heap.cc revision c93c530efc175954160c3834c93961a1a946a35a
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "heap.h"
18
19#define ATRACE_TAG ATRACE_TAG_DALVIK
20#include <cutils/trace.h>
21
22#include <limits>
23#include <vector>
24#include <valgrind.h>
25
26#include "base/histogram-inl.h"
27#include "base/stl_util.h"
28#include "common_throws.h"
29#include "cutils/sched_policy.h"
30#include "debugger.h"
31#include "gc/accounting/atomic_stack.h"
32#include "gc/accounting/card_table-inl.h"
33#include "gc/accounting/heap_bitmap-inl.h"
34#include "gc/accounting/mod_union_table.h"
35#include "gc/accounting/mod_union_table-inl.h"
36#include "gc/accounting/remembered_set.h"
37#include "gc/accounting/space_bitmap-inl.h"
38#include "gc/collector/mark_sweep-inl.h"
39#include "gc/collector/partial_mark_sweep.h"
40#include "gc/collector/semi_space.h"
41#include "gc/collector/sticky_mark_sweep.h"
42#include "gc/space/bump_pointer_space.h"
43#include "gc/space/dlmalloc_space-inl.h"
44#include "gc/space/image_space.h"
45#include "gc/space/large_object_space.h"
46#include "gc/space/rosalloc_space-inl.h"
47#include "gc/space/space-inl.h"
48#include "gc/space/zygote_space.h"
49#include "entrypoints/quick/quick_alloc_entrypoints.h"
50#include "heap-inl.h"
51#include "image.h"
52#include "mirror/art_field-inl.h"
53#include "mirror/class-inl.h"
54#include "mirror/object.h"
55#include "mirror/object-inl.h"
56#include "mirror/object_array-inl.h"
57#include "mirror/reference-inl.h"
58#include "object_utils.h"
59#include "os.h"
60#include "reflection.h"
61#include "runtime.h"
62#include "ScopedLocalRef.h"
63#include "scoped_thread_state_change.h"
64#include "sirt_ref.h"
65#include "thread_list.h"
66#include "UniquePtr.h"
67#include "well_known_classes.h"
68
69namespace art {
70
71namespace gc {
72
73static constexpr bool kGCALotMode = false;
74static constexpr size_t kGcAlotInterval = KB;
75// Minimum amount of remaining bytes before a concurrent GC is triggered.
76static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
77static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
78
79Heap::Heap(size_t initial_size, size_t growth_limit, size_t min_free, size_t max_free,
80           double target_utilization, size_t capacity, const std::string& image_file_name,
81           CollectorType post_zygote_collector_type, CollectorType background_collector_type,
82           size_t parallel_gc_threads, size_t conc_gc_threads, bool low_memory_mode,
83           size_t long_pause_log_threshold, size_t long_gc_log_threshold,
84           bool ignore_max_footprint, bool use_tlab, bool verify_pre_gc_heap,
85           bool verify_post_gc_heap, bool verify_pre_gc_rosalloc,
86           bool verify_post_gc_rosalloc)
87    : non_moving_space_(nullptr),
88      rosalloc_space_(nullptr),
89      dlmalloc_space_(nullptr),
90      main_space_(nullptr),
91      collector_type_(kCollectorTypeNone),
92      post_zygote_collector_type_(post_zygote_collector_type),
93      background_collector_type_(background_collector_type),
94      desired_collector_type_(collector_type_),
95      heap_trim_request_lock_(nullptr),
96      last_trim_time_(0),
97      heap_transition_target_time_(0),
98      heap_trim_request_pending_(false),
99      parallel_gc_threads_(parallel_gc_threads),
100      conc_gc_threads_(conc_gc_threads),
101      low_memory_mode_(low_memory_mode),
102      long_pause_log_threshold_(long_pause_log_threshold),
103      long_gc_log_threshold_(long_gc_log_threshold),
104      ignore_max_footprint_(ignore_max_footprint),
105      have_zygote_space_(false),
106      large_object_threshold_(std::numeric_limits<size_t>::max()),  // Starts out disabled.
107      collector_type_running_(kCollectorTypeNone),
108      last_gc_type_(collector::kGcTypeNone),
109      next_gc_type_(collector::kGcTypePartial),
110      capacity_(capacity),
111      growth_limit_(growth_limit),
112      max_allowed_footprint_(initial_size),
113      native_footprint_gc_watermark_(initial_size),
114      native_footprint_limit_(2 * initial_size),
115      native_need_to_run_finalization_(false),
116      // Initially assume we perceive jank in case the process state is never updated.
117      process_state_(kProcessStateJankPerceptible),
118      concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
119      total_bytes_freed_ever_(0),
120      total_objects_freed_ever_(0),
121      num_bytes_allocated_(0),
122      native_bytes_allocated_(0),
123      gc_memory_overhead_(0),
124      verify_missing_card_marks_(false),
125      verify_system_weaks_(false),
126      verify_pre_gc_heap_(verify_pre_gc_heap),
127      verify_post_gc_heap_(verify_post_gc_heap),
128      verify_mod_union_table_(false),
129      verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
130      verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
131      allocation_rate_(0),
132      /* For GC a lot mode, we limit the allocations stacks to be kGcAlotInterval allocations. This
133       * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
134       * verification is enabled, we limit the size of allocation stacks to speed up their
135       * searching.
136       */
137      max_allocation_stack_size_(kGCALotMode ? kGcAlotInterval
138          : (kVerifyObjectSupport > kVerifyObjectModeFast) ? KB : MB),
139      current_allocator_(kAllocatorTypeDlMalloc),
140      current_non_moving_allocator_(kAllocatorTypeNonMoving),
141      bump_pointer_space_(nullptr),
142      temp_space_(nullptr),
143      min_free_(min_free),
144      max_free_(max_free),
145      target_utilization_(target_utilization),
146      total_wait_time_(0),
147      total_allocation_time_(0),
148      verify_object_mode_(kVerifyObjectModeDisabled),
149      disable_moving_gc_count_(0),
150      running_on_valgrind_(RUNNING_ON_VALGRIND > 0),
151      use_tlab_(use_tlab) {
152  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
153    LOG(INFO) << "Heap() entering";
154  }
155  const bool is_zygote = Runtime::Current()->IsZygote();
156  // If we aren't the zygote, switch to the default non zygote allocator. This may update the
157  // entrypoints.
158  if (!is_zygote) {
159    desired_collector_type_ = post_zygote_collector_type_;
160    large_object_threshold_ = kDefaultLargeObjectThreshold;
161  } else {
162    if (kMovingCollector) {
163      // We are the zygote, use bump pointer allocation + semi space collector.
164      bool generational = post_zygote_collector_type_ == kCollectorTypeGSS;
165      desired_collector_type_ = generational ? kCollectorTypeGSS : kCollectorTypeSS;
166    } else {
167      desired_collector_type_ = post_zygote_collector_type_;
168    }
169  }
170  ChangeCollector(desired_collector_type_);
171
172  live_bitmap_.reset(new accounting::HeapBitmap(this));
173  mark_bitmap_.reset(new accounting::HeapBitmap(this));
174  // Requested begin for the alloc space, to follow the mapped image and oat files
175  byte* requested_alloc_space_begin = nullptr;
176  if (!image_file_name.empty()) {
177    space::ImageSpace* image_space = space::ImageSpace::Create(image_file_name.c_str());
178    CHECK(image_space != nullptr) << "Failed to create space for " << image_file_name;
179    AddSpace(image_space);
180    // Oat files referenced by image files immediately follow them in memory, ensure alloc space
181    // isn't going to get in the middle
182    byte* oat_file_end_addr = image_space->GetImageHeader().GetOatFileEnd();
183    CHECK_GT(oat_file_end_addr, image_space->End());
184    if (oat_file_end_addr > requested_alloc_space_begin) {
185      requested_alloc_space_begin = AlignUp(oat_file_end_addr, kPageSize);
186    }
187  }
188  MemMap* malloc_space_mem_map = nullptr;
189  const char* malloc_space_name = is_zygote ? "zygote space" : "alloc space";
190  if (is_zygote) {
191    // Allocate a single mem map that is split into the malloc space
192    // and the post zygote non-moving space to put them adjacent.
193    size_t post_zygote_non_moving_space_size = 64 * MB;
194    size_t non_moving_spaces_size = capacity + post_zygote_non_moving_space_size;
195    std::string error_str;
196    malloc_space_mem_map = MemMap::MapAnonymous(malloc_space_name, requested_alloc_space_begin,
197                                                non_moving_spaces_size, PROT_READ | PROT_WRITE,
198                                                true, &error_str);
199    CHECK(malloc_space_mem_map != nullptr) << error_str;
200    post_zygote_non_moving_space_mem_map_.reset(malloc_space_mem_map->RemapAtEnd(
201        malloc_space_mem_map->Begin() + capacity, "post zygote non-moving space",
202        PROT_READ | PROT_WRITE, &error_str));
203    CHECK(post_zygote_non_moving_space_mem_map_.get() != nullptr) << error_str;
204    VLOG(heap) << "malloc space mem map : " << malloc_space_mem_map;
205    VLOG(heap) << "post zygote non-moving space mem map : "
206               << post_zygote_non_moving_space_mem_map_.get();
207  } else {
208    // Allocate a mem map for the malloc space.
209    std::string error_str;
210    malloc_space_mem_map = MemMap::MapAnonymous(malloc_space_name, requested_alloc_space_begin,
211                                                capacity, PROT_READ | PROT_WRITE, true, &error_str);
212    CHECK(malloc_space_mem_map != nullptr) << error_str;
213    VLOG(heap) << "malloc space mem map : " << malloc_space_mem_map;
214  }
215  CHECK(malloc_space_mem_map != nullptr);
216  space::MallocSpace* malloc_space;
217  if (kUseRosAlloc) {
218    malloc_space = space::RosAllocSpace::CreateFromMemMap(malloc_space_mem_map, malloc_space_name,
219                                                          kDefaultStartingSize, initial_size,
220                                                          growth_limit, capacity, low_memory_mode_);
221    CHECK(malloc_space != nullptr) << "Failed to create rosalloc space";
222  } else {
223    malloc_space = space::DlMallocSpace::CreateFromMemMap(malloc_space_mem_map, malloc_space_name,
224                                                          kDefaultStartingSize, initial_size,
225                                                          growth_limit, capacity);
226    CHECK(malloc_space != nullptr) << "Failed to create dlmalloc space";
227  }
228  VLOG(heap) << "malloc_space : " << malloc_space;
229  if (kMovingCollector) {
230    // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
231    // TODO: Having 3+ spaces as big as the large heap size can cause virtual memory fragmentation
232    // issues.
233    const size_t bump_pointer_space_size = std::min(malloc_space->Capacity(), 128 * MB);
234    bump_pointer_space_ = space::BumpPointerSpace::Create("Bump pointer space",
235                                                          bump_pointer_space_size, nullptr);
236    CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
237    AddSpace(bump_pointer_space_);
238    temp_space_ = space::BumpPointerSpace::Create("Bump pointer space 2", bump_pointer_space_size,
239                                                  nullptr);
240    CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
241    AddSpace(temp_space_);
242    VLOG(heap) << "bump_pointer_space : " << bump_pointer_space_;
243    VLOG(heap) << "temp_space : " << temp_space_;
244  }
245  non_moving_space_ = malloc_space;
246  malloc_space->SetFootprintLimit(malloc_space->Capacity());
247  AddSpace(malloc_space);
248
249  // Allocate the large object space.
250  constexpr bool kUseFreeListSpaceForLOS = false;
251  if (kUseFreeListSpaceForLOS) {
252    large_object_space_ = space::FreeListSpace::Create("large object space", nullptr, capacity);
253  } else {
254    large_object_space_ = space::LargeObjectMapSpace::Create("large object space");
255  }
256  CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
257  AddSpace(large_object_space_);
258
259  // Compute heap capacity. Continuous spaces are sorted in order of Begin().
260  CHECK(!continuous_spaces_.empty());
261
262  // Relies on the spaces being sorted.
263  byte* heap_begin = continuous_spaces_.front()->Begin();
264  byte* heap_end = continuous_spaces_.back()->Limit();
265  if (is_zygote) {
266    CHECK(post_zygote_non_moving_space_mem_map_.get() != nullptr);
267    heap_begin = std::min(post_zygote_non_moving_space_mem_map_->Begin(), heap_begin);
268    heap_end = std::max(post_zygote_non_moving_space_mem_map_->End(), heap_end);
269  }
270  size_t heap_capacity = heap_end - heap_begin;
271
272  // Allocate the card table.
273  card_table_.reset(accounting::CardTable::Create(heap_begin, heap_capacity));
274  CHECK(card_table_.get() != NULL) << "Failed to create card table";
275
276  // Card cache for now since it makes it easier for us to update the references to the copying
277  // spaces.
278  accounting::ModUnionTable* mod_union_table =
279      new accounting::ModUnionTableCardCache("Image mod-union table", this, GetImageSpace());
280  CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
281  AddModUnionTable(mod_union_table);
282
283  if (collector::SemiSpace::kUseRememberedSet) {
284    accounting::RememberedSet* non_moving_space_rem_set =
285        new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
286    CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
287    AddRememberedSet(non_moving_space_rem_set);
288  }
289
290  // TODO: Count objects in the image space here.
291  num_bytes_allocated_ = 0;
292
293  // Default mark stack size in bytes.
294  static const size_t default_mark_stack_size = 64 * KB;
295  mark_stack_.reset(accounting::ObjectStack::Create("mark stack", default_mark_stack_size));
296  allocation_stack_.reset(accounting::ObjectStack::Create("allocation stack",
297                                                          max_allocation_stack_size_));
298  live_stack_.reset(accounting::ObjectStack::Create("live stack",
299                                                    max_allocation_stack_size_));
300
301  // It's still too early to take a lock because there are no threads yet, but we can create locks
302  // now. We don't create it earlier to make it clear that you can't use locks during heap
303  // initialization.
304  gc_complete_lock_ = new Mutex("GC complete lock");
305  gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
306                                                *gc_complete_lock_));
307  heap_trim_request_lock_ = new Mutex("Heap trim request lock");
308  last_gc_size_ = GetBytesAllocated();
309
310  if (ignore_max_footprint_) {
311    SetIdealFootprint(std::numeric_limits<size_t>::max());
312    concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
313  }
314  CHECK_NE(max_allowed_footprint_, 0U);
315
316  // Create our garbage collectors.
317  for (size_t i = 0; i < 2; ++i) {
318    const bool concurrent = i != 0;
319    garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
320    garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
321    garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
322  }
323  if (kMovingCollector) {
324    // TODO: Clean this up.
