heap.cc revision bd0a65339a08dc28c6b56d2673f1f13b6bddd7aa
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "heap.h"
18
19#define ATRACE_TAG ATRACE_TAG_DALVIK
20#include <cutils/trace.h>
21
22#include <limits>
23#include <vector>
24#include <valgrind.h>
25
26#include "base/histogram-inl.h"
27#include "base/stl_util.h"
28#include "common_throws.h"
29#include "cutils/sched_policy.h"
30#include "debugger.h"
31#include "gc/accounting/atomic_stack.h"
32#include "gc/accounting/card_table-inl.h"
33#include "gc/accounting/heap_bitmap-inl.h"
34#include "gc/accounting/mod_union_table.h"
35#include "gc/accounting/mod_union_table-inl.h"
36#include "gc/accounting/space_bitmap-inl.h"
37#include "gc/collector/mark_sweep-inl.h"
38#include "gc/collector/partial_mark_sweep.h"
39#include "gc/collector/semi_space.h"
40#include "gc/collector/sticky_mark_sweep.h"
41#include "gc/space/bump_pointer_space.h"
42#include "gc/space/dlmalloc_space-inl.h"
43#include "gc/space/image_space.h"
44#include "gc/space/large_object_space.h"
45#include "gc/space/rosalloc_space-inl.h"
46#include "gc/space/space-inl.h"
47#include "gc/space/zygote_space.h"
48#include "heap-inl.h"
49#include "image.h"
50#include "invoke_arg_array_builder.h"
51#include "mirror/art_field-inl.h"
52#include "mirror/class-inl.h"
53#include "mirror/object.h"
54#include "mirror/object-inl.h"
55#include "mirror/object_array-inl.h"
56#include "object_utils.h"
57#include "os.h"
58#include "runtime.h"
59#include "ScopedLocalRef.h"
60#include "scoped_thread_state_change.h"
61#include "sirt_ref.h"
62#include "thread_list.h"
63#include "UniquePtr.h"
64#include "well_known_classes.h"
65
66namespace art {
67
68extern void SetQuickAllocEntryPointsAllocator(gc::AllocatorType allocator);
69
70namespace gc {
71
72static constexpr bool kGCALotMode = false;
73static constexpr size_t kGcAlotInterval = KB;
74// Minimum amount of remaining bytes before a concurrent GC is triggered.
75static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
76static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
77
78Heap::Heap(size_t initial_size, size_t growth_limit, size_t min_free, size_t max_free,
79           double target_utilization, size_t capacity, const std::string& image_file_name,
80           CollectorType post_zygote_collector_type, CollectorType background_collector_type,
81           size_t parallel_gc_threads, size_t conc_gc_threads, bool low_memory_mode,
82           size_t long_pause_log_threshold, size_t long_gc_log_threshold,
83           bool ignore_max_footprint, bool use_tlab, bool verify_pre_gc_heap,
84           bool verify_post_gc_heap, bool verify_pre_gc_rosalloc,
85           bool verify_post_gc_rosalloc)
86    : non_moving_space_(nullptr),
87      rosalloc_space_(nullptr),
88      dlmalloc_space_(nullptr),
89      main_space_(nullptr),
90      concurrent_gc_(false),
91      collector_type_(kCollectorTypeNone),
92      post_zygote_collector_type_(post_zygote_collector_type),
93      background_collector_type_(background_collector_type),
94      parallel_gc_threads_(parallel_gc_threads),
95      conc_gc_threads_(conc_gc_threads),
96      low_memory_mode_(low_memory_mode),
97      long_pause_log_threshold_(long_pause_log_threshold),
98      long_gc_log_threshold_(long_gc_log_threshold),
99      ignore_max_footprint_(ignore_max_footprint),
100      have_zygote_space_(false),
101      large_object_threshold_(std::numeric_limits<size_t>::max()),  // Starts out disabled.
102      soft_reference_queue_(this),
103      weak_reference_queue_(this),
104      finalizer_reference_queue_(this),
105      phantom_reference_queue_(this),
106      cleared_references_(this),
107      collector_type_running_(kCollectorTypeNone),
108      last_gc_type_(collector::kGcTypeNone),
109      next_gc_type_(collector::kGcTypePartial),
110      capacity_(capacity),
111      growth_limit_(growth_limit),
112      max_allowed_footprint_(initial_size),
113      native_footprint_gc_watermark_(initial_size),
114      native_footprint_limit_(2 * initial_size),
115      native_need_to_run_finalization_(false),
116      // Initially assume we perceive jank in case the process state is never updated.
117      process_state_(kProcessStateJankPerceptible),
118      concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
119      total_bytes_freed_ever_(0),
120      total_objects_freed_ever_(0),
121      num_bytes_allocated_(0),
122      native_bytes_allocated_(0),
123      gc_memory_overhead_(0),
124      verify_missing_card_marks_(false),
125      verify_system_weaks_(false),
126      verify_pre_gc_heap_(verify_pre_gc_heap),
127      verify_post_gc_heap_(verify_post_gc_heap),
128      verify_mod_union_table_(false),
129      verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
130      verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
131      last_trim_time_ms_(0),
132      allocation_rate_(0),
133      /* For GC a lot mode, we limit the allocations stacks to be kGcAlotInterval allocations. This
134       * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
135       * verification is enabled, we limit the size of allocation stacks to speed up their
136       * searching.
137       */
138      max_allocation_stack_size_(kGCALotMode ? kGcAlotInterval
139          : (kVerifyObjectSupport > kVerifyObjectModeFast) ? KB : MB),
140      current_allocator_(kAllocatorTypeDlMalloc),
141      current_non_moving_allocator_(kAllocatorTypeNonMoving),
142      bump_pointer_space_(nullptr),
143      temp_space_(nullptr),
144      reference_referent_offset_(0),
145      reference_queue_offset_(0),
146      reference_queueNext_offset_(0),
147      reference_pendingNext_offset_(0),
148      finalizer_reference_zombie_offset_(0),
149      min_free_(min_free),
150      max_free_(max_free),
151      target_utilization_(target_utilization),
152      total_wait_time_(0),
153      total_allocation_time_(0),
154      verify_object_mode_(kVerifyObjectModeDisabled),
155      disable_moving_gc_count_(0),
156      running_on_valgrind_(RUNNING_ON_VALGRIND),
157      use_tlab_(use_tlab) {
158  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
159    LOG(INFO) << "Heap() entering";
160  }
161  // If we aren't the zygote, switch to the default non zygote allocator. This may update the
162  // entrypoints.
163  if (!Runtime::Current()->IsZygote()) {
164    ChangeCollector(post_zygote_collector_type_);
165    large_object_threshold_ = kDefaultLargeObjectThreshold;
166  } else {
167    if (kMovingCollector) {
168      // We are the zygote, use bump pointer allocation + semi space collector.
169      ChangeCollector(kCollectorTypeSS);
170    } else {
171      ChangeCollector(post_zygote_collector_type_);
172    }
173  }
174
175  live_bitmap_.reset(new accounting::HeapBitmap(this));
176  mark_bitmap_.reset(new accounting::HeapBitmap(this));
177  // Requested begin for the alloc space, to follow the mapped image and oat files
178  byte* requested_alloc_space_begin = nullptr;
179  if (!image_file_name.empty()) {
180    space::ImageSpace* image_space = space::ImageSpace::Create(image_file_name.c_str());
181    CHECK(image_space != nullptr) << "Failed to create space for " << image_file_name;
182    AddSpace(image_space);
183    // Oat files referenced by image files immediately follow them in memory, ensure alloc space
184    // isn't going to get in the middle
185    byte* oat_file_end_addr = image_space->GetImageHeader().GetOatFileEnd();
186    CHECK_GT(oat_file_end_addr, image_space->End());
187    if (oat_file_end_addr > requested_alloc_space_begin) {
188      requested_alloc_space_begin = AlignUp(oat_file_end_addr, kPageSize);
189    }
190  }
191  const char* name = Runtime::Current()->IsZygote() ? "zygote space" : "alloc space";
192  space::MallocSpace* malloc_space;
193  if (kUseRosAlloc) {
194    malloc_space = space::RosAllocSpace::Create(name, initial_size, growth_limit, capacity,
195                                                requested_alloc_space_begin, low_memory_mode_);
196    CHECK(malloc_space != nullptr) << "Failed to create rosalloc space";
197  } else {
198    malloc_space = space::DlMallocSpace::Create(name, initial_size, growth_limit, capacity,
199                                                requested_alloc_space_begin);
200    CHECK(malloc_space != nullptr) << "Failed to create dlmalloc space";
201  }
202  VLOG(heap) << "malloc_space : " << malloc_space;
203  if (kMovingCollector) {
204    // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
205    // TODO: Having 3+ spaces as big as the large heap size can cause virtual memory fragmentation
206    // issues.
207    const size_t bump_pointer_space_size = std::min(malloc_space->Capacity(), 128 * MB);
208    bump_pointer_space_ = space::BumpPointerSpace::Create("Bump pointer space",
209                                                          bump_pointer_space_size, nullptr);
210    CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
211    AddSpace(bump_pointer_space_);
212    temp_space_ = space::BumpPointerSpace::Create("Bump pointer space 2", bump_pointer_space_size,
213                                                  nullptr);
214    CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
215    AddSpace(temp_space_);
216    VLOG(heap) << "bump_pointer_space : " << bump_pointer_space_;
217    VLOG(heap) << "temp_space : " << temp_space_;
218  }
219  non_moving_space_ = malloc_space;
220  malloc_space->SetFootprintLimit(malloc_space->Capacity());
221  AddSpace(malloc_space);
222
223  // Allocate the large object space.
224  constexpr bool kUseFreeListSpaceForLOS = false;
225  if (kUseFreeListSpaceForLOS) {
226    large_object_space_ = space::FreeListSpace::Create("large object space", nullptr, capacity);
227  } else {
228    large_object_space_ = space::LargeObjectMapSpace::Create("large object space");
229  }
230  CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
231  AddSpace(large_object_space_);
232
233  // Compute heap capacity. Continuous spaces are sorted in order of Begin().
234  CHECK(!continuous_spaces_.empty());
235
236  // Relies on the spaces being sorted.
237  byte* heap_begin = continuous_spaces_.front()->Begin();
238  byte* heap_end = continuous_spaces_.back()->Limit();
239  if (Runtime::Current()->IsZygote()) {
240    std::string error_str;
241    post_zygote_non_moving_space_mem_map_.reset(
242        MemMap::MapAnonymous("post zygote non-moving space", nullptr, 64 * MB,
243                             PROT_READ | PROT_WRITE, true, &error_str));
244    CHECK(post_zygote_non_moving_space_mem_map_.get() != nullptr) << error_str;
245    heap_begin = std::min(post_zygote_non_moving_space_mem_map_->Begin(), heap_begin);
246    heap_end = std::max(post_zygote_non_moving_space_mem_map_->End(), heap_end);
247  }
248  size_t heap_capacity = heap_end - heap_begin;
249
250  // Allocate the card table.
251  card_table_.reset(accounting::CardTable::Create(heap_begin, heap_capacity));
252  CHECK(card_table_.get() != NULL) << "Failed to create card table";
253
254  // Card cache for now since it makes it easier for us to update the references to the copying
255  // spaces.
256  accounting::ModUnionTable* mod_union_table =
257      new accounting::ModUnionTableCardCache("Image mod-union table", this, GetImageSpace());
258  CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
259  AddModUnionTable(mod_union_table);
260
261  // TODO: Count objects in the image space here.
262  num_bytes_allocated_ = 0;
263
264  // Default mark stack size in bytes.
265  static const size_t default_mark_stack_size = 64 * KB;
266  mark_stack_.reset(accounting::ObjectStack::Create("mark stack", default_mark_stack_size));
267  allocation_stack_.reset(accounting::ObjectStack::Create("allocation stack",
268                                                          max_allocation_stack_size_));
269  live_stack_.reset(accounting::ObjectStack::Create("live stack",
270                                                    max_allocation_stack_size_));
271
272  // It's still too early to take a lock because there are no threads yet, but we can create locks
273  // now. We don't create it earlier to make it clear that you can't use locks during heap
274  // initialization.
275  gc_complete_lock_ = new Mutex("GC complete lock");
276  gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
277                                                *gc_complete_lock_));
278  last_gc_time_ns_ = NanoTime();
279  last_gc_size_ = GetBytesAllocated();
280
281  if (ignore_max_footprint_) {
282    SetIdealFootprint(std::numeric_limits<size_t>::max());
283    concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
284  }
285  CHECK_NE(max_allowed_footprint_, 0U);
286
287  // Create our garbage collectors.
288  for (size_t i = 0; i < 2; ++i) {
289    const bool concurrent = i != 0;
290    garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
291    garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
292    garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
293  }
294  if (kMovingCollector) {
295    // TODO: Clean this up.
296    bool generational = post_zygote_collector_type_ == kCollectorTypeGSS;
297    semi_space_collector_ = new collector::SemiSpace(this, generational);
298    garbage_collectors_.push_back(semi_space_collector_);
299  }
300
301  if (running_on_valgrind_) {
302    Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
303  }
304
305  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
306    LOG(INFO) << "Heap() exiting";
307  }
308}
309
310void Heap::ChangeAllocator(AllocatorType allocator) {
311  // These two allocators are only used internally and don't have any entrypoints.
