceCallback, nullptr);
2391      mod_union_table->Verify();
2392    }
2393  }
2394}
2395
2396void Heap::PreGcVerification(collector::GarbageCollector* gc) {
2397  if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) {
2398    collector::GarbageCollector::ScopedPause pause(gc);
2399    PreGcVerificationPaused(gc);
2400  }
2401}
2402
2403void Heap::PrePauseRosAllocVerification(collector::GarbageCollector* gc) {
2404  // TODO: Add a new runtime option for this?
2405  if (verify_pre_gc_rosalloc_) {
2406    RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification");
2407  }
2408}
2409
2410void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
2411  Thread* const self = Thread::Current();
2412  TimingLogger* const timings = current_gc_iteration_.GetTimings();
2413  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2414  // Called before sweeping occurs since we want to make sure we are not going so reclaim any
2415  // reachable objects.
2416  if (verify_pre_sweeping_heap_) {
2417    TimingLogger::ScopedTiming t("(Paused)PostSweepingVerifyHeapReferences", timings);
2418    CHECK_NE(self->GetState(), kRunnable);
2419    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2420    // Swapping bound bitmaps does nothing.
2421    gc->SwapBitmaps();
2422    // Pass in false since concurrent reference processing can mean that the reference referents
2423    // may point to dead objects at the point which PreSweepingGcVerification is called.
2424    size_t failures = VerifyHeapReferences(false);
2425    if (failures > 0) {
2426      LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures
2427          << " failures";
2428    }
2429    gc->SwapBitmaps();
2430  }
2431  if (verify_pre_sweeping_rosalloc_) {
2432    RosAllocVerification(timings, "PreSweepingRosAllocVerification");
2433  }
2434}
2435
2436void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) {
2437  // Only pause if we have to do some verification.
2438  Thread* const self = Thread::Current();
2439  TimingLogger* const timings = GetCurrentGcIteration()->GetTimings();
2440  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2441  if (verify_system_weaks_) {
2442    ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
2443    collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
2444    mark_sweep->VerifySystemWeaks();
2445  }
2446  if (verify_post_gc_rosalloc_) {
2447    RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification");
2448  }
2449  if (verify_post_gc_heap_) {
2450    TimingLogger::ScopedTiming t("(Paused)PostGcVerifyHeapReferences", timings);
2451    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2452    size_t failures = VerifyHeapReferences();
2453    if (failures > 0) {
2454      LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
2455          << " failures";
2456    }
2457  }
2458}
2459
2460void Heap::PostGcVerification(collector::GarbageCollector* gc) {
2461  if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) {
2462    collector::GarbageCollector::ScopedPause pause(gc);
2463    PreGcVerificationPaused(gc);
2464  }
2465}
2466
2467void Heap::RosAllocVerification(TimingLogger* timings, const char* name) {
2468  TimingLogger::ScopedTiming t(name, timings);
2469  for (const auto& space : continuous_spaces_) {
2470    if (space->IsRosAllocSpace()) {
2471      VLOG(heap) << name << " : " << space->GetName();
2472      space->AsRosAllocSpace()->Verify();
2473    }
2474  }
2475}
2476
2477collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) {
2478  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
2479  MutexLock mu(self, *gc_complete_lock_);
2480  return WaitForGcToCompleteLocked(cause, self);
2481}
2482
2483collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self) {
2484  collector::GcType last_gc_type = collector::kGcTypeNone;
2485  uint64_t wait_start = NanoTime();
2486  while (collector_type_running_ != kCollectorTypeNone) {
2487    ATRACE_BEGIN("GC: Wait For Completion");
2488    // We must wait, change thread state then sleep on gc_complete_cond_;
2489    gc_complete_cond_->Wait(self);
2490    last_gc_type = last_gc_type_;
2491    ATRACE_END();
2492  }
2493  uint64_t wait_time = NanoTime() - wait_start;
2494  total_wait_time_ += wait_time;
2495  if (wait_time > long_pause_log_threshold_) {
2496    LOG(INFO) << "WaitForGcToComplete blocked for " << PrettyDuration(wait_time)
2497        << " for cause " << cause;
2498  }
2499  return last_gc_type;
2500}
2501
2502void Heap::DumpForSigQuit(std::ostream& os) {
2503  os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
2504     << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
2505  DumpGcPerformanceInfo(os);
2506}
2507
2508size_t Heap::GetPercentFree() {
2509  return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / max_allowed_footprint_);
2510}
2511
2512void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
2513  if (max_allowed_footprint > GetMaxMemory()) {
2514    VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to "
2515             << PrettySize(GetMaxMemory());
2516    max_allowed_footprint = GetMaxMemory();
2517  }
2518  max_allowed_footprint_ = max_allowed_footprint;
2519}
2520
2521bool Heap::IsMovableObject(const mirror::Object* obj) const {
2522  if (kMovingCollector) {
2523    space::Space* space = FindContinuousSpaceFromObject(obj, true);
2524    if (space != nullptr) {
2525      // TODO: Check large object?