325    bool generational = post_zygote_collector_type_ == kCollectorTypeGSS;
326    semi_space_collector_ = new collector::SemiSpace(this, generational);
327    garbage_collectors_.push_back(semi_space_collector_);
328  }
329
330  if (running_on_valgrind_) {
331    Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
332  }
333
334  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
335    LOG(INFO) << "Heap() exiting";
336  }
337}
338
339void Heap::ChangeAllocator(AllocatorType allocator) {
340  if (current_allocator_ != allocator) {
341    // These two allocators are only used internally and don't have any entrypoints.
342    CHECK_NE(allocator, kAllocatorTypeLOS);
343    CHECK_NE(allocator, kAllocatorTypeNonMoving);
344    current_allocator_ = allocator;
345    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
346    SetQuickAllocEntryPointsAllocator(current_allocator_);
347    Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
348  }
349}
350
351void Heap::DisableCompaction() {
352  if (IsCompactingGC(post_zygote_collector_type_)) {
353    post_zygote_collector_type_ = kCollectorTypeCMS;
354  }
355  if (IsCompactingGC(background_collector_type_)) {
356    background_collector_type_ = post_zygote_collector_type_;
357  }
358  TransitionCollector(post_zygote_collector_type_);
359}
360
361std::string Heap::SafeGetClassDescriptor(mirror::Class* klass) {
362  if (!IsValidContinuousSpaceObjectAddress(klass)) {
363    return StringPrintf("<non heap address klass %p>", klass);
364  }
365  mirror::Class* component_type = klass->GetComponentType<kVerifyNone>();
366  if (IsValidContinuousSpaceObjectAddress(component_type) && klass->IsArrayClass<kVerifyNone>()) {
367    std::string result("[");
368    result += SafeGetClassDescriptor(component_type);
369    return result;
370  } else if (UNLIKELY(klass->IsPrimitive<kVerifyNone>())) {
371    return Primitive::Descriptor(klass->GetPrimitiveType<kVerifyNone>());
372  } else if (UNLIKELY(klass->IsProxyClass<kVerifyNone>())) {
373    return Runtime::Current()->GetClassLinker()->GetDescriptorForProxy(klass);
374  } else {
375    mirror::DexCache* dex_cache = klass->GetDexCache<kVerifyNone>();
376    if (!IsValidContinuousSpaceObjectAddress(dex_cache)) {
377      return StringPrintf("<non heap address dex_cache %p>", dex_cache);
378    }
379    const DexFile* dex_file = dex_cache->GetDexFile();
380    uint16_t class_def_idx = klass->GetDexClassDefIndex();
381    if (class_def_idx == DexFile::kDexNoIndex16) {
382      return "<class def not found>";
383    }
384    const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_idx);
385    const DexFile::TypeId& type_id = dex_file->GetTypeId(class_def.class_idx_);
386    return dex_file->GetTypeDescriptor(type_id);
387  }
388}
389
390std::string Heap::SafePrettyTypeOf(mirror::Object* obj) {
391  if (obj == nullptr) {
392    return "null";
393  }
394  mirror::Class* klass = obj->GetClass<kVerifyNone>();
395  if (klass == nullptr) {
396    return "(class=null)";
397  }
398  std::string result(SafeGetClassDescriptor(klass));
399  if (obj->IsClass()) {
400    result += "<" + SafeGetClassDescriptor(obj->AsClass<kVerifyNone>()) + ">";
401  }
402  return result;
403}
404
405void Heap::DumpObject(std::ostream& stream, mirror::Object* obj) {
406  if (obj == nullptr) {
407    stream << "(obj=null)";
408    return;
409  }
410  if (IsAligned<kObjectAlignment>(obj)) {
411    space::Space* space = nullptr;
412    // Don't use find space since it only finds spaces which actually contain objects instead of
413    // spaces which may contain objects (e.g. cleared bump pointer spaces).
414    for (const auto& cur_space : continuous_spaces_) {
415      if (cur_space->HasAddress(obj)) {
416        space = cur_space;
417        break;
418      }
419    }
420    if (space == nullptr) {
421      if (allocator_mem_map_.get() == nullptr || !allocator_mem_map_->HasAddress(obj)) {
422        stream << "obj " << obj << " not a valid heap address";
423        return;
424      } else if (allocator_mem_map_.get() != nullptr) {
425        allocator_mem_map_->Protect(PROT_READ | PROT_WRITE);
426      }
427    }
428    // Unprotect all the spaces.
429    for (const auto& space : continuous_spaces_) {
430      mprotect(space->Begin(), space->Capacity(), PROT_READ | PROT_WRITE);
431    }
432    stream << "Object " << obj;
433    if (space != nullptr) {
434      stream << " in space " << *space;
435    }
436    mirror::Class* klass = obj->GetClass<kVerifyNone>();
437    stream << "\nclass=" << klass;
438    if (klass != nullptr) {
439      stream << " type= " << SafePrettyTypeOf(obj);
440    }
441    // Re-protect the address we faulted on.
442    mprotect(AlignDown(obj, kPageSize), kPageSize, PROT_NONE);
443  }
444}
445
446bool Heap::IsCompilingBoot() const {
447  for (const auto& space : continuous_spaces_) {
448    if (space->IsImageSpace() || space->IsZygoteSpace()) {
449      return false;
450    }
451  }
452  return true;
453}
454
455bool Heap::HasImageSpace() const {
456  for (const auto& space : continuous_spaces_) {
457    if (space->IsImageSpace()) {
458      return true;
459    }
460  }
461  return false;
462}
463
464void Heap::IncrementDisableMovingGC(Thread* self) {
465  // Need to do this holding the lock to prevent races where the GC is about to run / running when
466  // we attempt to disable it.
467  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
468  MutexLock mu(self, *gc_complete_lock_);
469  ++disable_moving_gc_count_;
470  if (IsCompactingGC(collector_type_running_)) {
471    WaitForGcToCompleteLocked(self);
472  }
473}
474
475void Heap::DecrementDisableMovingGC(Thread* self) {
476  MutexLock mu(self, *gc_complete_lock_);
477  CHECK_GE(disable_moving_gc_count_, 0U);
478  --disable_moving_gc_count_;
479}
480
481void Heap::UpdateProcessState(ProcessState process_state) {
482  if (process_state_ != process_state) {
483    process_state_ = process_state;
484    if (process_state_ == kProcessStateJankPerceptible) {
485      // Transition back to foreground right away to prevent jank.
486      RequestCollectorTransition(post_zygote_collector_type_, 0);
487    } else {
488      // Don't delay for debug builds since we may want to stress test the GC.
489      RequestCollectorTransition(background_collector_type_, kIsDebugBuild ? 0 :
490          kCollectorTransitionWait);
491    }
492  }
493}
494
495void Heap::CreateThreadPool() {
496  const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
497  if (num_threads != 0) {
498    thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
499  }
500}
501
502void Heap::VisitObjects(ObjectCallback callback, void* arg) {
503  Thread* self = Thread::Current();
504  // GCs can move objects, so don't allow this.
505  const char* old_cause = self->StartAssertNoThreadSuspension("Visiting objects");
506  if (bump_pointer_space_ != nullptr) {
507    // Visit objects in bump pointer space.
508    bump_pointer_space_->Walk(callback, arg);
509  }
510  // TODO: Switch to standard begin and end to use ranged a based loop.
511  for (mirror::Object** it = allocation_stack_->Begin(), **end = allocation_stack_->End();
512      it < end; ++it) {
513    mirror::Object* obj = *it;
514    if (obj != nullptr && obj->GetClass() != nullptr) {
515      // Avoid the race condition caused by the object not yet being written into the allocation
516      // stack or the class not yet being written in the object. Or, if kUseThreadLocalAllocationStack,
517      // there can be nulls on the allocation stack.
518      callback(obj, arg);
519    }
520  }
521  GetLiveBitmap()->Walk(callback, arg);
522  self->EndAssertNoThreadSuspension(old_cause);
523}
524
525void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
526  space::ContinuousSpace* space1 = rosalloc_space_ != nullptr ? rosalloc_space_ : non_moving_space_;
527  space::ContinuousSpace* space2 = dlmalloc_space_ != nullptr ? dlmalloc_space_ : non_moving_space_;
528  // This is just logic to handle a case of either not having a rosalloc or dlmalloc space.
529  // TODO: Generalize this to n bitmaps?
530  if (space1 == nullptr) {
531    DCHECK(space2 != nullptr);
532    space1 = space2;
533  }
534  if (space2 == nullptr) {
535    DCHECK(space1 != nullptr);
536    space2 = space1;
537  }
538  MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
539                 large_object_space_->GetLiveObjects(), stack);
540}
541
542void Heap::DeleteThreadPool() {
543  thread_pool_.reset(nullptr);
544}
545
546void Heap::AddSpace(space::Space* space, bool set_as_default) {
547  DCHECK(space != nullptr);
548  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
549  if (space->IsContinuousSpace()) {
550    DCHECK(!space->IsDiscontinuousSpace());
551    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
552    // Continuous spaces don't necessarily have bitmaps.
553    accounting::SpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
554    accounting::SpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
555    if (live_bitmap != nullptr) {
556      DCHECK(mark_bitmap != nullptr);
557      live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
558      mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
559    }
560    continuous_spaces_.push_back(continuous_space);
561    if (set_as_default) {
562      if (continuous_space->IsDlMallocSpace()) {
563        dlmalloc_space_ = continuous_space->AsDlMallocSpace();
564      } else if (continuous_space->IsRosAllocSpace()) {
565        rosalloc_space_ = continuous_space->AsRosAllocSpace();
566      }
567    }
568    // Ensure that spaces remain sorted in increasing order of start address.
569    std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
570              [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
571      return a->Begin() < b->Begin();
572    });
573  } else {
574    DCHECK(space->IsDiscontinuousSpace());
575    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
576    DCHECK(discontinuous_space->GetLiveObjects() != nullptr);
577    live_bitmap_->AddDiscontinuousObjectSet(discontinuous_space->GetLiveObjects());
578    DCHECK(discontinuous_space->GetMarkObjects() != nullptr);
579    mark_bitmap_->AddDiscontinuousObjectSet(discontinuous_space->GetMarkObjects());
580    discontinuous_spaces_.push_back(discontinuous_space);
581  }
582  if (space->IsAllocSpace()) {
583    alloc_spaces_.push_back(space->AsAllocSpace());
584  }
585}
586
587void Heap::RemoveSpace(space::Space* space) {
588  DCHECK(space != nullptr);
589  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
590  if (space->IsContinuousSpace()) {
591    DCHECK(!space->IsDiscontinuousSpace());
592    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
593    // Continuous spaces don't necessarily have bitmaps.
594    accounting::SpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
595    accounting::SpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
596    if (live_bitmap != nullptr) {
597      DCHECK(mark_bitmap != nullptr);
598      live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
599      mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
600    }
601    auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
602    DCHECK(it != continuous_spaces_.end());
603    continuous_spaces_.erase(it);
604    if (continuous_space == dlmalloc_space_) {
605      dlmalloc_space_ = nullptr;
606    } else if (continuous_space == rosalloc_space_) {
607      rosalloc_space_ = nullptr;
608    }
609    if (continuous_space == main_space_) {
610      main_space_ = nullptr;
611    }
612  } else {
613    DCHECK(space->IsDiscontinuousSpace());
614    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
615    DCHECK(discontinuous_space->GetLiveObjects() != nullptr);
616    live_bitmap_->RemoveDiscontinuousObjectSet(discontinuous_space->GetLiveObjects());
617    DCHECK(discontinuous_space->GetMarkObjects() != nullptr);
618    mark_bitmap_->RemoveDiscontinuousObjectSet(discontinuous_space->GetMarkObjects());
619    auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
620                        discontinuous_space);
621    DCHECK(it != discontinuous_spaces_.end());
622    discontinuous_spaces_.erase(it);
623  }
624  if (space->IsAllocSpace()) {
625    auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
626    DCHECK(it != alloc_spaces_.end());
627    alloc_spaces_.erase(it);
628  }
629}
630
631void Heap::RegisterGCAllocation(size_t bytes) {
632  if (this != nullptr) {
633    gc_memory_overhead_.FetchAndAdd(bytes);
634  }
635}
636
637void Heap::RegisterGCDeAllocation(size_t bytes) {
638  if (this != nullptr) {
639    gc_memory_overhead_.FetchAndSub(bytes);
640  }
641}
642
643void Heap::DumpGcPerformanceInfo(std::ostream& os) {
644  // Dump cumulative timings.
645  os << "Dumping cumulative Gc timings\n";
646  uint64_t total_duration = 0;
647
648  // Dump cumulative loggers for each GC type.
649  uint64_t total_paused_time = 0;
650  for (const auto& collector : garbage_collectors_) {
651    CumulativeLogger& logger = collector->GetCumulativeTimings();
652    if (logger.GetTotalNs() != 0) {
653      os << Dumpable<CumulativeLogger>(logger);
654      const uint64_t total_ns = logger.GetTotalNs();
655      const uint64_t total_pause_ns = collector->GetTotalPausedTimeNs();
656      double seconds = NsToMs(logger.GetTotalNs()) / 1000.0;
657      const uint64_t freed_bytes = collector->GetTotalFreedBytes();
658      const uint64_t freed_objects = collector->GetTotalFreedObjects();
659      Histogram<uint64_t>::CumulativeData cumulative_data;
660      collector->GetPauseHistogram().CreateHistogram(&cumulative_data);
661      collector->GetPauseHistogram().PrintConfidenceIntervals(os, 0.99, cumulative_data);
662      os << collector->GetName() << " total time: " << PrettyDuration(total_ns) << "\n"
663         << collector->GetName() << " freed: " << freed_objects
664         << " objects with total size " << PrettySize(freed_bytes) << "\n"
665         << collector->GetName() << " throughput: " << freed_objects / seconds << "/s / "
666         << PrettySize(freed_bytes / seconds) << "/s\n";
667      total_duration += total_ns;
668      total_paused_time += total_pause_ns;
669    }
670  }
671  uint64_t allocation_time = static_cast<uint64_t>(total_allocation_time_) * kTimeAdjust;
672  if (total_duration != 0) {
673    const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
674    os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
675    os << "Mean GC size throughput: "
676       << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
677    os << "Mean GC object throughput: "
678       << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
679  }
680  size_t total_objects_allocated = GetObjectsAllocatedEver();
681  os << "Total number of allocations: " << total_objects_allocated << "\n";
682  size_t total_bytes_allocated = GetBytesAllocatedEver();
683  os << "Total bytes allocated " << PrettySize(total_bytes_allocated) << "\n";
684  if (kMeasureAllocationTime) {
685    os << "Total time spent allocating: " << PrettyDuration(allocation_time) << "\n";
686    os << "Mean allocation time: " << PrettyDuration(allocation_time / total_objects_allocated)
687       << "\n";
688  }
689  os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
690  os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
691  os << "Approximate GC data structures memory overhead: " << gc_memory_overhead_;
692}
693
694Heap::~Heap() {
695  VLOG(heap) << "Starting ~Heap()";
696  STLDeleteElements(&garbage_collectors_);
697  // If we don't reset then the mark stack complains in its destructor.