312  DCHECK_NE(allocator, kAllocatorTypeLOS);
313  DCHECK_NE(allocator, kAllocatorTypeNonMoving);
314  if (current_allocator_ != allocator) {
315    current_allocator_ = allocator;
316    SetQuickAllocEntryPointsAllocator(current_allocator_);
317    Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
318  }
319}
320
321bool Heap::IsCompilingBoot() const {
322  for (const auto& space : continuous_spaces_) {
323    if (space->IsImageSpace() || space->IsZygoteSpace()) {
324      return false;
325    }
326  }
327  return true;
328}
329
330bool Heap::HasImageSpace() const {
331  for (const auto& space : continuous_spaces_) {
332    if (space->IsImageSpace()) {
333      return true;
334    }
335  }
336  return false;
337}
338
339void Heap::IncrementDisableMovingGC(Thread* self) {
340  // Need to do this holding the lock to prevent races where the GC is about to run / running when
341  // we attempt to disable it.
342  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
343  MutexLock mu(self, *gc_complete_lock_);
344  ++disable_moving_gc_count_;
345  if (IsCompactingGC(collector_type_running_)) {
346    WaitForGcToCompleteLocked(self);
347  }
348}
349
350void Heap::DecrementDisableMovingGC(Thread* self) {
351  MutexLock mu(self, *gc_complete_lock_);
352  CHECK_GE(disable_moving_gc_count_, 0U);
353  --disable_moving_gc_count_;
354}
355
356void Heap::UpdateProcessState(ProcessState process_state) {
357  if (process_state_ != process_state) {
358    process_state_ = process_state;
359    if (process_state_ == kProcessStateJankPerceptible) {
360      TransitionCollector(post_zygote_collector_type_);
361    } else {
362      TransitionCollector(background_collector_type_);
363    }
364  } else {
365    CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
366  }
367}
368
369void Heap::CreateThreadPool() {
370  const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
371  if (num_threads != 0) {
372    thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
373  }
374}
375
376void Heap::VisitObjects(ObjectCallback callback, void* arg) {
377  Thread* self = Thread::Current();
378  // GCs can move objects, so don't allow this.
379  const char* old_cause = self->StartAssertNoThreadSuspension("Visiting objects");
380  if (bump_pointer_space_ != nullptr) {
381    // Visit objects in bump pointer space.
382    bump_pointer_space_->Walk(callback, arg);
383  }
384  // TODO: Switch to standard begin and end to use ranged a based loop.
385  for (mirror::Object** it = allocation_stack_->Begin(), **end = allocation_stack_->End();
386      it < end; ++it) {
387    mirror::Object* obj = *it;
388    if (obj != nullptr && obj->GetClass() != nullptr) {
389      // Avoid the race condition caused by the object not yet being written into the allocation
390      // stack or the class not yet being written in the object. Or, if kUseThreadLocalAllocationStack,
391      // there can be nulls on the allocation stack.
392      callback(obj, arg);
393    }
394  }
395  GetLiveBitmap()->Walk(callback, arg);
396  self->EndAssertNoThreadSuspension(old_cause);
397}
398
399void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
400  space::ContinuousSpace* space1 = rosalloc_space_ != nullptr ? rosalloc_space_ : non_moving_space_;
401  space::ContinuousSpace* space2 = dlmalloc_space_ != nullptr ? dlmalloc_space_ : non_moving_space_;
402  // This is just logic to handle a case of either not having a rosalloc or dlmalloc space.
403  // TODO: Generalize this to n bitmaps?
404  if (space1 == nullptr) {
405    DCHECK(space2 != nullptr);
406    space1 = space2;
407  }
408  if (space2 == nullptr) {
409    DCHECK(space1 != nullptr);
410    space2 = space1;
411  }
412  MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
413                 large_object_space_->GetLiveObjects(), stack);
414}
415
416void Heap::DeleteThreadPool() {
417  thread_pool_.reset(nullptr);
418}
419
420void Heap::AddSpace(space::Space* space, bool set_as_default) {
421  DCHECK(space != nullptr);
422  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
423  if (space->IsContinuousSpace()) {
424    DCHECK(!space->IsDiscontinuousSpace());
425    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
426    // Continuous spaces don't necessarily have bitmaps.
427    accounting::SpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
428    accounting::SpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
429    if (live_bitmap != nullptr) {
430      DCHECK(mark_bitmap != nullptr);
431      live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
432      mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
433    }
434    continuous_spaces_.push_back(continuous_space);
435    if (set_as_default) {
436      if (continuous_space->IsDlMallocSpace()) {
437        dlmalloc_space_ = continuous_space->AsDlMallocSpace();
438      } else if (continuous_space->IsRosAllocSpace()) {
439        rosalloc_space_ = continuous_space->AsRosAllocSpace();
440      }
441    }
442    // Ensure that spaces remain sorted in increasing order of start address.
443    std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
444              [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
445      return a->Begin() < b->Begin();
446    });
447  } else {
448    DCHECK(space->IsDiscontinuousSpace());
449    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
450    DCHECK(discontinuous_space->GetLiveObjects() != nullptr);
451    live_bitmap_->AddDiscontinuousObjectSet(discontinuous_space->GetLiveObjects());
452    DCHECK(discontinuous_space->GetMarkObjects() != nullptr);
453    mark_bitmap_->AddDiscontinuousObjectSet(discontinuous_space->GetMarkObjects());
454    discontinuous_spaces_.push_back(discontinuous_space);
455  }
456  if (space->IsAllocSpace()) {
457    alloc_spaces_.push_back(space->AsAllocSpace());
458  }
459}
460
461void Heap::RemoveSpace(space::Space* space) {
462  DCHECK(space != nullptr);
463  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
464  if (space->IsContinuousSpace()) {
465    DCHECK(!space->IsDiscontinuousSpace());
466    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
467    // Continuous spaces don't necessarily have bitmaps.
468    accounting::SpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
469    accounting::SpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
470    if (live_bitmap != nullptr) {
471      DCHECK(mark_bitmap != nullptr);
472      live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
473      mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
474    }
475    auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
476    DCHECK(it != continuous_spaces_.end());
477    continuous_spaces_.erase(it);
478    if (continuous_space == dlmalloc_space_) {
479      dlmalloc_space_ = nullptr;
480    } else if (continuous_space == rosalloc_space_) {
481      rosalloc_space_ = nullptr;
482    }
483    if (continuous_space == main_space_) {
484      main_space_ = nullptr;
485    }
486  } else {
487    DCHECK(space->IsDiscontinuousSpace());
488    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
489    DCHECK(discontinuous_space->GetLiveObjects() != nullptr);
490    live_bitmap_->RemoveDiscontinuousObjectSet(discontinuous_space->GetLiveObjects());
491    DCHECK(discontinuous_space->GetMarkObjects() != nullptr);
492    mark_bitmap_->RemoveDiscontinuousObjectSet(discontinuous_space->GetMarkObjects());
493    auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
494                        discontinuous_space);
495    DCHECK(it != discontinuous_spaces_.end());
496    discontinuous_spaces_.erase(it);
497  }
498  if (space->IsAllocSpace()) {
499    auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
500    DCHECK(it != alloc_spaces_.end());
501    alloc_spaces_.erase(it);
502  }
503}
504
505void Heap::RegisterGCAllocation(size_t bytes) {
506  if (this != nullptr) {
507    gc_memory_overhead_.FetchAndAdd(bytes);
508  }
509}
510
511void Heap::RegisterGCDeAllocation(size_t bytes) {
512  if (this != nullptr) {
513    gc_memory_overhead_.FetchAndSub(bytes);
514  }
515}
516
517void Heap::DumpGcPerformanceInfo(std::ostream& os) {
518  // Dump cumulative timings.
519  os << "Dumping cumulative Gc timings\n";
520  uint64_t total_duration = 0;
521
522  // Dump cumulative loggers for each GC type.
523  uint64_t total_paused_time = 0;
524  for (const auto& collector : garbage_collectors_) {
525    CumulativeLogger& logger = collector->GetCumulativeTimings();
526    if (logger.GetTotalNs() != 0) {
527      os << Dumpable<CumulativeLogger>(logger);
528      const uint64_t total_ns = logger.GetTotalNs();
529      const uint64_t total_pause_ns = collector->GetTotalPausedTimeNs();
530      double seconds = NsToMs(logger.GetTotalNs()) / 1000.0;
531      const uint64_t freed_bytes = collector->GetTotalFreedBytes();
532      const uint64_t freed_objects = collector->GetTotalFreedObjects();
533      Histogram<uint64_t>::CumulativeData cumulative_data;
534      collector->GetPauseHistogram().CreateHistogram(&cumulative_data);
535      collector->GetPauseHistogram().PrintConfidenceIntervals(os, 0.99, cumulative_data);
536      os << collector->GetName() << " total time: " << PrettyDuration(total_ns) << "\n"
537         << collector->GetName() << " freed: " << freed_objects
538         << " objects with total size " << PrettySize(freed_bytes) << "\n"
539         << collector->GetName() << " throughput: " << freed_objects / seconds << "/s / "
540         << PrettySize(freed_bytes / seconds) << "/s\n";
541      total_duration += total_ns;
542      total_paused_time += total_pause_ns;
543    }
544  }
545  uint64_t allocation_time = static_cast<uint64_t>(total_allocation_time_) * kTimeAdjust;
546  if (total_duration != 0) {
547    const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
548    os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
549    os << "Mean GC size throughput: "
550       << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
551    os << "Mean GC object throughput: "
552       << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
553  }
554  size_t total_objects_allocated = GetObjectsAllocatedEver();
555  os << "Total number of allocations: " << total_objects_allocated << "\n";
556  size_t total_bytes_allocated = GetBytesAllocatedEver();
557  os << "Total bytes allocated " << PrettySize(total_bytes_allocated) << "\n";
558  if (kMeasureAllocationTime) {
559    os << "Total time spent allocating: " << PrettyDuration(allocation_time) << "\n";
560    os << "Mean allocation time: " << PrettyDuration(allocation_time / total_objects_allocated)
561       << "\n";
562  }
563  os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
564  os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
565  os << "Approximate GC data structures memory overhead: " << gc_memory_overhead_;
566}
567
568Heap::~Heap() {
569  VLOG(heap) << "Starting ~Heap()";
570  STLDeleteElements(&garbage_collectors_);
571  // If we don't reset then the mark stack complains in its destructor.
572  allocation_stack_->Reset();
573  live_stack_->Reset();
574  STLDeleteValues(&mod_union_tables_);
575  STLDeleteElements(&continuous_spaces_);
576  STLDeleteElements(&discontinuous_spaces_);
577  delete gc_complete_lock_;
578  VLOG(heap) << "Finished ~Heap()";
579}
580
581space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(const mirror::Object* obj,
582                                                            bool fail_ok) const {
583  for (const auto& space : continuous_spaces_) {
584    if (space->Contains(obj)) {
585      return space;
586    }
587  }
588  if (!fail_ok) {
589    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
590  }
591  return NULL;
592}
593
594space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(const mirror::Object* obj,
595                                                                  bool fail_ok) const {
596  for (const auto& space : discontinuous_spaces_) {
597    if (space->Contains(obj)) {
598      return space;
599    }
600  }
601  if (!fail_ok) {
602    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
603  }
604  return NULL;
605}
606
607space::Space* Heap::FindSpaceFromObject(const mirror::Object* obj, bool fail_ok) const {
608  space::Space* result = FindContinuousSpaceFromObject(obj, true);
609  if (result != NULL) {
610    return result;
611  }
612  return FindDiscontinuousSpaceFromObject(obj, true);
613}
614
615struct SoftReferenceArgs {
616  IsMarkedCallback* is_marked_callback_;
617  MarkObjectCallback* mark_callback_;
618  void* arg_;
619};
620
621mirror::Object* Heap::PreserveSoftReferenceCallback(mirror::Object* obj, void* arg) {
622  SoftReferenceArgs* args = reinterpret_cast<SoftReferenceArgs*>(arg);
623  // TODO: Not preserve all soft references.
624  return args->mark_callback_(obj, args->arg_);
625}
626
627// Process reference class instances and schedule finalizations.
628void Heap::ProcessReferences(TimingLogger& timings, bool clear_soft,
629                             IsMarkedCallback* is_marked_callback,
630                             MarkObjectCallback* mark_object_callback,
631                             ProcessMarkStackCallback* process_mark_stack_callback, void* arg) {
632  // Unless we are in the zygote or required to clear soft references with white references,
633  // preserve some white referents.
634  if (!clear_soft && !Runtime::Current()->IsZygote()) {
635    SoftReferenceArgs soft_reference_args;
636    soft_reference_args.is_marked_callback_ = is_marked_callback;
637    soft_reference_args.mark_callback_ = mark_object_callback;
638    soft_reference_args.arg_ = arg;
639    soft_reference_queue_.PreserveSomeSoftReferences(&PreserveSoftReferenceCallback,
640                                                     &soft_reference_args);
641    process_mark_stack_callback(arg);
642  }
643  timings.StartSplit("(Paused)ProcessReferences");
644  // Clear all remaining soft and weak references with white referents.
645  soft_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
646  weak_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
647  timings.EndSplit();
648  // Preserve all white objects with finalize methods and schedule them for finalization.
649  timings.StartSplit("(Paused)EnqueueFinalizerReferences");
650  finalizer_reference_queue_.EnqueueFinalizerReferences(cleared_references_, is_marked_callback,
651                                                        mark_object_callback, arg);
652  process_mark_stack_callback(arg);
653  timings.EndSplit();
654  timings.StartSplit("(Paused)ProcessReferences");
655  // Clear all f-reachable soft and weak references with white referents.