2526      return space->CanMoveObjects();
2527    }
2528  }
2529  return false;
2530}
2531
2532void Heap::UpdateMaxNativeFootprint() {
2533  size_t native_size = native_bytes_allocated_.LoadRelaxed();
2534  // TODO: Tune the native heap utilization to be a value other than the java heap utilization.
2535  size_t target_size = native_size / GetTargetHeapUtilization();
2536  if (target_size > native_size + max_free_) {
2537    target_size = native_size + max_free_;
2538  } else if (target_size < native_size + min_free_) {
2539    target_size = native_size + min_free_;
2540  }
2541  native_footprint_gc_watermark_ = target_size;
2542  native_footprint_limit_ = 2 * target_size - native_size;
2543}
2544
2545collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) {
2546  for (const auto& collector : garbage_collectors_) {
2547    if (collector->GetCollectorType() == collector_type_ &&
2548        collector->GetGcType() == gc_type) {
2549      return collector;
2550    }
2551  }
2552  return nullptr;
2553}
2554
2555double Heap::HeapGrowthMultiplier() const {
2556  // If we don't care about pause times we are background, so return 1.0.
2557  if (!CareAboutPauseTimes() || IsLowMemoryMode()) {
2558    return 1.0;
2559  }
2560  return foreground_heap_growth_multiplier_;
2561}
2562
2563void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran) {
2564  // We know what our utilization is at this moment.
2565  // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
2566  const uint64_t bytes_allocated = GetBytesAllocated();
2567  last_gc_size_ = bytes_allocated;
2568  last_gc_time_ns_ = NanoTime();
2569  uint64_t target_size;
2570  collector::GcType gc_type = collector_ran->GetGcType();
2571  if (gc_type != collector::kGcTypeSticky) {
2572    // Grow the heap for non sticky GC.
2573    const float multiplier = HeapGrowthMultiplier();  // Use the multiplier to grow more for
2574    // foreground.
2575    intptr_t delta = bytes_allocated / GetTargetHeapUtilization() - bytes_allocated;
2576    CHECK_GE(delta, 0);
2577    target_size = bytes_allocated + delta * multiplier;
2578    target_size = std::min(target_size,
2579                           bytes_allocated + static_cast<uint64_t>(max_free_ * multiplier));
2580    target_size = std::max(target_size,
2581                           bytes_allocated + static_cast<uint64_t>(min_free_ * multiplier));
2582    native_need_to_run_finalization_ = true;
2583    next_gc_type_ = collector::kGcTypeSticky;
2584  } else {
2585    collector::GcType non_sticky_gc_type =
2586        have_zygote_space_ ? collector::kGcTypePartial : collector::kGcTypeFull;
2587    // Find what the next non sticky collector will be.
2588    collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type);
2589    // If the throughput of the current sticky GC >= throughput of the non sticky collector, then
2590    // do another sticky collection next.
2591    // We also check that the bytes allocated aren't over the footprint limit in order to prevent a
2592    // pathological case where dead objects which aren't reclaimed by sticky could get accumulated
2593    // if the sticky GC throughput always remained >= the full/partial throughput.
2594    if (current_gc_iteration_.GetEstimatedThroughput() * kStickyGcThroughputAdjustment >=
2595        non_sticky_collector->GetEstimatedMeanThroughput() &&
2596        non_sticky_collector->NumberOfIterations() > 0 &&
2597        bytes_allocated <= max_allowed_footprint_) {
2598      next_gc_type_ = collector::kGcTypeSticky;
2599    } else {
2600      next_gc_type_ = non_sticky_gc_type;
2601    }
2602    // If we have freed enough memory, shrink the heap back down.