698  allocation_stack_->Reset();
699  live_stack_->Reset();
700  STLDeleteValues(&mod_union_tables_);
701  STLDeleteElements(&continuous_spaces_);
702  STLDeleteElements(&discontinuous_spaces_);
703  delete gc_complete_lock_;
704  VLOG(heap) << "Finished ~Heap()";
705}
706
707space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(const mirror::Object* obj,
708                                                            bool fail_ok) const {
709  for (const auto& space : continuous_spaces_) {
710    if (space->Contains(obj)) {
711      return space;
712    }
713  }
714  if (!fail_ok) {
715    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
716  }
717  return NULL;
718}
719
720space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(const mirror::Object* obj,
721                                                                  bool fail_ok) const {
722  for (const auto& space : discontinuous_spaces_) {
723    if (space->Contains(obj)) {
724      return space;
725    }
726  }
727  if (!fail_ok) {
728    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
729  }
730  return NULL;
731}
732
733space::Space* Heap::FindSpaceFromObject(const mirror::Object* obj, bool fail_ok) const {
734  space::Space* result = FindContinuousSpaceFromObject(obj, true);
735  if (result != NULL) {
736    return result;
737  }
738  return FindDiscontinuousSpaceFromObject(obj, true);
739}
740
741struct SoftReferenceArgs {
742  IsMarkedCallback* is_marked_callback_;
743  MarkObjectCallback* mark_callback_;
744  void* arg_;
745};
746
747mirror::Object* Heap::PreserveSoftReferenceCallback(mirror::Object* obj, void* arg) {
748  SoftReferenceArgs* args = reinterpret_cast<SoftReferenceArgs*>(arg);
749  // TODO: Not preserve all soft references.
750  return args->mark_callback_(obj, args->arg_);
751}
752
753void Heap::ProcessSoftReferences(TimingLogger& timings, bool clear_soft,
754                                 IsMarkedCallback* is_marked_callback,
755                                 MarkObjectCallback* mark_object_callback,
756                                 ProcessMarkStackCallback* process_mark_stack_callback, void* arg) {
757  // Unless required to clear soft references with white references, preserve some white referents.
758  if (!clear_soft) {
759    // Don't clear for sticky GC.
760    SoftReferenceArgs soft_reference_args;
761    soft_reference_args.is_marked_callback_ = is_marked_callback;
762    soft_reference_args.mark_callback_ = mark_object_callback;
763    soft_reference_args.arg_ = arg;
764    // References with a marked referent are removed from the list.
765    soft_reference_queue_.PreserveSomeSoftReferences(&PreserveSoftReferenceCallback,
766                                                     &soft_reference_args);
767    process_mark_stack_callback(arg);
768  }
769}
770
771// Process reference class instances and schedule finalizations.
772void Heap::ProcessReferences(TimingLogger& timings, bool clear_soft,
773                             IsMarkedCallback* is_marked_callback,
774                             MarkObjectCallback* mark_object_callback,
775                             ProcessMarkStackCallback* process_mark_stack_callback, void* arg) {
776  ProcessSoftReferences(timings, clear_soft, is_marked_callback, mark_object_callback,
777                        process_mark_stack_callback, arg);
778  timings.StartSplit("(Paused)ProcessReferences");
779  // Clear all remaining soft and weak references with white referents.
780  soft_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
781  weak_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
782  timings.EndSplit();
783  // Preserve all white objects with finalize methods and schedule them for finalization.
784  timings.StartSplit("(Paused)EnqueueFinalizerReferences");
785  finalizer_reference_queue_.EnqueueFinalizerReferences(cleared_references_, is_marked_callback,
786                                                        mark_object_callback, arg);
787  process_mark_stack_callback(arg);
788  timings.EndSplit();
789  timings.StartSplit("(Paused)ProcessReferences");
790  // Clear all f-reachable soft and weak references with white referents.
791  soft_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
792  weak_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
793  // Clear all phantom references with white referents.
794  phantom_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
795  // At this point all reference queues other than the cleared references should be empty.
796  DCHECK(soft_reference_queue_.IsEmpty());
797  DCHECK(weak_reference_queue_.IsEmpty());
798  DCHECK(finalizer_reference_queue_.IsEmpty());
799  DCHECK(phantom_reference_queue_.IsEmpty());
800  timings.EndSplit();
801}
802
803// Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
804// marked, put it on the appropriate list in the heap for later processing.
805void Heap::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref,
806                                  IsMarkedCallback is_marked_callback, void* arg) {
807  DCHECK_EQ(klass, ref->GetClass());
808  mirror::Object* referent = ref->GetReferent();
809  if (referent != nullptr) {
810    mirror::Object* forward_address = is_marked_callback(referent, arg);
811    // Null means that the object is not currently marked.
812    if (forward_address == nullptr) {
813      Thread* self = Thread::Current();
814      // TODO: Remove these locks, and use atomic stacks for storing references?
815      // We need to check that the references haven't already been enqueued since we can end up
816      // scanning the same reference multiple times due to dirty cards.
817      if (klass->IsSoftReferenceClass()) {
818        soft_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
819      } else if (klass->IsWeakReferenceClass()) {
820        weak_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
821      } else if (klass->IsFinalizerReferenceClass()) {
822        finalizer_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
823      } else if (klass->IsPhantomReferenceClass()) {
824        phantom_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
825      } else {
826        LOG(FATAL) << "Invalid reference type " << PrettyClass(klass) << " " << std::hex
827                   << klass->GetAccessFlags();
828      }
829    } else if (referent != forward_address) {
830      // Referent is already marked and we need to update it.
831      ref->SetReferent<false>(forward_address);
832    }
833  }
834}
835
836space::ImageSpace* Heap::GetImageSpace() const {
837  for (const auto& space : continuous_spaces_) {
838    if (space->IsImageSpace()) {
839      return space->AsImageSpace();
840    }
841  }
842  return NULL;
843}
844
845static void MSpaceChunkCallback(void* start, void* end, size_t used_bytes, void* arg) {
846  size_t chunk_size = reinterpret_cast<uint8_t*>(end) - reinterpret_cast<uint8_t*>(start);
847  if (used_bytes < chunk_size) {
848    size_t chunk_free_bytes = chunk_size - used_bytes;
849    size_t& max_contiguous_allocation = *reinterpret_cast<size_t*>(arg);
850    max_contiguous_allocation = std::max(max_contiguous_allocation, chunk_free_bytes);
851  }
852}
853
854void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, bool large_object_allocation) {
855  std::ostringstream oss;
856  size_t total_bytes_free = GetFreeMemory();
857  oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
858      << " free bytes";
859  // If the allocation failed due to fragmentation, print out the largest continuous allocation.
860  if (!large_object_allocation && total_bytes_free >= byte_count) {
861    size_t max_contiguous_allocation = 0;
862    for (const auto& space : continuous_spaces_) {
863      if (space->IsMallocSpace()) {
864        // To allow the Walk/InspectAll() to exclusively-lock the mutator
865        // lock, temporarily release the shared access to the mutator
866        // lock here by transitioning to the suspended state.
867        Locks::mutator_lock_->AssertSharedHeld(self);
868        self->TransitionFromRunnableToSuspended(kSuspended);
869        space->AsMallocSpace()->Walk(MSpaceChunkCallback, &max_contiguous_allocation);
870        self->TransitionFromSuspendedToRunnable();
871        Locks::mutator_lock_->AssertSharedHeld(self);
872      }
873    }
874    oss << "; failed due to fragmentation (largest possible contiguous allocation "
875        <<  max_contiguous_allocation << " bytes)";
876  }
877  self->ThrowOutOfMemoryError(oss.str().c_str());
878}
879
880void Heap::DoPendingTransitionOrTrim() {
881  Thread* self = Thread::Current();
882  CollectorType desired_collector_type;
883  // Wait until we reach the desired transition time.
884  while (true) {
885    uint64_t wait_time;
886    {
887      MutexLock mu(self, *heap_trim_request_lock_);
888      desired_collector_type = desired_collector_type_;
889      uint64_t current_time = NanoTime();
890      if (current_time >= heap_transition_target_time_) {
891        break;
892      }
893      wait_time = heap_transition_target_time_ - current_time;
894    }
895    ScopedThreadStateChange tsc(self, kSleeping);
896    usleep(wait_time / 1000);  // Usleep takes microseconds.
897  }
898  // Transition the collector if the desired collector type is not the same as the current
899  // collector type.
900  TransitionCollector(desired_collector_type);
901  // Do a heap trim if it is needed.
902  Trim();
903}
904
905void Heap::Trim() {
906  Thread* self = Thread::Current();
907  {
908    MutexLock mu(self, *heap_trim_request_lock_);
909    if (!heap_trim_request_pending_ || last_trim_time_ + kHeapTrimWait >= NanoTime()) {
910      return;
911    }
912    last_trim_time_ = NanoTime();
913    heap_trim_request_pending_ = false;
914  }
915  {
916    // Need to do this before acquiring the locks since we don't want to get suspended while
917    // holding any locks.
918    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
919    // Pretend we are doing a GC to prevent background compaction from deleting the space we are
920    // trimming.
921    MutexLock mu(self, *gc_complete_lock_);
922    // Ensure there is only one GC at a time.
923    WaitForGcToCompleteLocked(self);
924    collector_type_running_ = kCollectorTypeHeapTrim;
925  }
926  uint64_t start_ns = NanoTime();
927  // Trim the managed spaces.
928  uint64_t total_alloc_space_allocated = 0;
929  uint64_t total_alloc_space_size = 0;
930  uint64_t managed_reclaimed = 0;
931  for (const auto& space : continuous_spaces_) {
932    if (space->IsMallocSpace()) {
933      gc::space::MallocSpace* alloc_space = space->AsMallocSpace();
934      total_alloc_space_size += alloc_space->Size();
935      managed_reclaimed += alloc_space->Trim();
936    }
937  }
938  total_alloc_space_allocated = GetBytesAllocated() - large_object_space_->GetBytesAllocated() -
939      bump_pointer_space_->Size();
940  const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
941      static_cast<float>(total_alloc_space_size);
942  uint64_t gc_heap_end_ns = NanoTime();
943  // We never move things in the native heap, so we can finish the GC at this point.
944  FinishGC(self, collector::kGcTypeNone);
945  // Trim the native heap.
946  dlmalloc_trim(0);
947  size_t native_reclaimed = 0;
948  dlmalloc_inspect_all(DlmallocMadviseCallback, &native_reclaimed);
949  uint64_t end_ns = NanoTime();
950  VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
951      << ", advised=" << PrettySize(managed_reclaimed) << ") and native (duration="
952      << PrettyDuration(end_ns - gc_heap_end_ns) << ", advised=" << PrettySize(native_reclaimed)
953      << ") heaps. Managed heap utilization of " << static_cast<int>(100 * managed_utilization)
954      << "%.";
955}
956
957bool Heap::IsValidObjectAddress(const mirror::Object* obj) const {
958  // Note: we deliberately don't take the lock here, and mustn't test anything that would require
959  // taking the lock.
960  if (obj == nullptr) {
961    return true;
962  }
963  return IsAligned<kObjectAlignment>(obj) && FindSpaceFromObject(obj, true) != nullptr;
964}
965
966bool Heap::IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const {
967  return FindContinuousSpaceFromObject(obj, true) != nullptr;
968}
969
970bool Heap::IsValidContinuousSpaceObjectAddress(const mirror::Object* obj) const {
971  if (obj == nullptr || !IsAligned<kObjectAlignment>(obj)) {
972    return false;
973  }
974  for (const auto& space : continuous_spaces_) {
975    if (space->HasAddress(obj)) {
976      return true;
977    }
978  }
979  return false;
980}
981
982bool Heap::IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack,
983                              bool search_live_stack, bool sorted) {
984  if (UNLIKELY(!IsAligned<kObjectAlignment>(obj))) {
985    return false;
986  }
987  if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj)) {
988    mirror::Class* klass = obj->GetClass<kVerifyNone>();
989    if (obj == klass) {
990      // This case happens for java.lang.Class.
991      return true;
992    }
993    return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
994  } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj)) {
995    // If we are in the allocated region of the temp space, then we are probably live (e.g. during
996    // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
997    return temp_space_->Contains(obj);
998  }
999  space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
1000  space::DiscontinuousSpace* d_space = NULL;
1001  if (c_space != nullptr) {
1002    if (c_space->GetLiveBitmap()->Test(obj)) {
1003      return true;
1004    }
1005  } else {
1006    d_space = FindDiscontinuousSpaceFromObject(obj, true);
1007    if (d_space != nullptr) {
1008      if (d_space->GetLiveObjects()->Test(obj)) {
1009        return true;
1010      }
1011    }
1012  }
1013  // This is covering the allocation/live stack swapping that is done without mutators suspended.
1014  for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
1015    if (i > 0) {
1016      NanoSleep(MsToNs(10));
1017    }
1018    if (search_allocation_stack) {
1019      if (sorted) {
1020        if (allocation_stack_->ContainsSorted(const_cast<mirror::Object*>(obj))) {
1021          return true;
1022        }
1023      } else if (allocation_stack_->Contains(const_cast<mirror::Object*>(obj))) {
1024        return true;
1025      }
1026    }
1027
1028    if (search_live_stack) {
1029      if (sorted) {
1030        if (live_stack_->ContainsSorted(const_cast<mirror::Object*>(obj))) {
1031          return true;
1032        }
1033      } else if (live_stack_->Contains(const_cast<mirror::Object*>(obj))) {
1034        return true;
1035      }
1036    }
1037  }
1038  // We need to check the bitmaps again since there is a race where we mark something as live and
1039  // then clear the stack containing it.