656  soft_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
657  weak_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
658  // Clear all phantom references with white referents.
659  phantom_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
660  // At this point all reference queues other than the cleared references should be empty.
661  DCHECK(soft_reference_queue_.IsEmpty());
662  DCHECK(weak_reference_queue_.IsEmpty());
663  DCHECK(finalizer_reference_queue_.IsEmpty());
664  DCHECK(phantom_reference_queue_.IsEmpty());
665  timings.EndSplit();
666}
667
668bool Heap::IsEnqueued(mirror::Object* ref) const {
669  // Since the references are stored as cyclic lists it means that once enqueued, the pending next
670  // will always be non-null.
671  return ref->GetFieldObject<mirror::Object>(GetReferencePendingNextOffset(), false) != nullptr;
672}
673
674bool Heap::IsEnqueuable(mirror::Object* ref) const {
675  DCHECK(ref != nullptr);
676  const mirror::Object* queue =
677      ref->GetFieldObject<mirror::Object>(GetReferenceQueueOffset(), false);
678  const mirror::Object* queue_next =
679      ref->GetFieldObject<mirror::Object>(GetReferenceQueueNextOffset(), false);
680  return queue != nullptr && queue_next == nullptr;
681}
682
683// Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
684// marked, put it on the appropriate list in the heap for later processing.
685void Heap::DelayReferenceReferent(mirror::Class* klass, mirror::Object* obj,
686                                  IsMarkedCallback is_marked_callback, void* arg) {
687  DCHECK(klass != nullptr);
688  DCHECK(klass->IsReferenceClass());
689  DCHECK(obj != nullptr);
690  mirror::Object* referent = GetReferenceReferent(obj);
691  if (referent != nullptr) {
692    mirror::Object* forward_address = is_marked_callback(referent, arg);
693    // Null means that the object is not currently marked.
694    if (forward_address == nullptr) {
695      Thread* self = Thread::Current();
696      // TODO: Remove these locks, and use atomic stacks for storing references?
697      // We need to check that the references haven't already been enqueued since we can end up
698      // scanning the same reference multiple times due to dirty cards.
699      if (klass->IsSoftReferenceClass()) {
700        soft_reference_queue_.AtomicEnqueueIfNotEnqueued(self, obj);
701      } else if (klass->IsWeakReferenceClass()) {
702        weak_reference_queue_.AtomicEnqueueIfNotEnqueued(self, obj);
703      } else if (klass->IsFinalizerReferenceClass()) {
704        finalizer_reference_queue_.AtomicEnqueueIfNotEnqueued(self, obj);
705      } else if (klass->IsPhantomReferenceClass()) {
706        phantom_reference_queue_.AtomicEnqueueIfNotEnqueued(self, obj);
707      } else {
708        LOG(FATAL) << "Invalid reference type " << PrettyClass(klass) << " " << std::hex
709                   << klass->GetAccessFlags();
710      }
711    } else if (referent != forward_address) {
712      // Referent is already marked and we need to update it.
713      SetReferenceReferent(obj, forward_address);
714    }
715  }
716}
717
718space::ImageSpace* Heap::GetImageSpace() const {
719  for (const auto& space : continuous_spaces_) {
720    if (space->IsImageSpace()) {
721      return space->AsImageSpace();
722    }
723  }
724  return NULL;
725}
726
727static void MSpaceChunkCallback(void* start, void* end, size_t used_bytes, void* arg) {
728  size_t chunk_size = reinterpret_cast<uint8_t*>(end) - reinterpret_cast<uint8_t*>(start);
729  if (used_bytes < chunk_size) {
730    size_t chunk_free_bytes = chunk_size - used_bytes;
731    size_t& max_contiguous_allocation = *reinterpret_cast<size_t*>(arg);
732    max_contiguous_allocation = std::max(max_contiguous_allocation, chunk_free_bytes);
733  }
734}
735
736void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, bool large_object_allocation) {
737  std::ostringstream oss;
738  size_t total_bytes_free = GetFreeMemory();
739  oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
740      << " free bytes";
741  // If the allocation failed due to fragmentation, print out the largest continuous allocation.
742  if (!large_object_allocation && total_bytes_free >= byte_count) {
743    size_t max_contiguous_allocation = 0;
744    for (const auto& space : continuous_spaces_) {
745      if (space->IsMallocSpace()) {
746        // To allow the Walk/InspectAll() to exclusively-lock the mutator
747        // lock, temporarily release the shared access to the mutator
748        // lock here by transitioning to the suspended state.
749        Locks::mutator_lock_->AssertSharedHeld(self);
750        self->TransitionFromRunnableToSuspended(kSuspended);
751        space->AsMallocSpace()->Walk(MSpaceChunkCallback, &max_contiguous_allocation);
752        self->TransitionFromSuspendedToRunnable();
753        Locks::mutator_lock_->AssertSharedHeld(self);
754      }
755    }
756    oss << "; failed due to fragmentation (largest possible contiguous allocation "
757        <<  max_contiguous_allocation << " bytes)";
758  }
759  self->ThrowOutOfMemoryError(oss.str().c_str());
760}
761
762void Heap::Trim() {
763  Thread* self = Thread::Current();
764  {
765    // Need to do this before acquiring the locks since we don't want to get suspended while
766    // holding any locks.
767    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
768    // Pretend we are doing a GC to prevent background compaction from deleting the space we are
769    // trimming.
770    MutexLock mu(self, *gc_complete_lock_);
771    // Ensure there is only one GC at a time.
772    WaitForGcToCompleteLocked(self);
773    collector_type_running_ = kCollectorTypeHeapTrim;
774  }
775  uint64_t start_ns = NanoTime();
776  // Trim the managed spaces.
777  uint64_t total_alloc_space_allocated = 0;
778  uint64_t total_alloc_space_size = 0;
779  uint64_t managed_reclaimed = 0;
780  for (const auto& space : continuous_spaces_) {
781    if (space->IsMallocSpace()) {
782      gc::space::MallocSpace* alloc_space = space->AsMallocSpace();
783      total_alloc_space_size += alloc_space->Size();
784      managed_reclaimed += alloc_space->Trim();
785    }
786  }
787  total_alloc_space_allocated = GetBytesAllocated() - large_object_space_->GetBytesAllocated() -
788      bump_pointer_space_->Size();
789  const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
790      static_cast<float>(total_alloc_space_size);
791  uint64_t gc_heap_end_ns = NanoTime();
792  // We never move things in the native heap, so we can finish the GC at this point.
793  FinishGC(self, collector::kGcTypeNone);
794  // Trim the native heap.
795  dlmalloc_trim(0);
796  size_t native_reclaimed = 0;
797  dlmalloc_inspect_all(DlmallocMadviseCallback, &native_reclaimed);
798  uint64_t end_ns = NanoTime();
799  VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
800      << ", advised=" << PrettySize(managed_reclaimed) << ") and native (duration="
801      << PrettyDuration(end_ns - gc_heap_end_ns) << ", advised=" << PrettySize(native_reclaimed)
802      << ") heaps. Managed heap utilization of " << static_cast<int>(100 * managed_utilization)
803      << "%.";
804}
805
806bool Heap::IsValidObjectAddress(const mirror::Object* obj) const {
807  // Note: we deliberately don't take the lock here, and mustn't test anything that would require
808  // taking the lock.
809  if (obj == nullptr) {
810    return true;
811  }
812  return IsAligned<kObjectAlignment>(obj) && IsHeapAddress(obj);
813}
814
815bool Heap::IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const {
816  return FindContinuousSpaceFromObject(obj, true) != nullptr;
817}
818
819bool Heap::IsHeapAddress(const mirror::Object* obj) const {
820  // TODO: This might not work for large objects.
821  return FindSpaceFromObject(obj, true) != nullptr;
822}
823
824bool Heap::IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack,
825                              bool search_live_stack, bool sorted) {
826  if (UNLIKELY(!IsAligned<kObjectAlignment>(obj))) {
827    return false;
828  }
829  if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj)) {
830    mirror::Class* klass = obj->GetClass<kVerifyNone>();
831    if (obj == klass) {
832      // This case happens for java.lang.Class.
833      return true;
834    }
835    return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
836  } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj)) {
837    // If we are in the allocated region of the temp space, then we are probably live (e.g. during
838    // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
839    return temp_space_->Contains(obj);
840  }
841  space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
842  space::DiscontinuousSpace* d_space = NULL;
843  if (c_space != nullptr) {
844    if (c_space->GetLiveBitmap()->Test(obj)) {
845      return true;
846    }
847  } else {
848    d_space = FindDiscontinuousSpaceFromObject(obj, true);
849    if (d_space != nullptr) {
850      if (d_space->GetLiveObjects()->Test(obj)) {
851        return true;
852      }
853    }
854  }
855  // This is covering the allocation/live stack swapping that is done without mutators suspended.
856  for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
857    if (i > 0) {
858      NanoSleep(MsToNs(10));
859    }
860    if (search_allocation_stack) {
861      if (sorted) {
862        if (allocation_stack_->ContainsSorted(const_cast<mirror::Object*>(obj))) {
863          return true;
864        }
865      } else if (allocation_stack_->Contains(const_cast<mirror::Object*>(obj))) {
866        return true;
867      }
868    }
869
870    if (search_live_stack) {
871      if (sorted) {
872        if (live_stack_->ContainsSorted(const_cast<mirror::Object*>(obj))) {
873          return true;
874        }
875      } else if (live_stack_->Contains(const_cast<mirror::Object*>(obj))) {
876        return true;
877      }
878    }
879  }
880  // We need to check the bitmaps again since there is a race where we mark something as live and
881  // then clear the stack containing it.
882  if (c_space != nullptr) {
883    if (c_space->GetLiveBitmap()->Test(obj)) {
884      return true;
885    }
886  } else {
887    d_space = FindDiscontinuousSpaceFromObject(obj, true);
888    if (d_space != nullptr && d_space->GetLiveObjects()->Test(obj)) {
889      return true;
890    }
891  }
892  return false;
893}
894
895void Heap::DumpSpaces(std::ostream& stream) {
896  for (const auto& space : continuous_spaces_) {
897    accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
898    accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
899    stream << space << " " << *space << "\n";
900    if (live_bitmap != nullptr) {
901      stream << live_bitmap << " " << *live_bitmap << "\n";
902    }
903    if (mark_bitmap != nullptr) {
904      stream << mark_bitmap << " " << *mark_bitmap << "\n";
905    }
906  }
907  for (const auto& space : discontinuous_spaces_) {
908    stream << space << " " << *space << "\n";
909  }
910}
911
912void Heap::VerifyObjectBody(mirror::Object* obj) {
913  if (this == nullptr && verify_object_mode_ == kVerifyObjectModeDisabled) {
914    return;
915  }
916  // Ignore early dawn of the universe verifications.
917  if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_.Load()) < 10 * KB)) {
918    return;
919  }
920  CHECK(IsAligned<kObjectAlignment>(obj)) << "Object isn't aligned: " << obj;
921  mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(
922      mirror::Object::ClassOffset(), false);
923  CHECK(c != nullptr) << "Null class in object " << obj;
924  CHECK(IsAligned<kObjectAlignment>(c)) << "Class " << c << " not aligned in object " << obj;
925  CHECK(VerifyClassClass(c));
926
927  if (verify_object_mode_ > kVerifyObjectModeFast) {
928    // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
929    if (!IsLiveObjectLocked(obj)) {
930      DumpSpaces();
931      LOG(FATAL) << "Object is dead: " << obj;
932    }
933  }
934}
935
936void Heap::VerificationCallback(mirror::Object* obj, void* arg) {
937  reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj);
938}
939
940void Heap::VerifyHeap() {
941  ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
942  GetLiveBitmap()->Walk(Heap::VerificationCallback, this);
943}
944
945void Heap::RecordFree(size_t freed_objects, size_t freed_bytes) {
946  DCHECK_LE(freed_bytes, num_bytes_allocated_.Load());
947  num_bytes_allocated_.FetchAndSub(freed_bytes);
948  if (Runtime::Current()->HasStatsEnabled()) {
949    RuntimeStats* thread_stats = Thread::Current()->GetStats();
950    thread_stats->freed_objects += freed_objects;
951    thread_stats->freed_bytes += freed_bytes;
952    // TODO: Do this concurrently.
953    RuntimeStats* global_stats = Runtime::Current()->GetStats();
954    global_stats->freed_objects += freed_objects;
955    global_stats->freed_bytes += freed_bytes;
956  }
957}
958
959mirror::Object* Heap::AllocateInternalWithGc(Thread* self, AllocatorType allocator,
960                                             size_t alloc_size, size_t* bytes_allocated,
961                                             size_t* usable_size,
962                                             mirror::Class** klass) {
963  mirror::Object* ptr = nullptr;
964  bool was_default_allocator = allocator == GetCurrentAllocator();
965  DCHECK(klass != nullptr);
966  SirtRef<mirror::Class> sirt_klass(self, *klass);
967  // The allocation failed. If the GC is running, block until it completes, and then retry the
968  // allocation.
969  collector::GcType last_gc = WaitForGcToComplete(self);
970  if (last_gc != collector::kGcTypeNone) {
971    // If we were the default allocator but the allocator changed while we were suspended,
972    // abort the allocation.