2603    if (bytes_allocated + max_free_ < max_allowed_footprint_) {
2604      target_size = bytes_allocated + max_free_;
2605    } else {
2606      target_size = std::max(bytes_allocated, static_cast<uint64_t>(max_allowed_footprint_));
2607    }
2608  }
2609  if (!ignore_max_footprint_) {
2610    SetIdealFootprint(target_size);
2611    if (IsGcConcurrent()) {
2612      // Calculate when to perform the next ConcurrentGC.
2613      // Calculate the estimated GC duration.
2614      const double gc_duration_seconds = NsToMs(current_gc_iteration_.GetDurationNs()) / 1000.0;
2615      // Estimate how many remaining bytes we will have when we need to start the next GC.
2616      size_t remaining_bytes = allocation_rate_ * gc_duration_seconds;
2617      remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
2618      remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
2619      if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) {
2620        // A never going to happen situation that from the estimated allocation rate we will exceed
2621        // the applications entire footprint with the given estimated allocation rate. Schedule
2622        // another GC nearly straight away.
2623        remaining_bytes = kMinConcurrentRemainingBytes;
2624      }
2625      DCHECK_LE(remaining_bytes, max_allowed_footprint_);
2626      DCHECK_LE(max_allowed_footprint_, growth_limit_);
2627      // Start a concurrent GC when we get close to the estimated remaining bytes. When the
2628      // allocation rate is very high, remaining_bytes could tell us that we should start a GC
2629      // right away.
2630      concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes,
2631                                         static_cast<size_t>(bytes_allocated));
2632    }
2633  }
2634}
2635
2636void Heap::ClearGrowthLimit() {
2637  growth_limit_ = capacity_;
2638  non_moving_space_->ClearGrowthLimit();
2639}
2640
2641void Heap::AddFinalizerReference(Thread* self, mirror::Object** object) {
2642  ScopedObjectAccess soa(self);
2643  ScopedLocalRef<jobject> arg(self->GetJniEnv(), soa.AddLocalReference<jobject>(*object));
2644  jvalue args[1];
2645  args[0].l = arg.get();
2646  InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args);
2647  // Restore object in case it gets moved.
2648  *object = soa.Decode<mirror::Object*>(arg.get());
2649}
2650
2651void Heap::RequestConcurrentGCAndSaveObject(Thread* self, mirror::Object** obj) {
2652  StackHandleScope<1> hs(self);
2653  HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2654  RequestConcurrentGC(self);
2655}
2656
2657void Heap::RequestConcurrentGC(Thread* self) {
2658  // Make sure that we can do a concurrent GC.
2659  Runtime* runtime = Runtime::Current();
2660  if (runtime == nullptr || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self) ||
2661      self->IsHandlingStackOverflow()) {
2662    return;
2663  }
2664  // We already have a request pending, no reason to start more until we update
2665  // concurrent_start_bytes_.
2666  concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2667  JNIEnv* env = self->GetJniEnv();
2668  DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
2669  DCHECK(WellKnownClasses::java_lang_Daemons_requestGC != nullptr);
2670  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
2671                            WellKnownClasses::java_lang_Daemons_requestGC);
2672  CHECK(!env->ExceptionCheck());
2673}
2674
2675void Heap::ConcurrentGC(Thread* self) {
2676  if (Runtime::Current()->IsShuttingDown(self)) {
2677    return;
2678  }
2679  // Wait for any GCs currently running to finish.
2680  if (WaitForGcToComplete(kGcCauseBackground, self) == collector::kGcTypeNone) {
2681    // If the we can't run the GC type we wanted to run, find the next appropriate one and try that
2682    // instead. E.g. can't do partial, so do full instead.
2683    if (CollectGarbageInternal(next_gc_type_, kGcCauseBackground, false) ==
2684        collector::kGcTypeNone) {
2685      for (collector::GcType gc_type : gc_plan_) {
2686        // Attempt to run the collector, if we succeed, we are done.
2687        if (gc_type > next_gc_type_ &&
2688            CollectGarbageInternal(gc_type, kGcCauseBackground, false) != collector::kGcTypeNone) {
2689          break;
2690        }
2691      }
2692    }
2693  }
2694}
2695
2696void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
2697  Thread* self = Thread::Current();
2698  {
2699    MutexLock mu(self, *heap_trim_request_lock_);
2700    if (desired_collector_type_ == desired_collector_type) {
2701      return;
2702    }
2703    heap_transition_or_trim_target_time_ =
2704        std::max(heap_transition_or_trim_target_time_, NanoTime() + delta_time);
2705    desired_collector_type_ = desired_collector_type;
2706  }
2707  SignalHeapTrimDaemon(self);
2708}
2709
2710void Heap::RequestHeapTrim() {
2711  // GC completed and now we must decide whether to request a heap trim (advising pages back to the
2712  // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
2713  // a space it will hold its lock and can become a cause of jank.