1040  if (c_space != nullptr) {
1041    if (c_space->GetLiveBitmap()->Test(obj)) {
1042      return true;
1043    }
1044  } else {
1045    d_space = FindDiscontinuousSpaceFromObject(obj, true);
1046    if (d_space != nullptr && d_space->GetLiveObjects()->Test(obj)) {
1047      return true;
1048    }
1049  }
1050  return false;
1051}
1052
1053void Heap::DumpSpaces(std::ostream& stream) {
1054  for (const auto& space : continuous_spaces_) {
1055    accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
1056    accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1057    stream << space << " " << *space << "\n";
1058    if (live_bitmap != nullptr) {
1059      stream << live_bitmap << " " << *live_bitmap << "\n";
1060    }
1061    if (mark_bitmap != nullptr) {
1062      stream << mark_bitmap << " " << *mark_bitmap << "\n";
1063    }
1064  }
1065  for (const auto& space : discontinuous_spaces_) {
1066    stream << space << " " << *space << "\n";
1067  }
1068}
1069
1070void Heap::VerifyObjectBody(mirror::Object* obj) {
1071  if (this == nullptr && verify_object_mode_ == kVerifyObjectModeDisabled) {
1072    return;
1073  }
1074  // Ignore early dawn of the universe verifications.
1075  if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_.Load()) < 10 * KB)) {
1076    return;
1077  }
1078  CHECK(IsAligned<kObjectAlignment>(obj)) << "Object isn't aligned: " << obj;
1079  mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(
1080      mirror::Object::ClassOffset(), false);
1081  CHECK(c != nullptr) << "Null class in object " << obj;
1082  CHECK(IsAligned<kObjectAlignment>(c)) << "Class " << c << " not aligned in object " << obj;
1083  CHECK(VerifyClassClass(c));
1084
1085  if (verify_object_mode_ > kVerifyObjectModeFast) {
1086    // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
1087    if (!IsLiveObjectLocked(obj)) {
1088      DumpSpaces();
1089      LOG(FATAL) << "Object is dead: " << obj;
1090    }
1091  }
1092}
1093
1094void Heap::VerificationCallback(mirror::Object* obj, void* arg) {
1095  reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj);
1096}
1097
1098void Heap::VerifyHeap() {
1099  ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1100  GetLiveBitmap()->Walk(Heap::VerificationCallback, this);
1101}
1102
1103void Heap::RecordFree(ssize_t freed_objects, ssize_t freed_bytes) {
1104  // Use signed comparison since freed bytes can be negative when background compaction foreground
1105  // transitions occurs. This is caused by the moving objects from a bump pointer space to a
1106  // free list backed space typically increasing memory footprint due to padding and binning.
1107  DCHECK_LE(freed_bytes, static_cast<ssize_t>(num_bytes_allocated_.Load()));
1108  DCHECK_GE(freed_objects, 0);
1109  num_bytes_allocated_.FetchAndSub(freed_bytes);
1110  if (Runtime::Current()->HasStatsEnabled()) {
1111    RuntimeStats* thread_stats = Thread::Current()->GetStats();
1112    thread_stats->freed_objects += freed_objects;
1113    thread_stats->freed_bytes += freed_bytes;
1114    // TODO: Do this concurrently.
1115    RuntimeStats* global_stats = Runtime::Current()->GetStats();
1116    global_stats->freed_objects += freed_objects;
1117    global_stats->freed_bytes += freed_bytes;
1118  }
1119}
1120
1121mirror::Object* Heap::AllocateInternalWithGc(Thread* self, AllocatorType allocator,
1122                                             size_t alloc_size, size_t* bytes_allocated,
1123                                             size_t* usable_size,
1124                                             mirror::Class** klass) {
1125  mirror::Object* ptr = nullptr;
1126  bool was_default_allocator = allocator == GetCurrentAllocator();
1127  DCHECK(klass != nullptr);
1128  SirtRef<mirror::Class> sirt_klass(self, *klass);
1129  // The allocation failed. If the GC is running, block until it completes, and then retry the
1130  // allocation.
1131  collector::GcType last_gc = WaitForGcToComplete(self);
1132  if (last_gc != collector::kGcTypeNone) {
1133    // If we were the default allocator but the allocator changed while we were suspended,
1134    // abort the allocation.
1135    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1136      *klass = sirt_klass.get();
1137      return nullptr;
1138    }
1139    // A GC was in progress and we blocked, retry allocation now that memory has been freed.
1140    ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated, usable_size);
1141  }
1142
1143  // Loop through our different Gc types and try to Gc until we get enough free memory.
1144  for (collector::GcType gc_type : gc_plan_) {
1145    if (ptr != nullptr) {
1146      break;
1147    }
1148    // Attempt to run the collector, if we succeed, re-try the allocation.
1149    bool gc_ran =
1150        CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1151    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1152      *klass = sirt_klass.get();
1153      return nullptr;
1154    }
1155    if (gc_ran) {
1156      // Did we free sufficient memory for the allocation to succeed?
1157      ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated, usable_size);
1158    }
1159  }
1160  // Allocations have failed after GCs;  this is an exceptional state.
1161  if (ptr == nullptr) {
1162    // Try harder, growing the heap if necessary.
1163    ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size);
1164  }
1165  if (ptr == nullptr) {
1166    // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
1167    // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
1168    // VM spec requires that all SoftReferences have been collected and cleared before throwing
1169    // OOME.
1170    VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
1171             << " allocation";
1172    // TODO: Run finalization, but this may cause more allocations to occur.
1173    // We don't need a WaitForGcToComplete here either.
1174    DCHECK(!gc_plan_.empty());
1175    CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true);
1176    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1177      *klass = sirt_klass.get();
1178      return nullptr;
1179    }
1180    ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size);
1181    if (ptr == nullptr) {
1182      ThrowOutOfMemoryError(self, alloc_size, false);
1183    }
1184  }
1185  *klass = sirt_klass.get();
1186  return ptr;
1187}
1188
1189void Heap::SetTargetHeapUtilization(float target) {
1190  DCHECK_GT(target, 0.0f);  // asserted in Java code
1191  DCHECK_LT(target, 1.0f);
1192  target_utilization_ = target;
1193}
1194
1195size_t Heap::GetObjectsAllocated() const {
1196  size_t total = 0;
1197  for (space::AllocSpace* space : alloc_spaces_) {
1198    total += space->GetObjectsAllocated();
1199  }
1200  return total;
1201}
1202
1203size_t Heap::GetObjectsAllocatedEver() const {
1204  return GetObjectsFreedEver() + GetObjectsAllocated();
1205}
1206
1207size_t Heap::GetBytesAllocatedEver() const {
1208  return GetBytesFreedEver() + GetBytesAllocated();
1209}
1210
1211class InstanceCounter {
1212 public:
1213  InstanceCounter(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, uint64_t* counts)
1214      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1215      : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) {
1216  }
1217  static void Callback(mirror::Object* obj, void* arg)
1218      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1219    InstanceCounter* instance_counter = reinterpret_cast<InstanceCounter*>(arg);
1220    mirror::Class* instance_class = obj->GetClass();
1221    CHECK(instance_class != nullptr);
1222    for (size_t i = 0; i < instance_counter->classes_.size(); ++i) {
1223      if (instance_counter->use_is_assignable_from_) {
1224        if (instance_counter->classes_[i]->IsAssignableFrom(instance_class)) {
1225          ++instance_counter->counts_[i];
1226        }
1227      } else if (instance_class == instance_counter->classes_[i]) {
1228        ++instance_counter->counts_[i];
1229      }
1230    }
1231  }
1232
1233 private:
1234  const std::vector<mirror::Class*>& classes_;
1235  bool use_is_assignable_from_;
1236  uint64_t* const counts_;
1237  DISALLOW_COPY_AND_ASSIGN(InstanceCounter);
1238};
1239
1240void Heap::CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
1241                          uint64_t* counts) {
1242  // Can't do any GC in this function since this may move classes.
1243  Thread* self = Thread::Current();
1244  auto* old_cause = self->StartAssertNoThreadSuspension("CountInstances");
1245  InstanceCounter counter(classes, use_is_assignable_from, counts);
1246  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1247  VisitObjects(InstanceCounter::Callback, &counter);
1248  self->EndAssertNoThreadSuspension(old_cause);
1249}
1250
1251class InstanceCollector {
1252 public:
1253  InstanceCollector(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
1254      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1255      : class_(c), max_count_(max_count), instances_(instances) {
1256  }
1257  static void Callback(mirror::Object* obj, void* arg)
1258      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1259    DCHECK(arg != nullptr);
1260    InstanceCollector* instance_collector = reinterpret_cast<InstanceCollector*>(arg);
1261    mirror::Class* instance_class = obj->GetClass();
1262    if (instance_class == instance_collector->class_) {
1263      if (instance_collector->max_count_ == 0 ||
1264          instance_collector->instances_.size() < instance_collector->max_count_) {
1265        instance_collector->instances_.push_back(obj);
1266      }
1267    }
1268  }
1269
1270 private:
1271  mirror::Class* class_;
1272  uint32_t max_count_;
1273  std::vector<mirror::Object*>& instances_;
1274  DISALLOW_COPY_AND_ASSIGN(InstanceCollector);
1275};
1276
1277void Heap::GetInstances(mirror::Class* c, int32_t max_count,
1278                        std::vector<mirror::Object*>& instances) {
1279  // Can't do any GC in this function since this may move classes.
1280  Thread* self = Thread::Current();
1281  auto* old_cause = self->StartAssertNoThreadSuspension("GetInstances");
1282  InstanceCollector collector(c, max_count, instances);
1283  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1284  VisitObjects(&InstanceCollector::Callback, &collector);
1285  self->EndAssertNoThreadSuspension(old_cause);
1286}
1287
1288class ReferringObjectsFinder {
1289 public:
1290  ReferringObjectsFinder(mirror::Object* object, int32_t max_count,
1291                         std::vector<mirror::Object*>& referring_objects)
1292      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1293      : object_(object), max_count_(max_count), referring_objects_(referring_objects) {
1294  }
1295
1296  static void Callback(mirror::Object* obj, void* arg)
1297      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1298    reinterpret_cast<ReferringObjectsFinder*>(arg)->operator()(obj);
1299  }
1300
1301  // For bitmap Visit.
1302  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
1303  // annotalysis on visitors.
1304  void operator()(const mirror::Object* o) const NO_THREAD_SAFETY_ANALYSIS {
1305    collector::MarkSweep::VisitObjectReferences(const_cast<mirror::Object*>(o), *this, true);
1306  }
1307
1308  // For MarkSweep::VisitObjectReferences.
1309  void operator()(mirror::Object* referrer, mirror::Object* object,
1310                  const MemberOffset&, bool) const {
1311    if (object == object_ && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
1312      referring_objects_.push_back(referrer);
1313    }
1314  }
1315
1316 private:
1317  mirror::Object* object_;
1318  uint32_t max_count_;
1319  std::vector<mirror::Object*>& referring_objects_;
1320  DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
1321};
1322
1323void Heap::GetReferringObjects(mirror::Object* o, int32_t max_count,
1324                               std::vector<mirror::Object*>& referring_objects) {
1325  // Can't do any GC in this function since this may move the object o.
1326  Thread* self = Thread::Current();
1327  auto* old_cause = self->StartAssertNoThreadSuspension("GetReferringObjects");
1328  ReferringObjectsFinder finder(o, max_count, referring_objects);
1329  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1330  VisitObjects(&ReferringObjectsFinder::Callback, &finder);
1331  self->EndAssertNoThreadSuspension(old_cause);
1332}
1333
1334void Heap::CollectGarbage(bool clear_soft_references) {
1335  // Even if we waited for a GC we still need to do another GC since weaks allocated during the
1336  // last GC will not have necessarily been cleared.
1337  CollectGarbageInternal(gc_plan_.back(), kGcCauseExplicit, clear_soft_references);
1338}
1339
1340void Heap::TransitionCollector(CollectorType collector_type) {
1341  if (collector_type == collector_type_) {
1342    return;
1343  }
1344  VLOG(heap) << "TransitionCollector: " << static_cast<int>(collector_type_)
1345             << " -> " << static_cast<int>(collector_type);
1346  uint64_t start_time = NanoTime();
1347  uint32_t before_size  = GetTotalMemory();
1348  uint32_t before_allocated = num_bytes_allocated_.Load();
1349  ThreadList* tl = Runtime::Current()->GetThreadList();
1350  Thread* self = Thread::Current();
1351  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1352  Locks::mutator_lock_->AssertNotHeld(self);
1353  const bool copying_transition =
1354      IsCompactingGC(background_collector_type_) || IsCompactingGC(post_zygote_collector_type_);
1355  // Busy wait until we can GC (StartGC can fail if we have a non-zero
1356  // compacting_gc_disable_count_, this should rarely occurs).
1357  for (;;) {
1358    {
1359      ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1360      MutexLock mu(self, *gc_complete_lock_);
1361      // Ensure there is only one GC at a time.
1362      WaitForGcToCompleteLocked(self);
1363      // GC can be disabled if someone has a used GetPrimitiveArrayCritical but not yet released.
1364      if (!copying_transition || disable_moving_gc_count_ == 0) {
1365        // TODO: Not hard code in semi-space collector?
1366        collector_type_running_ = copying_transition ? kCollectorTypeSS : collector_type;
1367        break;
1368      }
1369    }
1370    usleep(1000);
1371  }
1372  tl->SuspendAll();
1373  PreGcRosAllocVerification(&semi_space_collector_->GetTimings());
1374  switch (collector_type) {
1375    case kCollectorTypeSS:
1376      // Fall-through.
1377    case kCollectorTypeGSS: {
1378      mprotect(temp_space_->Begin(), temp_space_->Capacity(), PROT_READ | PROT_WRITE);
1379      CHECK(main_space_ != nullptr);
1380      Compact(temp_space_, main_space_);
1381      DCHECK(allocator_mem_map_.get() == nullptr);
1382      allocator_mem_map_.reset(main_space_->ReleaseMemMap());
1383      madvise(main_space_->Begin(), main_space_->Size(), MADV_DONTNEED);
1384      // RemoveSpace does not delete the removed space.
1385      space::Space* old_space = main_space_;
1386      RemoveSpace(old_space);
1387      delete old_space;
1388      break;
1389    }
1390    case kCollectorTypeMS:
1391      // Fall through.
1392    case kCollectorTypeCMS: {
1393      if (IsCompactingGC(collector_type_)) {
1394        // TODO: Use mem-map from temp space?