973    if (was_default_allocator && allocator != GetCurrentAllocator()) {
974      *klass = sirt_klass.get();
975      return nullptr;
976    }
977    // A GC was in progress and we blocked, retry allocation now that memory has been freed.
978    ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated, usable_size);
979  }
980
981  // Loop through our different Gc types and try to Gc until we get enough free memory.
982  for (collector::GcType gc_type : gc_plan_) {
983    if (ptr != nullptr) {
984      break;
985    }
986    // Attempt to run the collector, if we succeed, re-try the allocation.
987    bool gc_ran =
988        CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
989    if (was_default_allocator && allocator != GetCurrentAllocator()) {
990      *klass = sirt_klass.get();
991      return nullptr;
992    }
993    if (gc_ran) {
994      // Did we free sufficient memory for the allocation to succeed?
995      ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated, usable_size);
996    }
997  }
998  // Allocations have failed after GCs;  this is an exceptional state.
999  if (ptr == nullptr) {
1000    // Try harder, growing the heap if necessary.
1001    ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size);
1002  }
1003  if (ptr == nullptr) {
1004    // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
1005    // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
1006    // VM spec requires that all SoftReferences have been collected and cleared before throwing
1007    // OOME.
1008    VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
1009             << " allocation";
1010    // TODO: Run finalization, but this may cause more allocations to occur.
1011    // We don't need a WaitForGcToComplete here either.
1012    DCHECK(!gc_plan_.empty());
1013    CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true);
1014    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1015      *klass = sirt_klass.get();
1016      return nullptr;
1017    }
1018    ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size);
1019    if (ptr == nullptr) {
1020      ThrowOutOfMemoryError(self, alloc_size, false);
1021    }
1022  }
1023  *klass = sirt_klass.get();
1024  return ptr;
1025}
1026
1027void Heap::SetTargetHeapUtilization(float target) {
1028  DCHECK_GT(target, 0.0f);  // asserted in Java code
1029  DCHECK_LT(target, 1.0f);
1030  target_utilization_ = target;
1031}
1032
1033size_t Heap::GetObjectsAllocated() const {
1034  size_t total = 0;
1035  for (space::AllocSpace* space : alloc_spaces_) {
1036    total += space->GetObjectsAllocated();
1037  }
1038  return total;
1039}
1040
1041size_t Heap::GetObjectsAllocatedEver() const {
1042  return GetObjectsFreedEver() + GetObjectsAllocated();
1043}
1044
1045size_t Heap::GetBytesAllocatedEver() const {
1046  return GetBytesFreedEver() + GetBytesAllocated();
1047}
1048
1049class InstanceCounter {
1050 public:
1051  InstanceCounter(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, uint64_t* counts)
1052      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1053      : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) {
1054  }
1055  static void Callback(mirror::Object* obj, void* arg)
1056      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1057    InstanceCounter* instance_counter = reinterpret_cast<InstanceCounter*>(arg);
1058    mirror::Class* instance_class = obj->GetClass();
1059    CHECK(instance_class != nullptr);
1060    for (size_t i = 0; i < instance_counter->classes_.size(); ++i) {
1061      if (instance_counter->use_is_assignable_from_) {
1062        if (instance_counter->classes_[i]->IsAssignableFrom(instance_class)) {
1063          ++instance_counter->counts_[i];
1064        }
1065      } else if (instance_class == instance_counter->classes_[i]) {
1066        ++instance_counter->counts_[i];
1067      }
1068    }
1069  }
1070
1071 private:
1072  const std::vector<mirror::Class*>& classes_;
1073  bool use_is_assignable_from_;
1074  uint64_t* const counts_;
1075  DISALLOW_COPY_AND_ASSIGN(InstanceCounter);
1076};
1077
1078void Heap::CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
1079                          uint64_t* counts) {
1080  // Can't do any GC in this function since this may move classes.
1081  Thread* self = Thread::Current();
1082  auto* old_cause = self->StartAssertNoThreadSuspension("CountInstances");
1083  InstanceCounter counter(classes, use_is_assignable_from, counts);
1084  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1085  VisitObjects(InstanceCounter::Callback, &counter);
1086  self->EndAssertNoThreadSuspension(old_cause);
1087}
1088
1089class InstanceCollector {
1090 public:
1091  InstanceCollector(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
1092      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1093      : class_(c), max_count_(max_count), instances_(instances) {
1094  }
1095  static void Callback(mirror::Object* obj, void* arg)
1096      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1097    DCHECK(arg != nullptr);
1098    InstanceCollector* instance_collector = reinterpret_cast<InstanceCollector*>(arg);
1099    mirror::Class* instance_class = obj->GetClass();
1100    if (instance_class == instance_collector->class_) {
1101      if (instance_collector->max_count_ == 0 ||
1102          instance_collector->instances_.size() < instance_collector->max_count_) {
1103        instance_collector->instances_.push_back(obj);
1104      }
1105    }
1106  }
1107
1108 private:
1109  mirror::Class* class_;
1110  uint32_t max_count_;
1111  std::vector<mirror::Object*>& instances_;
1112  DISALLOW_COPY_AND_ASSIGN(InstanceCollector);
1113};
1114
1115void Heap::GetInstances(mirror::Class* c, int32_t max_count,
1116                        std::vector<mirror::Object*>& instances) {
1117  // Can't do any GC in this function since this may move classes.
1118  Thread* self = Thread::Current();
1119  auto* old_cause = self->StartAssertNoThreadSuspension("GetInstances");
1120  InstanceCollector collector(c, max_count, instances);
1121  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1122  VisitObjects(&InstanceCollector::Callback, &collector);
1123  self->EndAssertNoThreadSuspension(old_cause);
1124}
1125
1126class ReferringObjectsFinder {
1127 public:
1128  ReferringObjectsFinder(mirror::Object* object, int32_t max_count,
1129                         std::vector<mirror::Object*>& referring_objects)
1130      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1131      : object_(object), max_count_(max_count), referring_objects_(referring_objects) {
1132  }
1133
1134  static void Callback(mirror::Object* obj, void* arg)
1135      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1136    reinterpret_cast<ReferringObjectsFinder*>(arg)->operator()(obj);
1137  }
1138
1139  // For bitmap Visit.
1140  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
1141  // annotalysis on visitors.
1142  void operator()(const mirror::Object* o) const NO_THREAD_SAFETY_ANALYSIS {
1143    collector::MarkSweep::VisitObjectReferences(const_cast<mirror::Object*>(o), *this, true);
1144  }
1145
1146  // For MarkSweep::VisitObjectReferences.
1147  void operator()(mirror::Object* referrer, mirror::Object* object,
1148                  const MemberOffset&, bool) const {
1149    if (object == object_ && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
1150      referring_objects_.push_back(referrer);
1151    }
1152  }
1153
1154 private:
1155  mirror::Object* object_;
1156  uint32_t max_count_;
1157  std::vector<mirror::Object*>& referring_objects_;
1158  DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
1159};
1160
1161void Heap::GetReferringObjects(mirror::Object* o, int32_t max_count,
1162                               std::vector<mirror::Object*>& referring_objects) {
1163  // Can't do any GC in this function since this may move the object o.
1164  Thread* self = Thread::Current();
1165  auto* old_cause = self->StartAssertNoThreadSuspension("GetReferringObjects");
1166  ReferringObjectsFinder finder(o, max_count, referring_objects);
1167  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1168  VisitObjects(&ReferringObjectsFinder::Callback, &finder);
1169  self->EndAssertNoThreadSuspension(old_cause);
1170}
1171
1172void Heap::CollectGarbage(bool clear_soft_references) {
1173  // Even if we waited for a GC we still need to do another GC since weaks allocated during the
1174  // last GC will not have necessarily been cleared.
1175  CollectGarbageInternal(gc_plan_.back(), kGcCauseExplicit, clear_soft_references);
1176}
1177
1178void Heap::TransitionCollector(CollectorType collector_type) {
1179  if (collector_type == collector_type_) {
1180    return;
1181  }
1182  VLOG(heap) << "TransitionCollector: " << static_cast<int>(collector_type_)
1183             << " -> " << static_cast<int>(collector_type);
1184  uint64_t start_time = NanoTime();
1185  uint32_t before_size  = GetTotalMemory();
1186  uint32_t before_allocated = num_bytes_allocated_.Load();
1187  ThreadList* tl = Runtime::Current()->GetThreadList();
1188  Thread* self = Thread::Current();
1189  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1190  Locks::mutator_lock_->AssertNotHeld(self);
1191  const bool copying_transition =
1192      IsCompactingGC(background_collector_type_) || IsCompactingGC(post_zygote_collector_type_);
1193  // Busy wait until we can GC (StartGC can fail if we have a non-zero
1194  // compacting_gc_disable_count_, this should rarely occurs).
1195  for (;;) {
1196    {
1197      ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1198      MutexLock mu(self, *gc_complete_lock_);
1199      // Ensure there is only one GC at a time.
1200      WaitForGcToCompleteLocked(self);
1201      // GC can be disabled if someone has a used GetPrimitiveArrayCritical but not yet released.
1202      if (!copying_transition || disable_moving_gc_count_ == 0) {
1203        // TODO: Not hard code in semi-space collector?
1204        collector_type_running_ = copying_transition ? kCollectorTypeSS : collector_type;
1205        break;
1206      }
1207    }
1208    usleep(1000);
1209  }
1210  tl->SuspendAll();
1211  PreGcRosAllocVerification(&semi_space_collector_->GetTimings());
1212  switch (collector_type) {
1213    case kCollectorTypeSS:
1214      // Fall-through.
1215    case kCollectorTypeGSS: {
1216      mprotect(temp_space_->Begin(), temp_space_->Capacity(), PROT_READ | PROT_WRITE);
1217      CHECK(main_space_ != nullptr);
1218      Compact(temp_space_, main_space_);
1219      DCHECK(allocator_mem_map_.get() == nullptr);
1220      allocator_mem_map_.reset(main_space_->ReleaseMemMap());
1221      madvise(main_space_->Begin(), main_space_->Size(), MADV_DONTNEED);
1222      // RemoveSpace does not delete the removed space.
1223      space::Space* old_space = main_space_;
1224      RemoveSpace(old_space);
1225      delete old_space;
1226      break;
1227    }
1228    case kCollectorTypeMS:
1229      // Fall through.
1230    case kCollectorTypeCMS: {
1231      if (IsCompactingGC(collector_type_)) {
1232        // TODO: Use mem-map from temp space?
1233        MemMap* mem_map = allocator_mem_map_.release();
1234        CHECK(mem_map != nullptr);
1235        size_t initial_size = kDefaultInitialSize;
1236        mprotect(mem_map->Begin(), initial_size, PROT_READ | PROT_WRITE);
1237        CHECK(main_space_ == nullptr);
1238        if (kUseRosAlloc) {
1239          main_space_ =
1240              space::RosAllocSpace::CreateFromMemMap(mem_map, "alloc space", kPageSize,
1241                                                     initial_size, mem_map->Size(),
1242                                                     mem_map->Size(), low_memory_mode_);
1243        } else {
1244          main_space_ =
1245              space::DlMallocSpace::CreateFromMemMap(mem_map, "alloc space", kPageSize,
1246                                                     initial_size, mem_map->Size(),
1247                                                     mem_map->Size());
1248        }
1249        main_space_->SetFootprintLimit(main_space_->Capacity());
1250        AddSpace(main_space_);
1251        Compact(main_space_, bump_pointer_space_);
1252      }
1253      break;
1254    }
1255    default: {
1256      LOG(FATAL) << "Attempted to transition to invalid collector type";
1257      break;
1258    }
1259  }
1260  ChangeCollector(collector_type);
1261  PostGcRosAllocVerification(&semi_space_collector_->GetTimings());
1262  tl->ResumeAll();
1263  // Can't call into java code with all threads suspended.
1264  EnqueueClearedReferences();
1265  uint64_t duration = NanoTime() - start_time;
1266  GrowForUtilization(collector::kGcTypeFull, duration);
1267  FinishGC(self, collector::kGcTypeFull);
1268  int32_t after_size = GetTotalMemory();
1269  int32_t delta_size = before_size - after_size;
1270  int32_t after_allocated = num_bytes_allocated_.Load();
1271  int32_t delta_allocated = before_allocated - after_allocated;
1272  const std::string saved_bytes_str =
1273      delta_size < 0 ? "-" + PrettySize(-delta_size) : PrettySize(delta_size);
1274  LOG(INFO) << "Heap transition to " << process_state_ << " took "
1275      << PrettyDuration(duration) << " " << PrettySize(before_size) << "->"
1276      << PrettySize(after_size) << " from " << PrettySize(delta_allocated) << " to "
1277      << PrettySize(delta_size) << " saved";
1278}
1279
1280void Heap::ChangeCollector(CollectorType collector_type) {
1281  // TODO: Only do this with all mutators suspended to avoid races.
1282  if (collector_type != collector_type_) {
1283    collector_type_ = collector_type;
1284    gc_plan_.clear();
1285    switch (collector_type_) {
1286      case kCollectorTypeSS:
1287        // Fall-through.