2714  // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
2715  // forking.
2716
2717  // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
2718  // because that only marks object heads, so a large array looks like lots of empty space. We
2719  // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
2720  // to utilization (which is probably inversely proportional to how much benefit we can expect).
2721  // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
2722  // not how much use we're making of those pages.
2723
2724  Thread* self = Thread::Current();
2725  Runtime* runtime = Runtime::Current();
2726  if (runtime == nullptr || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self)) {
2727    // Heap trimming isn't supported without a Java runtime or Daemons (such as at dex2oat time)
2728    // Also: we do not wish to start a heap trim if the runtime is shutting down (a racy check
2729    // as we don't hold the lock while requesting the trim).
2730    return;
2731  }
2732  {
2733    MutexLock mu(self, *heap_trim_request_lock_);
2734    if (last_trim_time_ + kHeapTrimWait >= NanoTime()) {
2735      // We have done a heap trim in the last kHeapTrimWait nanosecs, don't request another one
2736      // just yet.
2737      return;
2738    }
2739    heap_trim_request_pending_ = true;
2740    uint64_t current_time = NanoTime();
2741    if (heap_transition_or_trim_target_time_ < current_time) {
2742      heap_transition_or_trim_target_time_ = current_time + kHeapTrimWait;
2743    }
2744  }
2745  // Notify the daemon thread which will actually do the heap trim.
2746  SignalHeapTrimDaemon(self);
2747}
2748
2749void Heap::SignalHeapTrimDaemon(Thread* self) {
2750  JNIEnv* env = self->GetJniEnv();
2751  DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
2752  DCHECK(WellKnownClasses::java_lang_Daemons_requestHeapTrim != nullptr);
2753  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
2754                            WellKnownClasses::java_lang_Daemons_requestHeapTrim);
2755  CHECK(!env->ExceptionCheck());
2756}
2757
2758void Heap::RevokeThreadLocalBuffers(Thread* thread) {
2759  if (rosalloc_space_ != nullptr) {
2760    rosalloc_space_->RevokeThreadLocalBuffers(thread);
2761  }
2762  if (bump_pointer_space_ != nullptr) {
2763    bump_pointer_space_->RevokeThreadLocalBuffers(thread);
2764  }
2765}
2766
2767void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) {
2768  if (rosalloc_space_ != nullptr) {
2769    rosalloc_space_->RevokeThreadLocalBuffers(thread);
2770  }
2771}
2772
2773void Heap::RevokeAllThreadLocalBuffers() {
2774  if (rosalloc_space_ != nullptr) {
2775    rosalloc_space_->RevokeAllThreadLocalBuffers();
2776  }
2777  if (bump_pointer_space_ != nullptr) {
2778    bump_pointer_space_->RevokeAllThreadLocalBuffers();
2779  }
2780}
2781
2782bool Heap::IsGCRequestPending() const {
2783  return concurrent_start_bytes_ != std::numeric_limits<size_t>::max();
2784}
2785
2786void Heap::RunFinalization(JNIEnv* env) {
2787  // Can't do this in WellKnownClasses::Init since System is not properly set up at that point.
2788  if (WellKnownClasses::java_lang_System_runFinalization == nullptr) {
2789    CHECK(WellKnownClasses::java_lang_System != nullptr);
2790    WellKnownClasses::java_lang_System_runFinalization =
2791        CacheMethod(env, WellKnownClasses::java_lang_System, true, "runFinalization", "()V");
2792    CHECK(WellKnownClasses::java_lang_System_runFinalization != nullptr);
2793  }
2794  env->CallStaticVoidMethod(WellKnownClasses::java_lang_System,
2795                            WellKnownClasses::java_lang_System_runFinalization);
2796}
2797
2798void Heap::RegisterNativeAllocation(JNIEnv* env, int bytes) {
2799  Thread* self = ThreadForEnv(env);
2800  if (native_need_to_run_finalization_) {
2801    RunFinalization(env);
2802    UpdateMaxNativeFootprint();
2803    native_need_to_run_finalization_ = false;
2804  }
2805  // Total number of native bytes allocated.