1395        MemMap* mem_map = allocator_mem_map_.release();
1396        CHECK(mem_map != nullptr);
1397        size_t starting_size = kDefaultStartingSize;
1398        size_t initial_size = kDefaultInitialSize;
1399        mprotect(mem_map->Begin(), initial_size, PROT_READ | PROT_WRITE);
1400        CHECK(main_space_ == nullptr);
1401        if (kUseRosAlloc) {
1402          main_space_ =
1403              space::RosAllocSpace::CreateFromMemMap(mem_map, "alloc space", starting_size,
1404                                                     initial_size, mem_map->Size(),
1405                                                     mem_map->Size(), low_memory_mode_);
1406        } else {
1407          main_space_ =
1408              space::DlMallocSpace::CreateFromMemMap(mem_map, "alloc space", starting_size,
1409                                                     initial_size, mem_map->Size(),
1410                                                     mem_map->Size());
1411        }
1412        main_space_->SetFootprintLimit(main_space_->Capacity());
1413        AddSpace(main_space_);
1414        Compact(main_space_, bump_pointer_space_);
1415      }
1416      break;
1417    }
1418    default: {
1419      LOG(FATAL) << "Attempted to transition to invalid collector type";
1420      break;
1421    }
1422  }
1423  ChangeCollector(collector_type);
1424  PostGcRosAllocVerification(&semi_space_collector_->GetTimings());
1425  tl->ResumeAll();
1426  // Can't call into java code with all threads suspended.
1427  EnqueueClearedReferences();
1428  uint64_t duration = NanoTime() - start_time;
1429  GrowForUtilization(collector::kGcTypeFull, duration);
1430  FinishGC(self, collector::kGcTypeFull);
1431  int32_t after_size = GetTotalMemory();
1432  int32_t delta_size = before_size - after_size;
1433  int32_t after_allocated = num_bytes_allocated_.Load();
1434  int32_t delta_allocated = before_allocated - after_allocated;
1435  const std::string saved_bytes_str =
1436      delta_size < 0 ? "-" + PrettySize(-delta_size) : PrettySize(delta_size);
1437  LOG(INFO) << "Heap transition to " << process_state_ << " took "
1438      << PrettyDuration(duration) << " " << PrettySize(before_size) << "->"
1439      << PrettySize(after_size) << " from " << PrettySize(delta_allocated) << " to "
1440      << PrettySize(delta_size) << " saved";
1441}
1442
1443void Heap::ChangeCollector(CollectorType collector_type) {
1444  // TODO: Only do this with all mutators suspended to avoid races.
1445  if (collector_type != collector_type_) {
1446    collector_type_ = collector_type;
1447    gc_plan_.clear();
1448    switch (collector_type_) {
1449      case kCollectorTypeSS:  // Fall-through.
1450      case kCollectorTypeGSS: {
1451        gc_plan_.push_back(collector::kGcTypeFull);
1452        if (use_tlab_) {
1453          ChangeAllocator(kAllocatorTypeTLAB);
1454        } else {
1455          ChangeAllocator(kAllocatorTypeBumpPointer);
1456        }
1457        break;
1458      }
1459      case kCollectorTypeMS: {
1460        gc_plan_.push_back(collector::kGcTypeSticky);
1461        gc_plan_.push_back(collector::kGcTypePartial);
1462        gc_plan_.push_back(collector::kGcTypeFull);
1463        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1464        break;
1465      }
1466      case kCollectorTypeCMS: {
1467        gc_plan_.push_back(collector::kGcTypeSticky);
1468        gc_plan_.push_back(collector::kGcTypePartial);
1469        gc_plan_.push_back(collector::kGcTypeFull);
1470        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1471        break;
1472      }
1473      default: {
1474        LOG(FATAL) << "Unimplemented";
1475      }
1476    }
1477    if (IsGcConcurrent()) {
1478      concurrent_start_bytes_ =
1479          std::max(max_allowed_footprint_, kMinConcurrentRemainingBytes) - kMinConcurrentRemainingBytes;
1480    } else {
1481      concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
1482    }
1483  }
1484}
1485
1486// Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
1487class ZygoteCompactingCollector FINAL : public collector::SemiSpace {
1488 public:
1489  explicit ZygoteCompactingCollector(gc::Heap* heap) : SemiSpace(heap, false, "zygote collector"),
1490      bin_live_bitmap_(nullptr), bin_mark_bitmap_(nullptr) {
1491  }
1492
1493  void BuildBins(space::ContinuousSpace* space) {
1494    bin_live_bitmap_ = space->GetLiveBitmap();
1495    bin_mark_bitmap_ = space->GetMarkBitmap();
1496    BinContext context;
1497    context.prev_ = reinterpret_cast<uintptr_t>(space->Begin());
1498    context.collector_ = this;
1499    WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1500    // Note: This requires traversing the space in increasing order of object addresses.
1501    bin_live_bitmap_->Walk(Callback, reinterpret_cast<void*>(&context));
1502    // Add the last bin which spans after the last object to the end of the space.
1503    AddBin(reinterpret_cast<uintptr_t>(space->End()) - context.prev_, context.prev_);
1504  }
1505
1506 private:
1507  struct BinContext {
1508    uintptr_t prev_;  // The end of the previous object.
1509    ZygoteCompactingCollector* collector_;
1510  };
1511  // Maps from bin sizes to locations.
1512  std::multimap<size_t, uintptr_t> bins_;
1513  // Live bitmap of the space which contains the bins.
1514  accounting::SpaceBitmap* bin_live_bitmap_;
1515  // Mark bitmap of the space which contains the bins.
1516  accounting::SpaceBitmap* bin_mark_bitmap_;
1517
1518  static void Callback(mirror::Object* obj, void* arg)
1519      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1520    DCHECK(arg != nullptr);
1521    BinContext* context = reinterpret_cast<BinContext*>(arg);
1522    ZygoteCompactingCollector* collector = context->collector_;
1523    uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
1524    size_t bin_size = object_addr - context->prev_;
1525    // Add the bin consisting of the end of the previous object to the start of the current object.
1526    collector->AddBin(bin_size, context->prev_);
1527    context->prev_ = object_addr + RoundUp(obj->SizeOf(), kObjectAlignment);
1528  }
1529
1530  void AddBin(size_t size, uintptr_t position) {
1531    if (size != 0) {
1532      bins_.insert(std::make_pair(size, position));
1533    }
1534  }
1535
1536  virtual bool ShouldSweepSpace(space::ContinuousSpace* space) const {
1537    // Don't sweep any spaces since we probably blasted the internal accounting of the free list
1538    // allocator.
1539    return false;
1540  }
1541
1542  virtual mirror::Object* MarkNonForwardedObject(mirror::Object* obj)
1543      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
1544    size_t object_size = RoundUp(obj->SizeOf(), kObjectAlignment);
1545    mirror::Object* forward_address;
1546    // Find the smallest bin which we can move obj in.
1547    auto it = bins_.lower_bound(object_size);
1548    if (it == bins_.end()) {
1549      // No available space in the bins, place it in the target space instead (grows the zygote
1550      // space).
1551      size_t bytes_allocated;
1552      forward_address = to_space_->Alloc(self_, object_size, &bytes_allocated, nullptr);
1553      if (to_space_live_bitmap_ != nullptr) {
1554        to_space_live_bitmap_->Set(forward_address);
1555      } else {
1556        GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
1557        GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
1558      }
1559    } else {
1560      size_t size = it->first;
1561      uintptr_t pos = it->second;
1562      bins_.erase(it);  // Erase the old bin which we replace with the new smaller bin.
1563      forward_address = reinterpret_cast<mirror::Object*>(pos);
1564      // Set the live and mark bits so that sweeping system weaks works properly.
1565      bin_live_bitmap_->Set(forward_address);
1566      bin_mark_bitmap_->Set(forward_address);
1567      DCHECK_GE(size, object_size);
1568      AddBin(size - object_size, pos + object_size);  // Add a new bin with the remaining space.
1569    }
1570    // Copy the object over to its new location.
1571    memcpy(reinterpret_cast<void*>(forward_address), obj, object_size);
1572    if (kUseBrooksPointer) {
1573      obj->AssertSelfBrooksPointer();
1574      DCHECK_EQ(forward_address->GetBrooksPointer(), obj);
1575      forward_address->SetBrooksPointer(forward_address);
1576      forward_address->AssertSelfBrooksPointer();
1577    }
1578    return forward_address;
1579  }
1580};
1581
1582void Heap::UnBindBitmaps() {
1583  for (const auto& space : GetContinuousSpaces()) {
1584    if (space->IsContinuousMemMapAllocSpace()) {
1585      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1586      if (alloc_space->HasBoundBitmaps()) {
1587        alloc_space->UnBindBitmaps();
1588      }
1589    }
1590  }
1591}
1592
1593void Heap::PreZygoteFork() {
1594  CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
1595  static Mutex zygote_creation_lock_("zygote creation lock", kZygoteCreationLock);
1596  Thread* self = Thread::Current();
1597  MutexLock mu(self, zygote_creation_lock_);
1598  // Try to see if we have any Zygote spaces.
1599  if (have_zygote_space_) {
1600    return;
1601  }
1602  VLOG(heap) << "Starting PreZygoteFork";
1603  // Trim the pages at the end of the non moving space.
1604  non_moving_space_->Trim();
1605  non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1606  // Change the collector to the post zygote one.
1607  ChangeCollector(post_zygote_collector_type_);
1608  // TODO: Delete bump_pointer_space_ and temp_pointer_space_?
1609  if (semi_space_collector_ != nullptr) {
1610    // Temporarily disable rosalloc verification because the zygote
1611    // compaction will mess up the rosalloc internal metadata.
1612    ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
1613    ZygoteCompactingCollector zygote_collector(this);
1614    zygote_collector.BuildBins(non_moving_space_);
1615    // Create a new bump pointer space which we will compact into.
1616    space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
1617                                         non_moving_space_->Limit());
1618    // Compact the bump pointer space to a new zygote bump pointer space.
1619    temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1620    zygote_collector.SetFromSpace(bump_pointer_space_);
1621    zygote_collector.SetToSpace(&target_space);
1622    zygote_collector.Run(kGcCauseCollectorTransition, false);
1623    CHECK(temp_space_->IsEmpty());
1624    total_objects_freed_ever_ += semi_space_collector_->GetFreedObjects();
1625    total_bytes_freed_ever_ += semi_space_collector_->GetFreedBytes();
1626    // Update the end and write out image.
1627    non_moving_space_->SetEnd(target_space.End());
1628    non_moving_space_->SetLimit(target_space.Limit());
1629    VLOG(heap) << "Zygote size " << non_moving_space_->Size() << " bytes";
1630  }
1631  // Save the old space so that we can remove it after we complete creating the zygote space.
1632  space::MallocSpace* old_alloc_space = non_moving_space_;
1633  // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
1634  // the remaining available space.
1635  // Remove the old space before creating the zygote space since creating the zygote space sets
1636  // the old alloc space's bitmaps to nullptr.
1637  RemoveSpace(old_alloc_space);
1638  if (collector::SemiSpace::kUseRememberedSet) {
1639    // Sanity bound check.
1640    FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
1641    // Remove the remembered set for the now zygote space (the old
1642    // non-moving space). Note now that we have compacted objects into
1643    // the zygote space, the data in the remembered set is no longer
1644    // needed. The zygote space will instead have a mod-union table
1645    // from this point on.
1646    RemoveRememberedSet(old_alloc_space);
1647  }
1648  space::ZygoteSpace* zygote_space = old_alloc_space->CreateZygoteSpace("alloc space",
1649                                                                        low_memory_mode_,
1650                                                                        &main_space_);
1651  delete old_alloc_space;
1652  CHECK(zygote_space != nullptr) << "Failed creating zygote space";
1653  AddSpace(zygote_space, false);
1654  CHECK(main_space_ != nullptr);
1655  if (main_space_->IsRosAllocSpace()) {
1656    rosalloc_space_ = main_space_->AsRosAllocSpace();
1657  } else if (main_space_->IsDlMallocSpace()) {
1658    dlmalloc_space_ = main_space_->AsDlMallocSpace();
1659  }
1660  main_space_->SetFootprintLimit(main_space_->Capacity());
1661  AddSpace(main_space_);
1662  have_zygote_space_ = true;
1663  // Enable large object space allocations.
1664  large_object_threshold_ = kDefaultLargeObjectThreshold;
1665  // Create the zygote space mod union table.
1666  accounting::ModUnionTable* mod_union_table =
1667      new accounting::ModUnionTableCardCache("zygote space mod-union table", this, zygote_space);
1668  CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
1669  AddModUnionTable(mod_union_table);
1670  if (collector::SemiSpace::kUseRememberedSet) {
1671    // Add a new remembered set for the new main space.
1672    accounting::RememberedSet* main_space_rem_set =
1673        new accounting::RememberedSet("Main space remembered set", this, main_space_);
1674    CHECK(main_space_rem_set != nullptr) << "Failed to create main space remembered set";
1675    AddRememberedSet(main_space_rem_set);
1676  }
1677  // Can't use RosAlloc for non moving space due to thread local buffers.
1678  // TODO: Non limited space for non-movable objects?
1679  MemMap* mem_map = post_zygote_non_moving_space_mem_map_.release();
1680  space::MallocSpace* new_non_moving_space =
1681      space::DlMallocSpace::CreateFromMemMap(mem_map, "Non moving dlmalloc space", kPageSize,
1682                                             2 * MB, mem_map->Size(), mem_map->Size());
1683  AddSpace(new_non_moving_space, false);
1684  CHECK(new_non_moving_space != nullptr) << "Failed to create new non-moving space";
1685  new_non_moving_space->SetFootprintLimit(new_non_moving_space->Capacity());
1686  non_moving_space_ = new_non_moving_space;
1687  if (collector::SemiSpace::kUseRememberedSet) {
1688    // Add a new remembered set for the post-zygote non-moving space.
1689    accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
1690        new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
1691                                      non_moving_space_);
1692    CHECK(post_zygote_non_moving_space_rem_set != nullptr)
1693        << "Failed to create post-zygote non-moving space remembered set";
1694    AddRememberedSet(post_zygote_non_moving_space_rem_set);
1695  }
1696}
1697
1698void Heap::FlushAllocStack() {
1699  MarkAllocStackAsLive(allocation_stack_.get());
1700  allocation_stack_->Reset();
1701}
1702
1703void Heap::MarkAllocStack(accounting::SpaceBitmap* bitmap1,
1704                          accounting::SpaceBitmap* bitmap2,
1705                          accounting::ObjectSet* large_objects,
1706                          accounting::ObjectStack* stack) {
1707  DCHECK(bitmap1 != nullptr);
1708  DCHECK(bitmap2 != nullptr);
1709  mirror::Object** limit = stack->End();
1710  for (mirror::Object** it = stack->Begin(); it != limit; ++it) {
1711    const mirror::Object* obj = *it;
1712    if (!kUseThreadLocalAllocationStack || obj != nullptr) {
1713      if (bitmap1->HasAddress(obj)) {
1714        bitmap1->Set(obj);
1715      } else if (bitmap2->HasAddress(obj)) {
1716        bitmap2->Set(obj);
1717      } else {
1718        large_objects->Set(obj);
1719      }
1720    }
1721  }
1722}
1723
1724void Heap::SwapSemiSpaces() {
1725  // Swap the spaces so we allocate into the space which we just evacuated.