1288      case kCollectorTypeGSS: {
1289        concurrent_gc_ = false;
1290        gc_plan_.push_back(collector::kGcTypeFull);
1291        if (use_tlab_) {
1292          ChangeAllocator(kAllocatorTypeTLAB);
1293        } else {
1294          ChangeAllocator(kAllocatorTypeBumpPointer);
1295        }
1296        break;
1297      }
1298      case kCollectorTypeMS: {
1299        concurrent_gc_ = false;
1300        gc_plan_.push_back(collector::kGcTypeSticky);
1301        gc_plan_.push_back(collector::kGcTypePartial);
1302        gc_plan_.push_back(collector::kGcTypeFull);
1303        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1304        break;
1305      }
1306      case kCollectorTypeCMS: {
1307        concurrent_gc_ = true;
1308        gc_plan_.push_back(collector::kGcTypeSticky);
1309        gc_plan_.push_back(collector::kGcTypePartial);
1310        gc_plan_.push_back(collector::kGcTypeFull);
1311        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1312        break;
1313      }
1314      default: {
1315        LOG(FATAL) << "Unimplemented";
1316      }
1317    }
1318    if (concurrent_gc_) {
1319      concurrent_start_bytes_ =
1320          std::max(max_allowed_footprint_, kMinConcurrentRemainingBytes) - kMinConcurrentRemainingBytes;
1321    } else {
1322      concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
1323    }
1324  }
1325}
1326
1327// Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
1328class ZygoteCompactingCollector FINAL : public collector::SemiSpace {
1329 public:
1330  explicit ZygoteCompactingCollector(gc::Heap* heap) : SemiSpace(heap, "zygote collector"),
1331      bin_live_bitmap_(nullptr), bin_mark_bitmap_(nullptr) {
1332  }
1333
1334  void BuildBins(space::ContinuousSpace* space) {
1335    bin_live_bitmap_ = space->GetLiveBitmap();
1336    bin_mark_bitmap_ = space->GetMarkBitmap();
1337    BinContext context;
1338    context.prev_ = reinterpret_cast<uintptr_t>(space->Begin());
1339    context.collector_ = this;
1340    WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1341    // Note: This requires traversing the space in increasing order of object addresses.
1342    bin_live_bitmap_->Walk(Callback, reinterpret_cast<void*>(&context));
1343    // Add the last bin which spans after the last object to the end of the space.
1344    AddBin(reinterpret_cast<uintptr_t>(space->End()) - context.prev_, context.prev_);
1345  }
1346
1347 private:
1348  struct BinContext {
1349    uintptr_t prev_;  // The end of the previous object.
1350    ZygoteCompactingCollector* collector_;
1351  };
1352  // Maps from bin sizes to locations.
1353  std::multimap<size_t, uintptr_t> bins_;
1354  // Live bitmap of the space which contains the bins.
1355  accounting::SpaceBitmap* bin_live_bitmap_;
1356  // Mark bitmap of the space which contains the bins.
1357  accounting::SpaceBitmap* bin_mark_bitmap_;
1358
1359  static void Callback(mirror::Object* obj, void* arg)
1360      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1361    DCHECK(arg != nullptr);
1362    BinContext* context = reinterpret_cast<BinContext*>(arg);
1363    ZygoteCompactingCollector* collector = context->collector_;
1364    uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
1365    size_t bin_size = object_addr - context->prev_;
1366    // Add the bin consisting of the end of the previous object to the start of the current object.
1367    collector->AddBin(bin_size, context->prev_);
1368    context->prev_ = object_addr + RoundUp(obj->SizeOf(), kObjectAlignment);
1369  }
1370
1371  void AddBin(size_t size, uintptr_t position) {
1372    if (size != 0) {
1373      bins_.insert(std::make_pair(size, position));
1374    }
1375  }
1376
1377  virtual bool ShouldSweepSpace(space::ContinuousSpace* space) const {
1378    // Don't sweep any spaces since we probably blasted the internal accounting of the free list
1379    // allocator.
1380    return false;
1381  }
1382
1383  virtual mirror::Object* MarkNonForwardedObject(mirror::Object* obj)
1384      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
1385    size_t object_size = RoundUp(obj->SizeOf(), kObjectAlignment);
1386    mirror::Object* forward_address;
1387    // Find the smallest bin which we can move obj in.
1388    auto it = bins_.lower_bound(object_size);
1389    if (it == bins_.end()) {
1390      // No available space in the bins, place it in the target space instead (grows the zygote
1391      // space).
1392      size_t bytes_allocated;
1393      forward_address = to_space_->Alloc(self_, object_size, &bytes_allocated, nullptr);
1394      if (to_space_live_bitmap_ != nullptr) {
1395        to_space_live_bitmap_->Set(forward_address);
1396      } else {
1397        GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
1398        GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
1399      }
1400    } else {
1401      size_t size = it->first;
1402      uintptr_t pos = it->second;
1403      bins_.erase(it);  // Erase the old bin which we replace with the new smaller bin.
1404      forward_address = reinterpret_cast<mirror::Object*>(pos);
1405      // Set the live and mark bits so that sweeping system weaks works properly.
1406      bin_live_bitmap_->Set(forward_address);
1407      bin_mark_bitmap_->Set(forward_address);
1408      DCHECK_GE(size, object_size);
1409      AddBin(size - object_size, pos + object_size);  // Add a new bin with the remaining space.
1410    }
1411    // Copy the object over to its new location.
1412    memcpy(reinterpret_cast<void*>(forward_address), obj, object_size);
1413    if (kUseBrooksPointer) {
1414      obj->AssertSelfBrooksPointer();
1415      DCHECK_EQ(forward_address->GetBrooksPointer(), obj);
1416      forward_address->SetBrooksPointer(forward_address);
1417      forward_address->AssertSelfBrooksPointer();
1418    }
1419    return forward_address;
1420  }
1421};
1422
1423void Heap::UnBindBitmaps() {
1424  for (const auto& space : GetContinuousSpaces()) {
1425    if (space->IsContinuousMemMapAllocSpace()) {
1426      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1427      if (alloc_space->HasBoundBitmaps()) {
1428        alloc_space->UnBindBitmaps();
1429      }
1430    }
1431  }
1432}
1433
1434void Heap::PreZygoteFork() {
1435  CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
1436  static Mutex zygote_creation_lock_("zygote creation lock", kZygoteCreationLock);
1437  Thread* self = Thread::Current();
1438  MutexLock mu(self, zygote_creation_lock_);
1439  // Try to see if we have any Zygote spaces.
1440  if (have_zygote_space_) {
1441    return;
1442  }
1443  VLOG(heap) << "Starting PreZygoteFork";
1444  // Trim the pages at the end of the non moving space.
1445  non_moving_space_->Trim();
1446  non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1447  // Change the collector to the post zygote one.
1448  ChangeCollector(post_zygote_collector_type_);
1449  // TODO: Delete bump_pointer_space_ and temp_pointer_space_?
1450  if (semi_space_collector_ != nullptr) {
1451    // Temporarily disable rosalloc verification because the zygote
1452    // compaction will mess up the rosalloc internal metadata.
1453    ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
1454    ZygoteCompactingCollector zygote_collector(this);
1455    zygote_collector.BuildBins(non_moving_space_);
1456    // Create a new bump pointer space which we will compact into.
1457    space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
1458                                         non_moving_space_->Limit());
1459    // Compact the bump pointer space to a new zygote bump pointer space.
1460    temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1461    zygote_collector.SetFromSpace(bump_pointer_space_);
1462    zygote_collector.SetToSpace(&target_space);
1463    zygote_collector.Run(kGcCauseCollectorTransition, false);
1464    CHECK(temp_space_->IsEmpty());
1465    total_objects_freed_ever_ += semi_space_collector_->GetFreedObjects();
1466    total_bytes_freed_ever_ += semi_space_collector_->GetFreedBytes();
1467    // Update the end and write out image.
1468    non_moving_space_->SetEnd(target_space.End());
1469    non_moving_space_->SetLimit(target_space.Limit());
1470    VLOG(heap) << "Zygote size " << non_moving_space_->Size() << " bytes";
1471  }
1472  // Save the old space so that we can remove it after we complete creating the zygote space.
1473  space::MallocSpace* old_alloc_space = non_moving_space_;
1474  // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
1475  // the remaining available space.
1476  // Remove the old space before creating the zygote space since creating the zygote space sets
1477  // the old alloc space's bitmaps to nullptr.
1478  RemoveSpace(old_alloc_space);
1479  space::ZygoteSpace* zygote_space = old_alloc_space->CreateZygoteSpace("alloc space",
1480                                                                        low_memory_mode_,
1481                                                                        &main_space_);
1482  delete old_alloc_space;
1483  CHECK(zygote_space != nullptr) << "Failed creating zygote space";
1484  AddSpace(zygote_space, false);
1485  CHECK(main_space_ != nullptr);
1486  if (main_space_->IsRosAllocSpace()) {
1487    rosalloc_space_ = main_space_->AsRosAllocSpace();
1488  } else if (main_space_->IsDlMallocSpace()) {
1489    dlmalloc_space_ = main_space_->AsDlMallocSpace();
1490  }
1491  main_space_->SetFootprintLimit(main_space_->Capacity());
1492  AddSpace(main_space_);
1493  have_zygote_space_ = true;
1494  // Enable large object space allocations.
1495  large_object_threshold_ = kDefaultLargeObjectThreshold;
1496  // Create the zygote space mod union table.
1497  accounting::ModUnionTable* mod_union_table =
1498      new accounting::ModUnionTableCardCache("zygote space mod-union table", this, zygote_space);
1499  CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
1500  AddModUnionTable(mod_union_table);
1501  // Can't use RosAlloc for non moving space due to thread local buffers.
1502  // TODO: Non limited space for non-movable objects?
1503  MemMap* mem_map = post_zygote_non_moving_space_mem_map_.release();
1504  space::MallocSpace* new_non_moving_space =
1505      space::DlMallocSpace::CreateFromMemMap(mem_map, "Non moving dlmalloc space", kPageSize,
1506                                             2 * MB, mem_map->Size(), mem_map->Size());
1507  AddSpace(new_non_moving_space, false);
1508  CHECK(new_non_moving_space != nullptr) << "Failed to create new non-moving space";
1509  new_non_moving_space->SetFootprintLimit(new_non_moving_space->Capacity());
1510  non_moving_space_ = new_non_moving_space;
1511}
1512
1513void Heap::FlushAllocStack() {
1514  MarkAllocStackAsLive(allocation_stack_.get());
1515  allocation_stack_->Reset();
1516}
1517
1518void Heap::MarkAllocStack(accounting::SpaceBitmap* bitmap1,
1519                          accounting::SpaceBitmap* bitmap2,
1520                          accounting::ObjectSet* large_objects,
1521                          accounting::ObjectStack* stack) {
1522  DCHECK(bitmap1 != nullptr);
1523  DCHECK(bitmap2 != nullptr);
1524  mirror::Object** limit = stack->End();
1525  for (mirror::Object** it = stack->Begin(); it != limit; ++it) {
1526    const mirror::Object* obj = *it;
1527    if (!kUseThreadLocalAllocationStack || obj != nullptr) {
1528      if (bitmap1->HasAddress(obj)) {
1529        bitmap1->Set(obj);
1530      } else if (bitmap2->HasAddress(obj)) {
1531        bitmap2->Set(obj);
1532      } else {
1533        large_objects->Set(obj);
1534      }
1535    }
1536  }
1537}
1538
1539void Heap::SwapSemiSpaces() {
1540  // Swap the spaces so we allocate into the space which we just evacuated.
1541  std::swap(bump_pointer_space_, temp_space_);
1542}
1543
1544void Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
1545                   space::ContinuousMemMapAllocSpace* source_space) {
1546  CHECK(kMovingCollector);
1547  CHECK_NE(target_space, source_space) << "In-place compaction currently unsupported";
1548  if (target_space != source_space) {
1549    semi_space_collector_->SetFromSpace(source_space);
1550    semi_space_collector_->SetToSpace(target_space);
1551    semi_space_collector_->Run(kGcCauseCollectorTransition, false);
1552  }
1553}
1554
1555collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type, GcCause gc_cause,
1556                                               bool clear_soft_references) {
1557  Thread* self = Thread::Current();
1558  Runtime* runtime = Runtime::Current();
1559  // If the heap can't run the GC, silently fail and return that no GC was run.
1560  switch (gc_type) {
1561    case collector::kGcTypePartial: {
1562      if (!have_zygote_space_) {
1563        return collector::kGcTypeNone;
1564      }
1565      break;
1566    }
1567    default: {
1568      // Other GC types don't have any special cases which makes them not runnable. The main case
1569      // here is full GC.
1570    }
1571  }
1572  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1573  Locks::mutator_lock_->AssertNotHeld(self);
1574  if (self->IsHandlingStackOverflow()) {
1575    LOG(WARNING) << "Performing GC on a thread that is handling a stack overflow.";
1576  }
1577  bool compacting_gc;
1578  {
1579    gc_complete_lock_->AssertNotHeld(self);
1580    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1581    MutexLock mu(self, *gc_complete_lock_);
1582    // Ensure there is only one GC at a time.
1583    WaitForGcToCompleteLocked(self);
1584    compacting_gc = IsCompactingGC(collector_type_);
1585    // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
1586    if (compacting_gc && disable_moving_gc_count_ != 0) {
1587      LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
1588      return collector::kGcTypeNone;
1589    }
1590    collector_type_running_ = collector_type_;
1591  }
1592
1593  if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
1594    ++runtime->GetStats()->gc_for_alloc_count;
1595    ++self->GetStats()->gc_for_alloc_count;
1596  }
1597  uint64_t gc_start_time_ns = NanoTime();
1598  uint64_t gc_start_size = GetBytesAllocated();
1599  // Approximate allocation rate in bytes / second.