2806  size_t new_native_bytes_allocated = native_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes);
2807  new_native_bytes_allocated += bytes;
2808  if (new_native_bytes_allocated > native_footprint_gc_watermark_) {
2809    collector::GcType gc_type = have_zygote_space_ ? collector::kGcTypePartial :
2810        collector::kGcTypeFull;
2811
2812    // The second watermark is higher than the gc watermark. If you hit this it means you are
2813    // allocating native objects faster than the GC can keep up with.
2814    if (new_native_bytes_allocated > native_footprint_limit_) {
2815      if (WaitForGcToComplete(kGcCauseForNativeAlloc, self) != collector::kGcTypeNone) {
2816        // Just finished a GC, attempt to run finalizers.
2817        RunFinalization(env);
2818        CHECK(!env->ExceptionCheck());
2819      }
2820      // If we still are over the watermark, attempt a GC for alloc and run finalizers.
2821      if (new_native_bytes_allocated > native_footprint_limit_) {
2822        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
2823        RunFinalization(env);
2824        native_need_to_run_finalization_ = false;
2825        CHECK(!env->ExceptionCheck());
2826      }
2827      // We have just run finalizers, update the native watermark since it is very likely that
2828      // finalizers released native managed allocations.
2829      UpdateMaxNativeFootprint();
2830    } else if (!IsGCRequestPending()) {
2831      if (IsGcConcurrent()) {
2832        RequestConcurrentGC(self);
2833      } else {
2834        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
2835      }
2836    }
2837  }
2838}
2839
2840void Heap::RegisterNativeFree(JNIEnv* env, int bytes) {
2841  int expected_size, new_size;
2842  do {
2843    expected_size = native_bytes_allocated_.LoadRelaxed();
2844    new_size = expected_size - bytes;
2845    if (UNLIKELY(new_size < 0)) {
2846      ScopedObjectAccess soa(env);
2847      env->ThrowNew(WellKnownClasses::java_lang_RuntimeException,
2848                    StringPrintf("Attempted to free %d native bytes with only %d native bytes "
2849                                 "registered as allocated", bytes, expected_size).c_str());
2850      break;
2851    }
2852  } while (!native_bytes_allocated_.CompareExchangeWeakRelaxed(expected_size, new_size));
2853}
2854
2855size_t Heap::GetTotalMemory() const {
2856  size_t ret = 0;
2857  for (const auto& space : continuous_spaces_) {
2858    // Currently don't include the image space.
2859    if (!space->IsImageSpace()) {
2860      ret += space->Size();
2861    }
2862  }
2863  for (const auto& space : discontinuous_spaces_) {
2864    if (space->IsLargeObjectSpace()) {
2865      ret += space->AsLargeObjectSpace()->GetBytesAllocated();
2866    }
2867  }
2868  return ret;
2869}
2870
2871void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
2872  DCHECK(mod_union_table != nullptr);
2873  mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
2874}
2875
2876void Heap::CheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count) {
2877  CHECK(c == NULL || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
2878        (c->IsVariableSize() || c->GetObjectSize() == byte_count) ||
2879        c->GetDescriptor().empty());
2880  CHECK_GE(byte_count, sizeof(mirror::Object));
2881}
2882
2883void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
2884  CHECK(remembered_set != nullptr);
2885  space::Space* space = remembered_set->GetSpace();
2886  CHECK(space != nullptr);
2887  CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space;
2888  remembered_sets_.Put(space, remembered_set);
2889  CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space;
2890}
2891
2892void Heap::RemoveRememberedSet(space::Space* space) {
2893  CHECK(space != nullptr);
2894  auto it = remembered_sets_.find(space);
2895  CHECK(it != remembered_sets_.end());
2896  remembered_sets_.erase(it);
2897  CHECK(remembered_sets_.find(space) == remembered_sets_.end());
2898}
2899
2900void Heap::ClearMarkedObjects() {
2901  // Clear all of the spaces' mark bitmaps.
2902  for (const auto& space : GetContinuousSpaces()) {
2903    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
2904    if (space->GetLiveBitmap() != mark_bitmap) {
2905      mark_bitmap->Clear();
2906    }
2907  }
2908  // Clear the marked objects in the discontinous space object sets.
2909  for (const auto& space : GetDiscontinuousSpaces()) {
2910    space->GetMarkBitmap()->Clear();
2911  }
2912}
2913
2914}  // namespace gc
2915}  // namespace art
2916