1726  std::swap(bump_pointer_space_, temp_space_);
1727  bump_pointer_space_->Clear();
1728}
1729
1730void Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
1731                   space::ContinuousMemMapAllocSpace* source_space) {
1732  CHECK(kMovingCollector);
1733  CHECK_NE(target_space, source_space) << "In-place compaction currently unsupported";
1734  if (target_space != source_space) {
1735    semi_space_collector_->SetFromSpace(source_space);
1736    semi_space_collector_->SetToSpace(target_space);
1737    semi_space_collector_->Run(kGcCauseCollectorTransition, false);
1738  }
1739}
1740
1741collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type, GcCause gc_cause,
1742                                               bool clear_soft_references) {
1743  Thread* self = Thread::Current();
1744  Runtime* runtime = Runtime::Current();
1745  // If the heap can't run the GC, silently fail and return that no GC was run.
1746  switch (gc_type) {
1747    case collector::kGcTypePartial: {
1748      if (!have_zygote_space_) {
1749        return collector::kGcTypeNone;
1750      }
1751      break;
1752    }
1753    default: {
1754      // Other GC types don't have any special cases which makes them not runnable. The main case
1755      // here is full GC.
1756    }
1757  }
1758  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1759  Locks::mutator_lock_->AssertNotHeld(self);
1760  if (self->IsHandlingStackOverflow()) {
1761    LOG(WARNING) << "Performing GC on a thread that is handling a stack overflow.";
1762  }
1763  bool compacting_gc;
1764  {
1765    gc_complete_lock_->AssertNotHeld(self);
1766    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1767    MutexLock mu(self, *gc_complete_lock_);
1768    // Ensure there is only one GC at a time.
1769    WaitForGcToCompleteLocked(self);
1770    compacting_gc = IsCompactingGC(collector_type_);
1771    // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
1772    if (compacting_gc && disable_moving_gc_count_ != 0) {
1773      LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
1774      return collector::kGcTypeNone;
1775    }
1776    collector_type_running_ = collector_type_;
1777  }
1778
1779  if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
1780    ++runtime->GetStats()->gc_for_alloc_count;
1781    ++self->GetStats()->gc_for_alloc_count;
1782  }
1783  uint64_t gc_start_time_ns = NanoTime();
1784  uint64_t gc_start_size = GetBytesAllocated();
1785  // Approximate allocation rate in bytes / second.
1786  uint64_t ms_delta = NsToMs(gc_start_time_ns - last_gc_time_ns_);
1787  // Back to back GCs can cause 0 ms of wait time in between GC invocations.
1788  if (LIKELY(ms_delta != 0)) {
1789    allocation_rate_ = ((gc_start_size - last_gc_size_) * 1000) / ms_delta;
1790    VLOG(heap) << "Allocation rate: " << PrettySize(allocation_rate_) << "/s";
1791  }
1792
1793  DCHECK_LT(gc_type, collector::kGcTypeMax);
1794  DCHECK_NE(gc_type, collector::kGcTypeNone);
1795
1796  collector::GarbageCollector* collector = nullptr;
1797  // TODO: Clean this up.
1798  if (compacting_gc) {
1799    DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
1800           current_allocator_ == kAllocatorTypeTLAB);
1801    gc_type = semi_space_collector_->GetGcType();
1802    CHECK(temp_space_->IsEmpty());
1803    semi_space_collector_->SetFromSpace(bump_pointer_space_);
1804    semi_space_collector_->SetToSpace(temp_space_);
1805    temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1806    collector = semi_space_collector_;
1807    gc_type = collector::kGcTypeFull;
1808  } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
1809      current_allocator_ == kAllocatorTypeDlMalloc) {
1810    for (const auto& cur_collector : garbage_collectors_) {
1811      if (cur_collector->GetCollectorType() == collector_type_ &&
1812          cur_collector->GetGcType() == gc_type) {
1813        collector = cur_collector;
1814        break;
1815      }
1816    }
1817  } else {
1818    LOG(FATAL) << "Invalid current allocator " << current_allocator_;
1819  }
1820  CHECK(collector != nullptr)
1821      << "Could not find garbage collector with collector_type="
1822      << static_cast<size_t>(collector_type_) << " and gc_type=" << gc_type;
1823  ATRACE_BEGIN(StringPrintf("%s %s GC", PrettyCause(gc_cause), collector->GetName()).c_str());
1824  if (!clear_soft_references) {
1825    clear_soft_references = gc_type != collector::kGcTypeSticky;  // TODO: GSS?
1826  }
1827  collector->Run(gc_cause, clear_soft_references || Runtime::Current()->IsZygote());
1828  total_objects_freed_ever_ += collector->GetFreedObjects();
1829  total_bytes_freed_ever_ += collector->GetFreedBytes();
1830  RequestHeapTrim();
1831  // Enqueue cleared references.
1832  EnqueueClearedReferences();
1833  // Grow the heap so that we know when to perform the next GC.
1834  GrowForUtilization(gc_type, collector->GetDurationNs());
1835  if (CareAboutPauseTimes()) {
1836    const size_t duration = collector->GetDurationNs();
1837    std::vector<uint64_t> pauses = collector->GetPauseTimes();
1838    // GC for alloc pauses the allocating thread, so consider it as a pause.
1839    bool was_slow = duration > long_gc_log_threshold_ ||
1840        (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
1841    if (!was_slow) {
1842      for (uint64_t pause : pauses) {
1843        was_slow = was_slow || pause > long_pause_log_threshold_;
1844      }
1845    }
1846    if (was_slow) {
1847        const size_t percent_free = GetPercentFree();
1848        const size_t current_heap_size = GetBytesAllocated();
1849        const size_t total_memory = GetTotalMemory();
1850        std::ostringstream pause_string;
1851        for (size_t i = 0; i < pauses.size(); ++i) {
1852            pause_string << PrettyDuration((pauses[i] / 1000) * 1000)
1853                         << ((i != pauses.size() - 1) ? ", " : "");
1854        }
1855        LOG(INFO) << gc_cause << " " << collector->GetName()
1856                  << " GC freed "  <<  collector->GetFreedObjects() << "("
1857                  << PrettySize(collector->GetFreedBytes()) << ") AllocSpace objects, "
1858                  << collector->GetFreedLargeObjects() << "("
1859                  << PrettySize(collector->GetFreedLargeObjectBytes()) << ") LOS objects, "
1860                  << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
1861                  << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
1862                  << " total " << PrettyDuration((duration / 1000) * 1000);
1863        if (VLOG_IS_ON(heap)) {
1864            LOG(INFO) << Dumpable<TimingLogger>(collector->GetTimings());
1865        }
1866    }
1867  }
1868  FinishGC(self, gc_type);
1869  ATRACE_END();
1870
1871  // Inform DDMS that a GC completed.
1872  Dbg::GcDidFinish();
1873  return gc_type;
1874}
1875
1876void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
1877  MutexLock mu(self, *gc_complete_lock_);
1878  collector_type_running_ = kCollectorTypeNone;
1879  if (gc_type != collector::kGcTypeNone) {
1880    last_gc_type_ = gc_type;
1881  }
1882  // Wake anyone who may have been waiting for the GC to complete.
1883  gc_complete_cond_->Broadcast(self);
1884}
1885
1886static void RootMatchesObjectVisitor(mirror::Object** root, void* arg, uint32_t /*thread_id*/,
1887                                     RootType /*root_type*/) {
1888  mirror::Object* obj = reinterpret_cast<mirror::Object*>(arg);
1889  if (*root == obj) {
1890    LOG(INFO) << "Object " << obj << " is a root";
1891  }
1892}
1893
1894class ScanVisitor {
1895 public:
1896  void operator()(const mirror::Object* obj) const {
1897    LOG(ERROR) << "Would have rescanned object " << obj;
1898  }
1899};
1900
1901// Verify a reference from an object.
1902class VerifyReferenceVisitor {
1903 public:
1904  explicit VerifyReferenceVisitor(Heap* heap)
1905      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
1906      : heap_(heap), failed_(false) {}
1907
1908  bool Failed() const {
1909    return failed_;
1910  }
1911
1912  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for smarter
1913  // analysis on visitors.
1914  void operator()(mirror::Object* obj, mirror::Object* ref,
1915                  const MemberOffset& offset, bool /* is_static */) const
1916      NO_THREAD_SAFETY_ANALYSIS {
1917    if (ref == nullptr || IsLive(ref)) {
1918      // Verify that the reference is live.
1919      return;
1920    }
1921    if (!failed_) {
1922      // Print message on only on first failure to prevent spam.
1923      LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
1924      failed_ = true;
1925    }
1926    if (obj != nullptr) {
1927      accounting::CardTable* card_table = heap_->GetCardTable();
1928      accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
1929      accounting::ObjectStack* live_stack = heap_->live_stack_.get();
1930      byte* card_addr = card_table->CardFromAddr(obj);
1931      LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
1932                 << offset << "\n card value = " << static_cast<int>(*card_addr);
1933      if (heap_->IsValidObjectAddress(obj->GetClass())) {
1934        LOG(ERROR) << "Obj type " << PrettyTypeOf(obj);
1935      } else {
1936        LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
1937      }
1938
1939      // Attmept to find the class inside of the recently freed objects.
1940      space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
1941      if (ref_space != nullptr && ref_space->IsMallocSpace()) {
1942        space::MallocSpace* space = ref_space->AsMallocSpace();
1943        mirror::Class* ref_class = space->FindRecentFreedObject(ref);
1944        if (ref_class != nullptr) {
1945          LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
1946                     << PrettyClass(ref_class);
1947        } else {
1948          LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
1949        }
1950      }
1951
1952      if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
1953          ref->GetClass()->IsClass()) {
1954        LOG(ERROR) << "Ref type " << PrettyTypeOf(ref);
1955      } else {
1956        LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
1957                   << ") is not a valid heap address";
1958      }
1959
1960      card_table->CheckAddrIsInCardTable(reinterpret_cast<const byte*>(obj));
1961      void* cover_begin = card_table->AddrFromCard(card_addr);
1962      void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
1963          accounting::CardTable::kCardSize);
1964      LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
1965          << "-" << cover_end;
1966      accounting::SpaceBitmap* bitmap = heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
1967
1968      if (bitmap == nullptr) {
1969        LOG(ERROR) << "Object " << obj << " has no bitmap";
1970        if (!VerifyClassClass(obj->GetClass())) {
1971          LOG(ERROR) << "Object " << obj << " failed class verification!";
1972        }
1973      } else {
1974        // Print out how the object is live.
1975        if (bitmap->Test(obj)) {
1976          LOG(ERROR) << "Object " << obj << " found in live bitmap";
1977        }
1978        if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
1979          LOG(ERROR) << "Object " << obj << " found in allocation stack";
1980        }
1981        if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
1982          LOG(ERROR) << "Object " << obj << " found in live stack";
1983        }
1984        if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
1985          LOG(ERROR) << "Ref " << ref << " found in allocation stack";
1986        }
1987        if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
1988          LOG(ERROR) << "Ref " << ref << " found in live stack";
1989        }
1990        // Attempt to see if the card table missed the reference.
1991        ScanVisitor scan_visitor;
1992        byte* byte_cover_begin = reinterpret_cast<byte*>(card_table->AddrFromCard(card_addr));
1993        card_table->Scan(bitmap, byte_cover_begin,
1994                         byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
1995      }
1996
1997      // Search to see if any of the roots reference our object.
1998      void* arg = const_cast<void*>(reinterpret_cast<const void*>(obj));
1999      Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg);
2000
2001      // Search to see if any of the roots reference our reference.
2002      arg = const_cast<void*>(reinterpret_cast<const void*>(ref));
2003      Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg);
2004    } else {
2005      LOG(ERROR) << "Root " << ref << " is dead with type " << PrettyTypeOf(ref);
2006    }
2007  }
2008
2009  bool IsLive(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
2010    return heap_->IsLiveObjectLocked(obj, true, false, true);
2011  }
2012
2013  static void VerifyRoots(mirror::Object** root, void* arg, uint32_t /*thread_id*/,
2014                          RootType /*root_type*/) {
2015    VerifyReferenceVisitor* visitor = reinterpret_cast<VerifyReferenceVisitor*>(arg);
2016    (*visitor)(nullptr, *root, MemberOffset(0), true);
2017  }
2018
2019 private:
2020  Heap* const heap_;
2021  mutable bool failed_;
2022};
2023
2024// Verify all references within an object, for use with HeapBitmap::Visit.
2025class VerifyObjectVisitor {
2026 public:
2027  explicit VerifyObjectVisitor(Heap* heap) : heap_(heap), failed_(false) {}
2028
2029  void operator()(mirror::Object* obj) const
2030      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2031    // Note: we are verifying the references in obj but not obj itself, this is because obj must
2032    // be live or else how did we find it in the live bitmap?
2033    VerifyReferenceVisitor visitor(heap_);
2034    // The class doesn't count as a reference but we should verify it anyways.
2035    collector::MarkSweep::VisitObjectReferences(obj, visitor, true);
2036    if (obj->IsReferenceInstance()) {
2037      mirror::Reference* ref = obj->AsReference();
2038      visitor(obj, ref->GetReferent(), mirror::Reference::ReferentOffset(), false);
2039    }
2040    failed_ = failed_ || visitor.Failed();
2041  }
2042
2043  static void VisitCallback(mirror::Object* obj, void* arg)
2044      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2045    VerifyObjectVisitor* visitor = reinterpret_cast<VerifyObjectVisitor*>(arg);
2046    visitor->operator()(obj);
2047  }
2048
2049  bool Failed() const {
2050    return failed_;
2051  }
2052
2053 private:
2054  Heap* const heap_;
2055  mutable bool failed_;
2056};
2057
2058// Must do this with mutators suspended since we are directly accessing the allocation stacks.
2059bool Heap::VerifyHeapReferences() {
2060  Thread* self = Thread::Current();
2061  Locks::mutator_lock_->AssertExclusiveHeld(self);
2062  // Lets sort our allocation stacks so that we can efficiently binary search them.
2063  allocation_stack_->Sort();
2064  live_stack_->Sort();
2065  // Since we sorted the allocation stack content, need to revoke all
2066  // thread-local allocation stacks.