1600  uint64_t ms_delta = NsToMs(gc_start_time_ns - last_gc_time_ns_);
1601  // Back to back GCs can cause 0 ms of wait time in between GC invocations.
1602  if (LIKELY(ms_delta != 0)) {
1603    allocation_rate_ = ((gc_start_size - last_gc_size_) * 1000) / ms_delta;
1604    VLOG(heap) << "Allocation rate: " << PrettySize(allocation_rate_) << "/s";
1605  }
1606
1607  DCHECK_LT(gc_type, collector::kGcTypeMax);
1608  DCHECK_NE(gc_type, collector::kGcTypeNone);
1609
1610  collector::GarbageCollector* collector = nullptr;
1611  // TODO: Clean this up.
1612  if (compacting_gc) {
1613    DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
1614           current_allocator_ == kAllocatorTypeTLAB);
1615    gc_type = semi_space_collector_->GetGcType();
1616    CHECK(temp_space_->IsEmpty());
1617    semi_space_collector_->SetFromSpace(bump_pointer_space_);
1618    semi_space_collector_->SetToSpace(temp_space_);
1619    mprotect(temp_space_->Begin(), temp_space_->Capacity(), PROT_READ | PROT_WRITE);
1620    collector = semi_space_collector_;
1621    gc_type = collector::kGcTypeFull;
1622  } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
1623      current_allocator_ == kAllocatorTypeDlMalloc) {
1624    for (const auto& cur_collector : garbage_collectors_) {
1625      if (cur_collector->IsConcurrent() == concurrent_gc_ &&
1626          cur_collector->GetGcType() == gc_type) {
1627        collector = cur_collector;
1628        break;
1629      }
1630    }
1631  } else {
1632    LOG(FATAL) << "Invalid current allocator " << current_allocator_;
1633  }
1634  CHECK(collector != nullptr)
1635      << "Could not find garbage collector with concurrent=" << concurrent_gc_
1636      << " and type=" << gc_type;
1637  ATRACE_BEGIN(StringPrintf("%s %s GC", PrettyCause(gc_cause), collector->GetName()).c_str());
1638  collector->Run(gc_cause, clear_soft_references);
1639  total_objects_freed_ever_ += collector->GetFreedObjects();
1640  total_bytes_freed_ever_ += collector->GetFreedBytes();
1641  // Enqueue cleared references.
1642  EnqueueClearedReferences();
1643  // Grow the heap so that we know when to perform the next GC.
1644  GrowForUtilization(gc_type, collector->GetDurationNs());
1645  if (CareAboutPauseTimes()) {
1646    const size_t duration = collector->GetDurationNs();
1647    std::vector<uint64_t> pauses = collector->GetPauseTimes();
1648    // GC for alloc pauses the allocating thread, so consider it as a pause.
1649    bool was_slow = duration > long_gc_log_threshold_ ||
1650        (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
1651    if (!was_slow) {
1652      for (uint64_t pause : pauses) {
1653        was_slow = was_slow || pause > long_pause_log_threshold_;
1654      }
1655    }
1656    if (was_slow) {
1657        const size_t percent_free = GetPercentFree();
1658        const size_t current_heap_size = GetBytesAllocated();
1659        const size_t total_memory = GetTotalMemory();
1660        std::ostringstream pause_string;
1661        for (size_t i = 0; i < pauses.size(); ++i) {
1662            pause_string << PrettyDuration((pauses[i] / 1000) * 1000)
1663                         << ((i != pauses.size() - 1) ? ", " : "");
1664        }
1665        LOG(INFO) << gc_cause << " " << collector->GetName()
1666                  << " GC freed "  <<  collector->GetFreedObjects() << "("
1667                  << PrettySize(collector->GetFreedBytes()) << ") AllocSpace objects, "
1668                  << collector->GetFreedLargeObjects() << "("
1669                  << PrettySize(collector->GetFreedLargeObjectBytes()) << ") LOS objects, "
1670                  << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
1671                  << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
1672                  << " total " << PrettyDuration((duration / 1000) * 1000);
1673        if (VLOG_IS_ON(heap)) {
1674            LOG(INFO) << Dumpable<TimingLogger>(collector->GetTimings());
1675        }
1676    }
1677  }
1678  FinishGC(self, gc_type);
1679  ATRACE_END();
1680
1681  // Inform DDMS that a GC completed.
1682  Dbg::GcDidFinish();
1683  return gc_type;
1684}
1685
1686void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
1687  MutexLock mu(self, *gc_complete_lock_);
1688  collector_type_running_ = kCollectorTypeNone;
1689  if (gc_type != collector::kGcTypeNone) {
1690    last_gc_type_ = gc_type;
1691  }
1692  // Wake anyone who may have been waiting for the GC to complete.
1693  gc_complete_cond_->Broadcast(self);
1694}
1695
1696static void RootMatchesObjectVisitor(mirror::Object** root, void* arg, uint32_t /*thread_id*/,
1697                                     RootType /*root_type*/) {
1698  mirror::Object* obj = reinterpret_cast<mirror::Object*>(arg);
1699  if (*root == obj) {
1700    LOG(INFO) << "Object " << obj << " is a root";
1701  }
1702}
1703
1704class ScanVisitor {
1705 public:
1706  void operator()(const mirror::Object* obj) const {
1707    LOG(ERROR) << "Would have rescanned object " << obj;
1708  }
1709};
1710
1711// Verify a reference from an object.
1712class VerifyReferenceVisitor {
1713 public:
1714  explicit VerifyReferenceVisitor(Heap* heap)
1715      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
1716      : heap_(heap), failed_(false) {}
1717
1718  bool Failed() const {
1719    return failed_;
1720  }
1721
1722  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for smarter
1723  // analysis on visitors.
1724  void operator()(mirror::Object* obj, mirror::Object* ref,
1725                  const MemberOffset& offset, bool /* is_static */) const
1726      NO_THREAD_SAFETY_ANALYSIS {
1727    if (ref == nullptr || IsLive(ref)) {
1728      // Verify that the reference is live.
1729      return;
1730    }
1731    if (!failed_) {
1732      // Print message on only on first failure to prevent spam.
1733      LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
1734      failed_ = true;
1735    }
1736    if (obj != nullptr) {
1737      accounting::CardTable* card_table = heap_->GetCardTable();
1738      accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
1739      accounting::ObjectStack* live_stack = heap_->live_stack_.get();
1740      byte* card_addr = card_table->CardFromAddr(obj);
1741      LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
1742                 << offset << "\n card value = " << static_cast<int>(*card_addr);
1743      if (heap_->IsValidObjectAddress(obj->GetClass())) {
1744        LOG(ERROR) << "Obj type " << PrettyTypeOf(obj);
1745      } else {
1746        LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
1747      }
1748
1749      // Attmept to find the class inside of the recently freed objects.
1750      space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
1751      if (ref_space != nullptr && ref_space->IsMallocSpace()) {
1752        space::MallocSpace* space = ref_space->AsMallocSpace();
1753        mirror::Class* ref_class = space->FindRecentFreedObject(ref);
1754        if (ref_class != nullptr) {
1755          LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
1756                     << PrettyClass(ref_class);
1757        } else {
1758          LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
1759        }
1760      }
1761
1762      if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
1763          ref->GetClass()->IsClass()) {
1764        LOG(ERROR) << "Ref type " << PrettyTypeOf(ref);
1765      } else {
1766        LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
1767                   << ") is not a valid heap address";
1768      }
1769
1770      card_table->CheckAddrIsInCardTable(reinterpret_cast<const byte*>(obj));
1771      void* cover_begin = card_table->AddrFromCard(card_addr);
1772      void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
1773          accounting::CardTable::kCardSize);
1774      LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
1775          << "-" << cover_end;
1776      accounting::SpaceBitmap* bitmap = heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
1777
1778      if (bitmap == nullptr) {
1779        LOG(ERROR) << "Object " << obj << " has no bitmap";
1780        if (!VerifyClassClass(obj->GetClass())) {
1781          LOG(ERROR) << "Object " << obj << " failed class verification!";
1782        }
1783      } else {
1784        // Print out how the object is live.
1785        if (bitmap->Test(obj)) {
1786          LOG(ERROR) << "Object " << obj << " found in live bitmap";
1787        }
1788        if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
1789          LOG(ERROR) << "Object " << obj << " found in allocation stack";
1790        }
1791        if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
1792          LOG(ERROR) << "Object " << obj << " found in live stack";
1793        }
1794        if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
1795          LOG(ERROR) << "Ref " << ref << " found in allocation stack";
1796        }
1797        if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
1798          LOG(ERROR) << "Ref " << ref << " found in live stack";
1799        }
1800        // Attempt to see if the card table missed the reference.
1801        ScanVisitor scan_visitor;
1802        byte* byte_cover_begin = reinterpret_cast<byte*>(card_table->AddrFromCard(card_addr));
1803        card_table->Scan(bitmap, byte_cover_begin,
1804                         byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
1805      }
1806
1807      // Search to see if any of the roots reference our object.
1808      void* arg = const_cast<void*>(reinterpret_cast<const void*>(obj));
1809      Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg, false, false);
1810
1811      // Search to see if any of the roots reference our reference.
1812      arg = const_cast<void*>(reinterpret_cast<const void*>(ref));
1813      Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg, false, false);
1814    } else {
1815      LOG(ERROR) << "Root " << ref << " is dead with type " << PrettyTypeOf(ref);
1816    }
1817  }
1818
1819  bool IsLive(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
1820    return heap_->IsLiveObjectLocked(obj, true, false, true);
1821  }
1822
1823  static void VerifyRoots(mirror::Object** root, void* arg, uint32_t /*thread_id*/,
1824                          RootType /*root_type*/) {
1825    VerifyReferenceVisitor* visitor = reinterpret_cast<VerifyReferenceVisitor*>(arg);
1826    (*visitor)(nullptr, *root, MemberOffset(0), true);
1827  }
1828
1829 private:
1830  Heap* const heap_;
1831  mutable bool failed_;
1832};
1833
1834// Verify all references within an object, for use with HeapBitmap::Visit.
1835class VerifyObjectVisitor {
1836 public:
1837  explicit VerifyObjectVisitor(Heap* heap) : heap_(heap), failed_(false) {}
1838
1839  void operator()(mirror::Object* obj) const
1840      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1841    // Note: we are verifying the references in obj but not obj itself, this is because obj must
1842    // be live or else how did we find it in the live bitmap?
1843    VerifyReferenceVisitor visitor(heap_);
1844    // The class doesn't count as a reference but we should verify it anyways.
1845    collector::MarkSweep::VisitObjectReferences(obj, visitor, true);
1846    if (obj->GetClass()->IsReferenceClass()) {
1847      visitor(obj, heap_->GetReferenceReferent(obj), MemberOffset(0), false);
1848    }
1849    failed_ = failed_ || visitor.Failed();
1850  }
1851
1852  static void VisitCallback(mirror::Object* obj, void* arg)
1853      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1854    VerifyObjectVisitor* visitor = reinterpret_cast<VerifyObjectVisitor*>(arg);
1855    visitor->operator()(obj);
1856  }
1857
1858  bool Failed() const {
1859    return failed_;
1860  }
1861
1862 private:
1863  Heap* const heap_;
1864  mutable bool failed_;
1865};
1866
1867// Must do this with mutators suspended since we are directly accessing the allocation stacks.
1868bool Heap::VerifyHeapReferences() {
1869  Thread* self = Thread::Current();
1870  Locks::mutator_lock_->AssertExclusiveHeld(self);
1871  // Lets sort our allocation stacks so that we can efficiently binary search them.
1872  allocation_stack_->Sort();
1873  live_stack_->Sort();
1874  // Since we sorted the allocation stack content, need to revoke all
1875  // thread-local allocation stacks.
1876  RevokeAllThreadLocalAllocationStacks(self);
1877  VerifyObjectVisitor visitor(this);
1878  // Verify objects in the allocation stack since these will be objects which were:
1879  // 1. Allocated prior to the GC (pre GC verification).
1880  // 2. Allocated during the GC (pre sweep GC verification).
1881  // We don't want to verify the objects in the live stack since they themselves may be
1882  // pointing to dead objects if they are not reachable.
1883  VisitObjects(VerifyObjectVisitor::VisitCallback, &visitor);
1884  // Verify the roots:
1885  Runtime::Current()->VisitRoots(VerifyReferenceVisitor::VerifyRoots, &visitor, false, false);
1886  if (visitor.Failed()) {
1887    // Dump mod-union tables.
1888    for (const auto& table_pair : mod_union_tables_) {
1889      accounting::ModUnionTable* mod_union_table = table_pair.second;
1890      mod_union_table->Dump(LOG(ERROR) << mod_union_table->GetName() << ": ");
1891    }
1892    DumpSpaces();
1893    return false;
1894  }
1895  return true;
1896}
1897
1898class VerifyReferenceCardVisitor {
1899 public:
1900  VerifyReferenceCardVisitor(Heap* heap, bool* failed)
1901      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_,
1902                            Locks::heap_bitmap_lock_)
1903      : heap_(heap), failed_(failed) {
1904  }
1905
1906  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
1907  // annotalysis on visitors.
1908  void operator()(mirror::Object* obj, mirror::Object* ref, const MemberOffset& offset,
1909                  bool is_static) const NO_THREAD_SAFETY_ANALYSIS {
1910    // Filter out class references since changing an object's class does not mark the card as dirty.