2067  RevokeAllThreadLocalAllocationStacks(self);
2068  VerifyObjectVisitor visitor(this);
2069  // Verify objects in the allocation stack since these will be objects which were:
2070  // 1. Allocated prior to the GC (pre GC verification).
2071  // 2. Allocated during the GC (pre sweep GC verification).
2072  // We don't want to verify the objects in the live stack since they themselves may be
2073  // pointing to dead objects if they are not reachable.
2074  VisitObjects(VerifyObjectVisitor::VisitCallback, &visitor);
2075  // Verify the roots:
2076  Runtime::Current()->VisitRoots(VerifyReferenceVisitor::VerifyRoots, &visitor);
2077  if (visitor.Failed()) {
2078    // Dump mod-union tables.
2079    for (const auto& table_pair : mod_union_tables_) {
2080      accounting::ModUnionTable* mod_union_table = table_pair.second;
2081      mod_union_table->Dump(LOG(ERROR) << mod_union_table->GetName() << ": ");
2082    }
2083    // Dump remembered sets.
2084    for (const auto& table_pair : remembered_sets_) {
2085      accounting::RememberedSet* remembered_set = table_pair.second;
2086      remembered_set->Dump(LOG(ERROR) << remembered_set->GetName() << ": ");
2087    }
2088    DumpSpaces();
2089    return false;
2090  }
2091  return true;
2092}
2093
2094class VerifyReferenceCardVisitor {
2095 public:
2096  VerifyReferenceCardVisitor(Heap* heap, bool* failed)
2097      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_,
2098                            Locks::heap_bitmap_lock_)
2099      : heap_(heap), failed_(failed) {
2100  }
2101
2102  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
2103  // annotalysis on visitors.
2104  void operator()(mirror::Object* obj, mirror::Object* ref, const MemberOffset& offset,
2105                  bool is_static) const NO_THREAD_SAFETY_ANALYSIS {
2106    // Filter out class references since changing an object's class does not mark the card as dirty.
2107    // Also handles large objects, since the only reference they hold is a class reference.
2108    if (ref != NULL && !ref->IsClass()) {
2109      accounting::CardTable* card_table = heap_->GetCardTable();
2110      // If the object is not dirty and it is referencing something in the live stack other than
2111      // class, then it must be on a dirty card.
2112      if (!card_table->AddrIsInCardTable(obj)) {
2113        LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
2114        *failed_ = true;
2115      } else if (!card_table->IsDirty(obj)) {
2116        // TODO: Check mod-union tables.
2117        // Card should be either kCardDirty if it got re-dirtied after we aged it, or
2118        // kCardDirty - 1 if it didnt get touched since we aged it.
2119        accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2120        if (live_stack->ContainsSorted(const_cast<mirror::Object*>(ref))) {
2121          if (live_stack->ContainsSorted(const_cast<mirror::Object*>(obj))) {
2122            LOG(ERROR) << "Object " << obj << " found in live stack";
2123          }
2124          if (heap_->GetLiveBitmap()->Test(obj)) {
2125            LOG(ERROR) << "Object " << obj << " found in live bitmap";
2126          }
2127          LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj)
2128                    << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack";
2129
2130          // Print which field of the object is dead.
2131          if (!obj->IsObjectArray()) {
2132            mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass();
2133            CHECK(klass != NULL);
2134            mirror::ObjectArray<mirror::ArtField>* fields = is_static ? klass->GetSFields()
2135                                                                      : klass->GetIFields();
2136            CHECK(fields != NULL);
2137            for (int32_t i = 0; i < fields->GetLength(); ++i) {
2138              mirror::ArtField* cur = fields->Get(i);
2139              if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
2140                LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
2141                          << PrettyField(cur);
2142                break;
2143              }
2144            }
2145          } else {
2146            mirror::ObjectArray<mirror::Object>* object_array =
2147                obj->AsObjectArray<mirror::Object>();
2148            for (int32_t i = 0; i < object_array->GetLength(); ++i) {
2149              if (object_array->Get(i) == ref) {
2150                LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
2151              }
2152            }
2153          }
2154
2155          *failed_ = true;
2156        }
2157      }
2158    }
2159  }
2160
2161 private:
2162  Heap* const heap_;
2163  bool* const failed_;
2164};
2165
2166class VerifyLiveStackReferences {
2167 public:
2168  explicit VerifyLiveStackReferences(Heap* heap)
2169      : heap_(heap),
2170        failed_(false) {}
2171
2172  void operator()(mirror::Object* obj) const
2173      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2174    VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
2175    collector::MarkSweep::VisitObjectReferences(const_cast<mirror::Object*>(obj), visitor, true);
2176  }
2177
2178  bool Failed() const {
2179    return failed_;
2180  }
2181
2182 private:
2183  Heap* const heap_;
2184  bool failed_;
2185};
2186
2187bool Heap::VerifyMissingCardMarks() {
2188  Thread* self = Thread::Current();
2189  Locks::mutator_lock_->AssertExclusiveHeld(self);
2190
2191  // We need to sort the live stack since we binary search it.
2192  live_stack_->Sort();
2193  // Since we sorted the allocation stack content, need to revoke all
2194  // thread-local allocation stacks.
2195  RevokeAllThreadLocalAllocationStacks(self);
2196  VerifyLiveStackReferences visitor(this);
2197  GetLiveBitmap()->Visit(visitor);
2198
2199  // We can verify objects in the live stack since none of these should reference dead objects.
2200  for (mirror::Object** it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
2201    if (!kUseThreadLocalAllocationStack || *it != nullptr) {
2202      visitor(*it);
2203    }
2204  }
2205
2206  if (visitor.Failed()) {
2207    DumpSpaces();
2208    return false;
2209  }
2210  return true;
2211}
2212
2213void Heap::SwapStacks(Thread* self) {
2214  if (kUseThreadLocalAllocationStack) {
2215    live_stack_->AssertAllZero();
2216  }
2217  allocation_stack_.swap(live_stack_);
2218}
2219
2220void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
2221  // This must be called only during the pause.
2222  CHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
2223  MutexLock mu(self, *Locks::runtime_shutdown_lock_);
2224  MutexLock mu2(self, *Locks::thread_list_lock_);
2225  std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
2226  for (Thread* t : thread_list) {
2227    t->RevokeThreadLocalAllocationStack();
2228  }
2229}
2230
2231void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() {
2232  if (kIsDebugBuild) {
2233    if (bump_pointer_space_ != nullptr) {
2234      bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
2235    }
2236  }
2237}
2238
2239accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
2240  auto it = mod_union_tables_.find(space);
2241  if (it == mod_union_tables_.end()) {
2242    return nullptr;
2243  }
2244  return it->second;
2245}
2246
2247accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
2248  auto it = remembered_sets_.find(space);
2249  if (it == remembered_sets_.end()) {
2250    return nullptr;
2251  }
2252  return it->second;
2253}
2254
2255void Heap::ProcessCards(TimingLogger& timings, bool use_rem_sets) {
2256  // Clear cards and keep track of cards cleared in the mod-union table.
2257  for (const auto& space : continuous_spaces_) {
2258    accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
2259    accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
2260    if (table != nullptr) {
2261      const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
2262          "ImageModUnionClearCards";
2263      TimingLogger::ScopedSplit split(name, &timings);
2264      table->ClearCards();
2265    } else if (use_rem_sets && rem_set != nullptr) {
2266      DCHECK(collector::SemiSpace::kUseRememberedSet && collector_type_ == kCollectorTypeGSS)
2267          << static_cast<int>(collector_type_);
2268      TimingLogger::ScopedSplit split("AllocSpaceRemSetClearCards", &timings);
2269      rem_set->ClearCards();
2270    } else if (space->GetType() != space::kSpaceTypeBumpPointerSpace) {
2271      TimingLogger::ScopedSplit split("AllocSpaceClearCards", &timings);
2272      // No mod union table for the AllocSpace. Age the cards so that the GC knows that these cards
2273      // were dirty before the GC started.
2274      // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
2275      // -> clean(cleaning thread).
2276      // The races are we either end up with: Aged card, unaged card. Since we have the checkpoint
2277      // roots and then we scan / update mod union tables after. We will always scan either card.
2278      // If we end up with the non aged card, we scan it it in the pause.
2279      card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(), VoidFunctor());
2280    }
2281  }
2282}
2283
2284static mirror::Object* IdentityMarkObjectCallback(mirror::Object* obj, void*) {
2285  return obj;
2286}
2287
2288void Heap::PreGcVerification(collector::GarbageCollector* gc) {
2289  ThreadList* thread_list = Runtime::Current()->GetThreadList();
2290  Thread* self = Thread::Current();
2291
2292  if (verify_pre_gc_heap_) {
2293    thread_list->SuspendAll();
2294    {
2295      ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2296      if (!VerifyHeapReferences()) {
2297        LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed";
2298      }
2299    }
2300    thread_list->ResumeAll();
2301  }
2302
2303  // Check that all objects which reference things in the live stack are on dirty cards.
2304  if (verify_missing_card_marks_) {
2305    thread_list->SuspendAll();
2306    {
2307      ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2308      SwapStacks(self);
2309      // Sort the live stack so that we can quickly binary search it later.
2310      if (!VerifyMissingCardMarks()) {
2311        LOG(FATAL) << "Pre " << gc->GetName() << " missing card mark verification failed";
2312      }
2313      SwapStacks(self);
2314    }
2315    thread_list->ResumeAll();
2316  }
2317
2318  if (verify_mod_union_table_) {
2319    thread_list->SuspendAll();
2320    ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
2321    for (const auto& table_pair : mod_union_tables_) {
2322      accounting::ModUnionTable* mod_union_table = table_pair.second;
2323      mod_union_table->UpdateAndMarkReferences(IdentityMarkObjectCallback, nullptr);
2324      mod_union_table->Verify();
2325    }
2326    thread_list->ResumeAll();
2327  }
2328}
2329
2330void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
2331  // Called before sweeping occurs since we want to make sure we are not going so reclaim any
2332  // reachable objects.
2333  if (verify_post_gc_heap_) {
2334    Thread* self = Thread::Current();
2335    CHECK_NE(self->GetState(), kRunnable);
2336    {
2337      WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2338      // Swapping bound bitmaps does nothing.
2339      gc->SwapBitmaps();
2340      if (!VerifyHeapReferences()) {
2341        LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed";
2342      }
2343      gc->SwapBitmaps();
2344    }
2345  }
2346}
2347
2348void Heap::PostGcVerification(collector::GarbageCollector* gc) {
2349  if (verify_system_weaks_) {
2350    Thread* self = Thread::Current();
2351    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2352    collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
2353    mark_sweep->VerifySystemWeaks();
2354  }
2355}
2356
2357void Heap::PreGcRosAllocVerification(TimingLogger* timings) {
2358  if (verify_pre_gc_rosalloc_) {
2359    TimingLogger::ScopedSplit split("PreGcRosAllocVerification", timings);
2360    for (const auto& space : continuous_spaces_) {
2361      if (space->IsRosAllocSpace()) {
2362        VLOG(heap) << "PreGcRosAllocVerification : " << space->GetName();
2363        space::RosAllocSpace* rosalloc_space = space->AsRosAllocSpace();
2364        rosalloc_space->Verify();
2365      }
2366    }
2367  }
2368}
2369
2370void Heap::PostGcRosAllocVerification(TimingLogger* timings) {
2371  if (verify_post_gc_rosalloc_) {
2372    TimingLogger::ScopedSplit split("PostGcRosAllocVerification", timings);
2373    for (const auto& space : continuous_spaces_) {
2374      if (space->IsRosAllocSpace()) {
2375        VLOG(heap) << "PostGcRosAllocVerification : " << space->GetName();
2376        space::RosAllocSpace* rosalloc_space = space->AsRosAllocSpace();
2377        rosalloc_space->Verify();
2378      }
2379    }
2380  }
2381}
2382
2383collector::GcType Heap::WaitForGcToComplete(Thread* self) {
2384  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
2385  MutexLock mu(self, *gc_complete_lock_);
2386  return WaitForGcToCompleteLocked(self);
2387}
2388
2389collector::GcType Heap::WaitForGcToCompleteLocked(Thread* self) {
2390  collector::GcType last_gc_type = collector::kGcTypeNone;
2391  uint64_t wait_start = NanoTime();
2392  while (collector_type_running_ != kCollectorTypeNone) {
2393    ATRACE_BEGIN("GC: Wait For Completion");
2394    // We must wait, change thread state then sleep on gc_complete_cond_;
2395    gc_complete_cond_->Wait(self);
2396    last_gc_type = last_gc_type_;
2397    ATRACE_END();
2398  }
2399  uint64_t wait_time = NanoTime() - wait_start;
2400  total_wait_time_ += wait_time;
2401  if (wait_time > long_pause_log_threshold_) {
2402    LOG(INFO) << "WaitForGcToComplete blocked for " << PrettyDuration(wait_time);
2403  }
2404  return last_gc_type;
2405}
2406
2407void Heap::DumpForSigQuit(std::ostream& os) {
2408  os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
2409     << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
2410  DumpGcPerformanceInfo(os);
2411}
2412
2413size_t Heap::GetPercentFree() {
2414  return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / GetTotalMemory());
2415}
2416
2417void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
2418  if (max_allowed_footprint > GetMaxMemory()) {
2419    VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to "
2420             << PrettySize(GetMaxMemory());
2421    max_allowed_footprint = GetMaxMemory();
2422  }
2423  max_allowed_footprint_ = max_allowed_footprint;
2424}
2425
2426bool Heap::IsMovableObject(const mirror::Object* obj) const {
2427  if (kMovingCollector) {
2428    DCHECK(!IsInTempSpace(obj));
2429    if (bump_pointer_space_->HasAddress(obj)) {
2430      return true;
2431    }
2432    // TODO: Refactor this logic into the space itself?
2433    // Objects in the main space are only copied during background -> foreground transitions or
2434    // visa versa.
2435    if (main_space_ != nullptr && main_space_->HasAddress(obj) &&
2436        (IsCompactingGC(background_collector_type_) ||
2437            IsCompactingGC(post_zygote_collector_type_))) {
2438      return true;
2439    }
2440  }
2441  return false;
2442}
2443
2444bool Heap::IsInTempSpace(const mirror::Object* obj) const {
2445  if (temp_space_->HasAddress(obj) && !temp_space_->Contains(obj)) {
2446    return true;
2447  }
2448  return false;
2449}
2450
2451void Heap::UpdateMaxNativeFootprint() {
2452  size_t native_size = native_bytes_allocated_;
2453  // TODO: Tune the native heap utilization to be a value other than the java heap utilization.