1911    // Also handles large objects, since the only reference they hold is a class reference.
1912    if (ref != NULL && !ref->IsClass()) {
1913      accounting::CardTable* card_table = heap_->GetCardTable();
1914      // If the object is not dirty and it is referencing something in the live stack other than
1915      // class, then it must be on a dirty card.
1916      if (!card_table->AddrIsInCardTable(obj)) {
1917        LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
1918        *failed_ = true;
1919      } else if (!card_table->IsDirty(obj)) {
1920        // TODO: Check mod-union tables.
1921        // Card should be either kCardDirty if it got re-dirtied after we aged it, or
1922        // kCardDirty - 1 if it didnt get touched since we aged it.
1923        accounting::ObjectStack* live_stack = heap_->live_stack_.get();
1924        if (live_stack->ContainsSorted(const_cast<mirror::Object*>(ref))) {
1925          if (live_stack->ContainsSorted(const_cast<mirror::Object*>(obj))) {
1926            LOG(ERROR) << "Object " << obj << " found in live stack";
1927          }
1928          if (heap_->GetLiveBitmap()->Test(obj)) {
1929            LOG(ERROR) << "Object " << obj << " found in live bitmap";
1930          }
1931          LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj)
1932                    << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack";
1933
1934          // Print which field of the object is dead.
1935          if (!obj->IsObjectArray()) {
1936            mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass();
1937            CHECK(klass != NULL);
1938            mirror::ObjectArray<mirror::ArtField>* fields = is_static ? klass->GetSFields()
1939                                                                      : klass->GetIFields();
1940            CHECK(fields != NULL);
1941            for (int32_t i = 0; i < fields->GetLength(); ++i) {
1942              mirror::ArtField* cur = fields->Get(i);
1943              if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
1944                LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
1945                          << PrettyField(cur);
1946                break;
1947              }
1948            }
1949          } else {
1950            mirror::ObjectArray<mirror::Object>* object_array =
1951                obj->AsObjectArray<mirror::Object>();
1952            for (int32_t i = 0; i < object_array->GetLength(); ++i) {
1953              if (object_array->Get(i) == ref) {
1954                LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
1955              }
1956            }
1957          }
1958
1959          *failed_ = true;
1960        }
1961      }
1962    }
1963  }
1964
1965 private:
1966  Heap* const heap_;
1967  bool* const failed_;
1968};
1969
1970class VerifyLiveStackReferences {
1971 public:
1972  explicit VerifyLiveStackReferences(Heap* heap)
1973      : heap_(heap),
1974        failed_(false) {}
1975
1976  void operator()(mirror::Object* obj) const
1977      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1978    VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
1979    collector::MarkSweep::VisitObjectReferences(const_cast<mirror::Object*>(obj), visitor, true);
1980  }
1981
1982  bool Failed() const {
1983    return failed_;
1984  }
1985
1986 private:
1987  Heap* const heap_;
1988  bool failed_;
1989};
1990
1991bool Heap::VerifyMissingCardMarks() {
1992  Thread* self = Thread::Current();
1993  Locks::mutator_lock_->AssertExclusiveHeld(self);
1994
1995  // We need to sort the live stack since we binary search it.
1996  live_stack_->Sort();
1997  // Since we sorted the allocation stack content, need to revoke all
1998  // thread-local allocation stacks.
1999  RevokeAllThreadLocalAllocationStacks(self);
2000  VerifyLiveStackReferences visitor(this);
2001  GetLiveBitmap()->Visit(visitor);
2002
2003  // We can verify objects in the live stack since none of these should reference dead objects.
2004  for (mirror::Object** it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
2005    if (!kUseThreadLocalAllocationStack || *it != nullptr) {
2006      visitor(*it);
2007    }
2008  }
2009
2010  if (visitor.Failed()) {
2011    DumpSpaces();
2012    return false;
2013  }
2014  return true;
2015}
2016
2017void Heap::SwapStacks(Thread* self) {
2018  if (kUseThreadLocalAllocationStack) {
2019    live_stack_->AssertAllZero();
2020  }
2021  allocation_stack_.swap(live_stack_);
2022}
2023
2024void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
2025  // This must be called only during the pause.
2026  CHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
2027  MutexLock mu(self, *Locks::runtime_shutdown_lock_);
2028  MutexLock mu2(self, *Locks::thread_list_lock_);
2029  std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
2030  for (Thread* t : thread_list) {
2031    t->RevokeThreadLocalAllocationStack();
2032  }
2033}
2034
2035accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
2036  auto it = mod_union_tables_.find(space);
2037  if (it == mod_union_tables_.end()) {
2038    return nullptr;
2039  }
2040  return it->second;
2041}
2042
2043void Heap::ProcessCards(TimingLogger& timings) {
2044  // Clear cards and keep track of cards cleared in the mod-union table.
2045  for (const auto& space : continuous_spaces_) {
2046    accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
2047    if (table != nullptr) {
2048      const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
2049          "ImageModUnionClearCards";
2050      TimingLogger::ScopedSplit split(name, &timings);
2051      table->ClearCards();
2052    } else if (space->GetType() != space::kSpaceTypeBumpPointerSpace) {
2053      TimingLogger::ScopedSplit split("AllocSpaceClearCards", &timings);
2054      // No mod union table for the AllocSpace. Age the cards so that the GC knows that these cards
2055      // were dirty before the GC started.
2056      // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
2057      // -> clean(cleaning thread).
2058      // The races are we either end up with: Aged card, unaged card. Since we have the checkpoint
2059      // roots and then we scan / update mod union tables after. We will always scan either card.
2060      // If we end up with the non aged card, we scan it it in the pause.
2061      card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(), VoidFunctor());
2062    }
2063  }
2064}
2065
2066static mirror::Object* IdentityMarkObjectCallback(mirror::Object* obj, void*) {
2067  return obj;
2068}
2069
2070void Heap::PreGcVerification(collector::GarbageCollector* gc) {
2071  ThreadList* thread_list = Runtime::Current()->GetThreadList();
2072  Thread* self = Thread::Current();
2073
2074  if (verify_pre_gc_heap_) {
2075    thread_list->SuspendAll();
2076    {
2077      ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2078      if (!VerifyHeapReferences()) {
2079        LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed";
2080      }
2081    }
2082    thread_list->ResumeAll();
2083  }
2084
2085  // Check that all objects which reference things in the live stack are on dirty cards.
2086  if (verify_missing_card_marks_) {
2087    thread_list->SuspendAll();
2088    {
2089      ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2090      SwapStacks(self);
2091      // Sort the live stack so that we can quickly binary search it later.
2092      if (!VerifyMissingCardMarks()) {
2093        LOG(FATAL) << "Pre " << gc->GetName() << " missing card mark verification failed";
2094      }
2095      SwapStacks(self);
2096    }
2097    thread_list->ResumeAll();
2098  }
2099
2100  if (verify_mod_union_table_) {
2101    thread_list->SuspendAll();
2102    ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
2103    for (const auto& table_pair : mod_union_tables_) {
2104      accounting::ModUnionTable* mod_union_table = table_pair.second;
2105      mod_union_table->UpdateAndMarkReferences(IdentityMarkObjectCallback, nullptr);
2106      mod_union_table->Verify();
2107    }
2108    thread_list->ResumeAll();
2109  }
2110}
2111
2112void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
2113  // Called before sweeping occurs since we want to make sure we are not going so reclaim any
2114  // reachable objects.
2115  if (verify_post_gc_heap_) {
2116    Thread* self = Thread::Current();
2117    CHECK_NE(self->GetState(), kRunnable);
2118    {
2119      WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2120      // Swapping bound bitmaps does nothing.
2121      gc->SwapBitmaps();
2122      if (!VerifyHeapReferences()) {
2123        LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed";
2124      }
2125      gc->SwapBitmaps();
2126    }
2127  }
2128}
2129
2130void Heap::PostGcVerification(collector::GarbageCollector* gc) {
2131  if (verify_system_weaks_) {
2132    Thread* self = Thread::Current();
2133    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2134    collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
2135    mark_sweep->VerifySystemWeaks();
2136  }
2137}
2138
2139void Heap::PreGcRosAllocVerification(TimingLogger* timings) {
2140  if (verify_pre_gc_rosalloc_) {
2141    TimingLogger::ScopedSplit split("PreGcRosAllocVerification", timings);
2142    for (const auto& space : continuous_spaces_) {
2143      if (space->IsRosAllocSpace()) {
2144        VLOG(heap) << "PreGcRosAllocVerification : " << space->GetName();
2145        space::RosAllocSpace* rosalloc_space = space->AsRosAllocSpace();
2146        rosalloc_space->Verify();
2147      }
2148    }
2149  }
2150}
2151
2152void Heap::PostGcRosAllocVerification(TimingLogger* timings) {
2153  if (verify_post_gc_rosalloc_) {
2154    TimingLogger::ScopedSplit split("PostGcRosAllocVerification", timings);
2155    for (const auto& space : continuous_spaces_) {
2156      if (space->IsRosAllocSpace()) {
2157        VLOG(heap) << "PostGcRosAllocVerification : " << space->GetName();
2158        space::RosAllocSpace* rosalloc_space = space->AsRosAllocSpace();
2159        rosalloc_space->Verify();
2160      }
2161    }
2162  }
2163}
2164
2165collector::GcType Heap::WaitForGcToComplete(Thread* self) {
2166  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
2167  MutexLock mu(self, *gc_complete_lock_);
2168  return WaitForGcToCompleteLocked(self);
2169}
2170
2171collector::GcType Heap::WaitForGcToCompleteLocked(Thread* self) {
2172  collector::GcType last_gc_type = collector::kGcTypeNone;
2173  uint64_t wait_start = NanoTime();
2174  while (collector_type_running_ != kCollectorTypeNone) {
2175    ATRACE_BEGIN("GC: Wait For Completion");
2176    // We must wait, change thread state then sleep on gc_complete_cond_;
2177    gc_complete_cond_->Wait(self);
2178    last_gc_type = last_gc_type_;
2179    ATRACE_END();
2180  }
2181  uint64_t wait_time = NanoTime() - wait_start;
2182  total_wait_time_ += wait_time;
2183  if (wait_time > long_pause_log_threshold_) {
2184    LOG(INFO) << "WaitForGcToComplete blocked for " << PrettyDuration(wait_time);
2185  }
2186  return last_gc_type;
2187}
2188
2189void Heap::DumpForSigQuit(std::ostream& os) {
2190  os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
2191     << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
2192  DumpGcPerformanceInfo(os);
2193}
2194
2195size_t Heap::GetPercentFree() {
2196  return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / GetTotalMemory());
2197}
2198
2199void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
2200  if (max_allowed_footprint > GetMaxMemory()) {
2201    VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to "
2202             << PrettySize(GetMaxMemory());
2203    max_allowed_footprint = GetMaxMemory();
2204  }
2205  max_allowed_footprint_ = max_allowed_footprint;
2206}
2207
2208bool Heap::IsMovableObject(const mirror::Object* obj) const {
2209  if (kMovingCollector) {
2210    DCHECK(!IsInTempSpace(obj));
2211    if (bump_pointer_space_->HasAddress(obj)) {
2212      return true;
2213    }
2214    // TODO: Refactor this logic into the space itself?
2215    // Objects in the main space are only copied during background -> foreground transitions or
2216    // visa versa.
2217    if (main_space_ != nullptr && main_space_->HasAddress(obj) &&
2218        (IsCompactingGC(background_collector_type_) ||
2219            IsCompactingGC(post_zygote_collector_type_))) {
2220      return true;
2221    }
2222  }
2223  return false;
2224}
2225
2226bool Heap::IsInTempSpace(const mirror::Object* obj) const {
2227  if (temp_space_->HasAddress(obj) && !temp_space_->Contains(obj)) {
2228    return true;
2229  }
2230  return false;
2231}
2232
2233void Heap::UpdateMaxNativeFootprint() {
2234  size_t native_size = native_bytes_allocated_;
2235  // TODO: Tune the native heap utilization to be a value other than the java heap utilization.
2236  size_t target_size = native_size / GetTargetHeapUtilization();
2237  if (target_size > native_size + max_free_) {
2238    target_size = native_size + max_free_;
2239  } else if (target_size < native_size + min_free_) {
2240    target_size = native_size + min_free_;
2241  }
2242  native_footprint_gc_watermark_ = target_size;
2243  native_footprint_limit_ = 2 * target_size - native_size;
2244}
2245
2246void Heap::GrowForUtilization(collector::GcType gc_type, uint64_t gc_duration) {
2247  // We know what our utilization is at this moment.
2248  // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
2249  const size_t bytes_allocated = GetBytesAllocated();
2250  last_gc_size_ = bytes_allocated;
2251  last_gc_time_ns_ = NanoTime();
2252  size_t target_size;
2253  if (gc_type != collector::kGcTypeSticky) {
2254    // Grow the heap for non sticky GC.
2255    target_size = bytes_allocated / GetTargetHeapUtilization();
2256    if (target_size > bytes_allocated + max_free_) {
2257      target_size = bytes_allocated + max_free_;
2258    } else if (target_size < bytes_allocated + min_free_) {
2259      target_size = bytes_allocated + min_free_;
2260    }
2261    native_need_to_run_finalization_ = true;
2262    next_gc_type_ = collector::kGcTypeSticky;
2263  } else {
2264    // Based on how close the current heap size is to the target size, decide
2265    // whether or not to do a partial or sticky GC next.
2266    if (bytes_allocated + min_free_ <= max_allowed_footprint_) {
2267      next_gc_type_ = collector::kGcTypeSticky;
2268    } else {
2269      next_gc_type_ = have_zygote_space_ ? collector::kGcTypePartial : collector::kGcTypeFull;
2270    }
2271    // If we have freed enough memory, shrink the heap back down.
2272    if (bytes_allocated + max_free_ < max_allowed_footprint_) {
2273      target_size = bytes_allocated + max_free_;
2274    } else {
2275      target_size = std::max(bytes_allocated, max_allowed_footprint_);
2276    }
2277  }
2278  if (!ignore_max_footprint_) {
2279    SetIdealFootprint(target_size);
2280    if (concurrent_gc_) {
2281      // Calculate when to perform the next ConcurrentGC.
2282      // Calculate the estimated GC duration.
2283      const double gc_duration_seconds = NsToMs(gc_duration) / 1000.0;
2284      // Estimate how many remaining bytes we will have when we need to start the next GC.
2285      size_t remaining_bytes = allocation_rate_ * gc_duration_seconds;
2286      remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
2287      remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
2288      if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) {
2289        // A never going to happen situation that from the estimated allocation rate we will exceed
2290        // the applications entire footprint with the given estimated allocation rate. Schedule
2291        // another GC nearly straight away.
2292        remaining_bytes = kMinConcurrentRemainingBytes;
2293      }
2294      DCHECK_LE(remaining_bytes, max_allowed_footprint_);
2295      DCHECK_LE(max_allowed_footprint_, growth_limit_);
2296      // Start a concurrent GC when we get close to the estimated remaining bytes. When the
2297      // allocation rate is very high, remaining_bytes could tell us that we should start a GC
2298      // right away.
2299      concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes, bytes_allocated);
2300    }
2301  }
2302}
2303
2304void Heap::ClearGrowthLimit() {
2305  growth_limit_ = capacity_;
2306  non_moving_space_->ClearGrowthLimit();
2307}
2308
2309void Heap::SetReferenceOffsets(MemberOffset reference_referent_offset,
2310                               MemberOffset reference_queue_offset,
2311                               MemberOffset reference_queueNext_offset,
2312                               MemberOffset reference_pendingNext_offset,
2313                               MemberOffset finalizer_reference_zombie_offset) {
2314  reference_referent_offset_ = reference_referent_offset;
2315  reference_queue_offset_ = reference_queue_offset;
2316  reference_queueNext_offset_ = reference_queueNext_offset;
2317  reference_pendingNext_offset_ = reference_pendingNext_offset;
2318  finalizer_reference_zombie_offset_ = finalizer_reference_zombie_offset;
2319  CHECK_NE(reference_referent_offset_.Uint32Value(), 0U);
2320  CHECK_NE(reference_queue_offset_.Uint32Value(), 0U);
2321  CHECK_NE(reference_queueNext_offset_.Uint32Value(), 0U);
2322  CHECK_NE(reference_pendingNext_offset_.Uint32Value(), 0U);
2323  CHECK_NE(finalizer_reference_zombie_offset_.Uint32Value(), 0U);
2324}
2325
2326void Heap::SetReferenceReferent(mirror::Object* reference, mirror::Object* referent) {
2327  DCHECK(reference != NULL);
2328  DCHECK_NE(reference_referent_offset_.Uint32Value(), 0U);
2329  reference->SetFieldObject<false, false>(reference_referent_offset_, referent, true);
2330}
2331
2332mirror::Object* Heap::GetReferenceReferent(mirror::Object* reference) {
2333  DCHECK(reference != NULL);
2334  DCHECK_NE(reference_referent_offset_.Uint32Value(), 0U);
2335  return reference->GetFieldObject<mirror::Object>(reference_referent_offset_, true);
2336}
2337
2338void Heap::AddFinalizerReference(Thread* self, mirror::Object* object) {
2339  ScopedObjectAccess soa(self);
2340  JValue result;
2341  ArgArray arg_array("VL", 2);
2342  arg_array.Append(object);
2343  soa.DecodeMethod(WellKnownClasses::java_lang_ref_FinalizerReference_add)->Invoke(self,
2344      arg_array.GetArray(), arg_array.GetNumBytes(), &result, "VL");
2345}
2346
2347void Heap::EnqueueClearedReferences() {
2348  Thread* self = Thread::Current();
2349  Locks::mutator_lock_->AssertNotHeld(self);
2350  if (!cleared_references_.IsEmpty()) {
2351    // When a runtime isn't started there are no reference queues to care about so ignore.
2352    if (LIKELY(Runtime::Current()->IsStarted())) {
2353      ScopedObjectAccess soa(self);
2354      JValue result;
2355      ArgArray arg_array("VL", 2);
2356      arg_array.Append(cleared_references_.GetList());
2357      soa.DecodeMethod(WellKnownClasses::java_lang_ref_ReferenceQueue_add)->Invoke(soa.Self(),
2358          arg_array.GetArray(), arg_array.GetNumBytes(), &result, "VL");
2359    }
2360    cleared_references_.Clear();
2361  }
2362}
2363
2364void Heap::RequestConcurrentGC(Thread* self) {
2365  // Make sure that we can do a concurrent GC.
2366  Runtime* runtime = Runtime::Current();
2367  if (runtime == NULL || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self) ||
2368      self->IsHandlingStackOverflow()) {
2369    return;
2370  }
2371  // We already have a request pending, no reason to start more until we update
2372  // concurrent_start_bytes_.
2373  concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2374  JNIEnv* env = self->GetJniEnv();
2375  DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
2376  DCHECK(WellKnownClasses::java_lang_Daemons_requestGC != nullptr);
2377  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
2378                            WellKnownClasses::java_lang_Daemons_requestGC);
2379  CHECK(!env->ExceptionCheck());
2380}
2381
2382void Heap::ConcurrentGC(Thread* self) {
2383  if (Runtime::Current()->IsShuttingDown(self)) {
2384    return;
2385  }
2386  // Wait for any GCs currently running to finish.
2387  if (WaitForGcToComplete(self) == collector::kGcTypeNone) {
2388    // If the we can't run the GC type we wanted to run, find the next appropriate one and try that
2389    // instead. E.g. can't do partial, so do full instead.
2390    if (CollectGarbageInternal(next_gc_type_, kGcCauseBackground, false) ==
2391        collector::kGcTypeNone) {
2392      for (collector::GcType gc_type : gc_plan_) {
2393        // Attempt to run the collector, if we succeed, we are done.
2394        if (gc_type > next_gc_type_ &&
2395            CollectGarbageInternal(gc_type, kGcCauseBackground, false) != collector::kGcTypeNone) {
2396          break;
2397        }
2398      }
2399    }
2400  }
2401}
2402
2403void Heap::RequestHeapTrim() {
2404  // GC completed and now we must decide whether to request a heap trim (advising pages back to the
2405  // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
2406  // a space it will hold its lock and can become a cause of jank.
2407  // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
2408  // forking.
2409
2410  // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
2411  // because that only marks object heads, so a large array looks like lots of empty space. We
2412  // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
2413  // to utilization (which is probably inversely proportional to how much benefit we can expect).
2414  // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
2415  // not how much use we're making of those pages.
2416  uint64_t ms_time = MilliTime();
2417  // Don't bother trimming the alloc space if a heap trim occurred in the last two seconds.
2418  if (ms_time - last_trim_time_ms_ < 2 * 1000) {
2419    return;
2420  }
2421
2422  Thread* self = Thread::Current();
2423  Runtime* runtime = Runtime::Current();
2424  if (runtime == nullptr || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self)) {
2425    // Heap trimming isn't supported without a Java runtime or Daemons (such as at dex2oat time)
2426    // Also: we do not wish to start a heap trim if the runtime is shutting down (a racy check
2427    // as we don't hold the lock while requesting the trim).
2428    return;
2429  }
2430
2431  last_trim_time_ms_ = ms_time;
2432
2433  // Trim only if we do not currently care about pause times.
2434  if (!CareAboutPauseTimes()) {
2435    JNIEnv* env = self->GetJniEnv();
2436    DCHECK(WellKnownClasses::java_lang_Daemons != NULL);
2437    DCHECK(WellKnownClasses::java_lang_Daemons_requestHeapTrim != NULL);
2438    env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
2439                              WellKnownClasses::java_lang_Daemons_requestHeapTrim);
2440    CHECK(!env->ExceptionCheck());
2441  }
2442}
2443
2444void Heap::RevokeThreadLocalBuffers(Thread* thread) {
2445  if (rosalloc_space_ != nullptr) {
2446    rosalloc_space_->RevokeThreadLocalBuffers(thread);
2447  }
2448  if (bump_pointer_space_ != nullptr) {
2449    bump_pointer_space_->RevokeThreadLocalBuffers(thread);
2450  }
2451}
2452
2453void Heap::RevokeAllThreadLocalBuffers() {
2454  if (rosalloc_space_ != nullptr) {
2455    rosalloc_space_->RevokeAllThreadLocalBuffers();
2456  }
2457  if (bump_pointer_space_ != nullptr) {
2458    bump_pointer_space_->RevokeAllThreadLocalBuffers();
2459  }
2460}
2461
2462bool Heap::IsGCRequestPending() const {
2463  return concurrent_start_bytes_ != std::numeric_limits<size_t>::max();
2464}
2465
2466void Heap::RunFinalization(JNIEnv* env) {
2467  // Can't do this in WellKnownClasses::Init since System is not properly set up at that point.
2468  if (WellKnownClasses::java_lang_System_runFinalization == nullptr) {
2469    CHECK(WellKnownClasses::java_lang_System != nullptr);
2470    WellKnownClasses::java_lang_System_runFinalization =
2471        CacheMethod(env, WellKnownClasses::java_lang_System, true, "runFinalization", "()V");
2472    CHECK(WellKnownClasses::java_lang_System_runFinalization != nullptr);
2473  }
2474  env->CallStaticVoidMethod(WellKnownClasses::java_lang_System,
2475                            WellKnownClasses::java_lang_System_runFinalization);
2476}
2477
2478void Heap::RegisterNativeAllocation(JNIEnv* env, int bytes) {
2479  Thread* self = ThreadForEnv(env);
2480  if (native_need_to_run_finalization_) {
2481    RunFinalization(env);
2482    UpdateMaxNativeFootprint();
2483    native_need_to_run_finalization_ = false;
2484  }
2485  // Total number of native bytes allocated.
2486  native_bytes_allocated_.FetchAndAdd(bytes);
2487  if (static_cast<size_t>(native_bytes_allocated_) > native_footprint_gc_watermark_) {
2488    collector::GcType gc_type = have_zygote_space_ ? collector::kGcTypePartial :
2489        collector::kGcTypeFull;
2490
2491    // The second watermark is higher than the gc watermark. If you hit this it means you are
2492    // allocating native objects faster than the GC can keep up with.
2493    if (static_cast<size_t>(native_bytes_allocated_) > native_footprint_limit_) {
2494      if (WaitForGcToComplete(self) != collector::kGcTypeNone) {
2495        // Just finished a GC, attempt to run finalizers.
2496        RunFinalization(env);
2497        CHECK(!env->ExceptionCheck());
2498      }
2499      // If we still are over the watermark, attempt a GC for alloc and run finalizers.
2500      if (static_cast<size_t>(native_bytes_allocated_) > native_footprint_limit_) {
2501        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
2502        RunFinalization(env);
2503        native_need_to_run_finalization_ = false;
2504        CHECK(!env->ExceptionCheck());
2505      }
2506      // We have just run finalizers, update the native watermark since it is very likely that
2507      // finalizers released native managed allocations.
2508      UpdateMaxNativeFootprint();
2509    } else if (!IsGCRequestPending()) {
2510      if (concurrent_gc_) {
2511        RequestConcurrentGC(self);
2512      } else {
2513        CollectGarbageInternal(gc_type, kGcCauseForAlloc, false);
2514      }
2515    }
2516  }
2517}
2518
2519void Heap::RegisterNativeFree(JNIEnv* env, int bytes) {
2520  int expected_size, new_size;
2521  do {
2522    expected_size = native_bytes_allocated_.Load();
2523    new_size = expected_size - bytes;
2524    if (UNLIKELY(new_size < 0)) {
2525      ScopedObjectAccess soa(env);
2526      env->ThrowNew(WellKnownClasses::java_lang_RuntimeException,
2527                    StringPrintf("Attempted to free %d native bytes with only %d native bytes "
2528                                 "registered as allocated", bytes, expected_size).c_str());
2529      break;
2530    }
2531  } while (!native_bytes_allocated_.CompareAndSwap(expected_size, new_size));
2532}
2533
2534size_t Heap::GetTotalMemory() const {
2535  size_t ret = 0;
2536  for (const auto& space : continuous_spaces_) {
2537    // Currently don't include the image space.
2538    if (!space->IsImageSpace()) {
2539      ret += space->Size();
2540    }
2541  }
2542  for (const auto& space : discontinuous_spaces_) {
2543    if (space->IsLargeObjectSpace()) {
2544      ret += space->AsLargeObjectSpace()->GetBytesAllocated();
2545    }
2546  }
2547  return ret;
2548}
2549
2550void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
2551  DCHECK(mod_union_table != nullptr);
2552  mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
2553}
2554
2555}  // namespace gc
2556}  // namespace art
2557