2454  size_t target_size = native_size / GetTargetHeapUtilization();
2455  if (target_size > native_size + max_free_) {
2456    target_size = native_size + max_free_;
2457  } else if (target_size < native_size + min_free_) {
2458    target_size = native_size + min_free_;
2459  }
2460  native_footprint_gc_watermark_ = target_size;
2461  native_footprint_limit_ = 2 * target_size - native_size;
2462}
2463
2464void Heap::GrowForUtilization(collector::GcType gc_type, uint64_t gc_duration) {
2465  // We know what our utilization is at this moment.
2466  // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
2467  const size_t bytes_allocated = GetBytesAllocated();
2468  last_gc_size_ = bytes_allocated;
2469  last_gc_time_ns_ = NanoTime();
2470  size_t target_size;
2471  if (gc_type != collector::kGcTypeSticky) {
2472    // Grow the heap for non sticky GC.
2473    target_size = bytes_allocated / GetTargetHeapUtilization();
2474    if (target_size > bytes_allocated + max_free_) {
2475      target_size = bytes_allocated + max_free_;
2476    } else if (target_size < bytes_allocated + min_free_) {
2477      target_size = bytes_allocated + min_free_;
2478    }
2479    native_need_to_run_finalization_ = true;
2480    next_gc_type_ = collector::kGcTypeSticky;
2481  } else {
2482    // Based on how close the current heap size is to the target size, decide
2483    // whether or not to do a partial or sticky GC next.
2484    if (bytes_allocated + min_free_ <= max_allowed_footprint_) {
2485      next_gc_type_ = collector::kGcTypeSticky;
2486    } else {
2487      next_gc_type_ = have_zygote_space_ ? collector::kGcTypePartial : collector::kGcTypeFull;
2488    }
2489    // If we have freed enough memory, shrink the heap back down.
2490    if (bytes_allocated + max_free_ < max_allowed_footprint_) {
2491      target_size = bytes_allocated + max_free_;
2492    } else {
2493      target_size = std::max(bytes_allocated, max_allowed_footprint_);
2494    }
2495  }
2496  if (!ignore_max_footprint_) {
2497    SetIdealFootprint(target_size);
2498    if (IsGcConcurrent()) {
2499      // Calculate when to perform the next ConcurrentGC.
2500      // Calculate the estimated GC duration.
2501      const double gc_duration_seconds = NsToMs(gc_duration) / 1000.0;
2502      // Estimate how many remaining bytes we will have when we need to start the next GC.
2503      size_t remaining_bytes = allocation_rate_ * gc_duration_seconds;
2504      remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
2505      remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
2506      if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) {
2507        // A never going to happen situation that from the estimated allocation rate we will exceed
2508        // the applications entire footprint with the given estimated allocation rate. Schedule
2509        // another GC nearly straight away.
2510        remaining_bytes = kMinConcurrentRemainingBytes;
2511      }
2512      DCHECK_LE(remaining_bytes, max_allowed_footprint_);
2513      DCHECK_LE(max_allowed_footprint_, growth_limit_);
2514      // Start a concurrent GC when we get close to the estimated remaining bytes. When the
2515      // allocation rate is very high, remaining_bytes could tell us that we should start a GC
2516      // right away.
2517      concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes, bytes_allocated);
2518    }
2519  }
2520}
2521
2522void Heap::ClearGrowthLimit() {
2523  growth_limit_ = capacity_;
2524  non_moving_space_->ClearGrowthLimit();
2525}
2526
2527void Heap::AddFinalizerReference(Thread* self, mirror::Object* object) {
2528  ScopedObjectAccess soa(self);
2529  ScopedLocalRef<jobject> arg(self->GetJniEnv(), soa.AddLocalReference<jobject>(object));
2530  jvalue args[1];
2531  args[0].l = arg.get();
2532  InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args);
2533}
2534
2535void Heap::EnqueueClearedReferences() {
2536  Thread* self = Thread::Current();
2537  Locks::mutator_lock_->AssertNotHeld(self);
2538  if (!cleared_references_.IsEmpty()) {
2539    // When a runtime isn't started there are no reference queues to care about so ignore.
2540    if (LIKELY(Runtime::Current()->IsStarted())) {
2541      ScopedObjectAccess soa(self);
2542      ScopedLocalRef<jobject> arg(self->GetJniEnv(),
2543                                  soa.AddLocalReference<jobject>(cleared_references_.GetList()));
2544      jvalue args[1];
2545      args[0].l = arg.get();
2546      InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_ReferenceQueue_add, args);
2547    }
2548    cleared_references_.Clear();
2549  }
2550}
2551
2552void Heap::RequestConcurrentGC(Thread* self) {
2553  // Make sure that we can do a concurrent GC.
2554  Runtime* runtime = Runtime::Current();
2555  if (runtime == NULL || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self) ||
2556      self->IsHandlingStackOverflow()) {
2557    return;
2558  }
2559  // We already have a request pending, no reason to start more until we update
2560  // concurrent_start_bytes_.
2561  concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2562  JNIEnv* env = self->GetJniEnv();
2563  DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
2564  DCHECK(WellKnownClasses::java_lang_Daemons_requestGC != nullptr);
2565  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
2566                            WellKnownClasses::java_lang_Daemons_requestGC);
2567  CHECK(!env->ExceptionCheck());
2568}
2569
2570void Heap::ConcurrentGC(Thread* self) {
2571  if (Runtime::Current()->IsShuttingDown(self)) {
2572    return;
2573  }
2574  // Wait for any GCs currently running to finish.
2575  if (WaitForGcToComplete(self) == collector::kGcTypeNone) {
2576    // If the we can't run the GC type we wanted to run, find the next appropriate one and try that
2577    // instead. E.g. can't do partial, so do full instead.
2578    if (CollectGarbageInternal(next_gc_type_, kGcCauseBackground, false) ==
2579        collector::kGcTypeNone) {
2580      for (collector::GcType gc_type : gc_plan_) {
2581        // Attempt to run the collector, if we succeed, we are done.
2582        if (gc_type > next_gc_type_ &&
2583            CollectGarbageInternal(gc_type, kGcCauseBackground, false) != collector::kGcTypeNone) {
2584          break;
2585        }
2586      }
2587    }
2588  }
2589}
2590
2591void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
2592  Thread* self = Thread::Current();
2593  {
2594    MutexLock mu(self, *heap_trim_request_lock_);
2595    if (desired_collector_type_ == desired_collector_type) {
2596      return;
2597    }
2598    heap_transition_target_time_ = std::max(heap_transition_target_time_, NanoTime() + delta_time);
2599    desired_collector_type_ = desired_collector_type;
2600  }
2601  SignalHeapTrimDaemon(self);
2602}
2603
2604void Heap::RequestHeapTrim() {
2605  // GC completed and now we must decide whether to request a heap trim (advising pages back to the
2606  // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
2607  // a space it will hold its lock and can become a cause of jank.
2608  // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
2609  // forking.
2610
2611  // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
2612  // because that only marks object heads, so a large array looks like lots of empty space. We
2613  // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
2614  // to utilization (which is probably inversely proportional to how much benefit we can expect).
2615  // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
2616  // not how much use we're making of those pages.
2617
2618  Thread* self = Thread::Current();
2619  Runtime* runtime = Runtime::Current();
2620  if (runtime == nullptr || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self)) {
2621    // Heap trimming isn't supported without a Java runtime or Daemons (such as at dex2oat time)
2622    // Also: we do not wish to start a heap trim if the runtime is shutting down (a racy check
2623    // as we don't hold the lock while requesting the trim).
2624    return;
2625  }
2626
2627  // Request a heap trim only if we do not currently care about pause times.
2628  if (!CareAboutPauseTimes()) {
2629    {
2630      MutexLock mu(self, *heap_trim_request_lock_);
2631      if (last_trim_time_ + kHeapTrimWait >= NanoTime()) {
2632        // We have done a heap trim in the last kHeapTrimWait nanosecs, don't request another one
2633        // just yet.
2634        return;
2635      }
2636      heap_trim_request_pending_ = true;
2637    }
2638    // Notify the daemon thread which will actually do the heap trim.
2639    SignalHeapTrimDaemon(self);
2640  }
2641}
2642
2643void Heap::SignalHeapTrimDaemon(Thread* self) {
2644  JNIEnv* env = self->GetJniEnv();
2645  DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
2646  DCHECK(WellKnownClasses::java_lang_Daemons_requestHeapTrim != nullptr);
2647  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
2648                            WellKnownClasses::java_lang_Daemons_requestHeapTrim);
2649  CHECK(!env->ExceptionCheck());
2650}
2651
2652void Heap::RevokeThreadLocalBuffers(Thread* thread) {
2653  if (rosalloc_space_ != nullptr) {
2654    rosalloc_space_->RevokeThreadLocalBuffers(thread);
2655  }
2656  if (bump_pointer_space_ != nullptr) {
2657    bump_pointer_space_->RevokeThreadLocalBuffers(thread);
2658  }
2659}
2660
2661void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) {
2662  if (rosalloc_space_ != nullptr) {
2663    rosalloc_space_->RevokeThreadLocalBuffers(thread);
2664  }
2665}
2666
2667void Heap::RevokeAllThreadLocalBuffers() {
2668  if (rosalloc_space_ != nullptr) {
2669    rosalloc_space_->RevokeAllThreadLocalBuffers();
2670  }
2671  if (bump_pointer_space_ != nullptr) {
2672    bump_pointer_space_->RevokeAllThreadLocalBuffers();
2673  }
2674}
2675
2676bool Heap::IsGCRequestPending() const {
2677  return concurrent_start_bytes_ != std::numeric_limits<size_t>::max();
2678}
2679
2680void Heap::RunFinalization(JNIEnv* env) {
2681  // Can't do this in WellKnownClasses::Init since System is not properly set up at that point.
2682  if (WellKnownClasses::java_lang_System_runFinalization == nullptr) {
2683    CHECK(WellKnownClasses::java_lang_System != nullptr);
2684    WellKnownClasses::java_lang_System_runFinalization =
2685        CacheMethod(env, WellKnownClasses::java_lang_System, true, "runFinalization", "()V");
2686    CHECK(WellKnownClasses::java_lang_System_runFinalization != nullptr);
2687  }
2688  env->CallStaticVoidMethod(WellKnownClasses::java_lang_System,
2689                            WellKnownClasses::java_lang_System_runFinalization);
2690}
2691
2692void Heap::RegisterNativeAllocation(JNIEnv* env, int bytes) {
2693  Thread* self = ThreadForEnv(env);
2694  if (native_need_to_run_finalization_) {
2695    RunFinalization(env);
2696    UpdateMaxNativeFootprint();
2697    native_need_to_run_finalization_ = false;
2698  }
2699  // Total number of native bytes allocated.
2700  native_bytes_allocated_.FetchAndAdd(bytes);
2701  if (static_cast<size_t>(native_bytes_allocated_) > native_footprint_gc_watermark_) {
2702    collector::GcType gc_type = have_zygote_space_ ? collector::kGcTypePartial :
2703        collector::kGcTypeFull;
2704
2705    // The second watermark is higher than the gc watermark. If you hit this it means you are
2706    // allocating native objects faster than the GC can keep up with.
2707    if (static_cast<size_t>(native_bytes_allocated_) > native_footprint_limit_) {
2708      if (WaitForGcToComplete(self) != collector::kGcTypeNone) {
2709        // Just finished a GC, attempt to run finalizers.
2710        RunFinalization(env);
2711        CHECK(!env->ExceptionCheck());
2712      }
2713      // If we still are over the watermark, attempt a GC for alloc and run finalizers.
2714      if (static_cast<size_t>(native_bytes_allocated_) > native_footprint_limit_) {
2715        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
2716        RunFinalization(env);
2717        native_need_to_run_finalization_ = false;
2718        CHECK(!env->ExceptionCheck());
2719      }
2720      // We have just run finalizers, update the native watermark since it is very likely that
2721      // finalizers released native managed allocations.
2722      UpdateMaxNativeFootprint();
2723    } else if (!IsGCRequestPending()) {
2724      if (IsGcConcurrent()) {
2725        RequestConcurrentGC(self);
2726      } else {
2727        CollectGarbageInternal(gc_type, kGcCauseForAlloc, false);
2728      }
2729    }
2730  }
2731}
2732
2733void Heap::RegisterNativeFree(JNIEnv* env, int bytes) {
2734  int expected_size, new_size;
2735  do {
2736    expected_size = native_bytes_allocated_.Load();
2737    new_size = expected_size - bytes;
2738    if (UNLIKELY(new_size < 0)) {
2739      ScopedObjectAccess soa(env);
2740      env->ThrowNew(WellKnownClasses::java_lang_RuntimeException,
2741                    StringPrintf("Attempted to free %d native bytes with only %d native bytes "
2742                                 "registered as allocated", bytes, expected_size).c_str());
2743      break;
2744    }
2745  } while (!native_bytes_allocated_.CompareAndSwap(expected_size, new_size));
2746}
2747
2748size_t Heap::GetTotalMemory() const {
2749  size_t ret = 0;
2750  for (const auto& space : continuous_spaces_) {
2751    // Currently don't include the image space.
2752    if (!space->IsImageSpace()) {
2753      ret += space->Size();
2754    }
2755  }
2756  for (const auto& space : discontinuous_spaces_) {
2757    if (space->IsLargeObjectSpace()) {
2758      ret += space->AsLargeObjectSpace()->GetBytesAllocated();
2759    }
2760  }
2761  return ret;
2762}
2763
2764void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
2765  DCHECK(mod_union_table != nullptr);
2766  mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
2767}
2768
2769void Heap::CheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count) {
2770  CHECK(c == NULL || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
2771        (c->IsVariableSize() || c->GetObjectSize() == byte_count) ||
2772        strlen(ClassHelper(c).GetDescriptor()) == 0);
2773  CHECK_GE(byte_count, sizeof(mirror::Object));
2774}
2775
2776void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
2777  CHECK(remembered_set != nullptr);
2778  space::Space* space = remembered_set->GetSpace();
2779  CHECK(space != nullptr);
2780  CHECK(remembered_sets_.find(space) == remembered_sets_.end());
2781  remembered_sets_.Put(space, remembered_set);
2782  CHECK(remembered_sets_.find(space) != remembered_sets_.end());
2783}
2784
2785void Heap::RemoveRememberedSet(space::Space* space) {
2786  CHECK(space != nullptr);
2787  auto it = remembered_sets_.find(space);
2788  CHECK(it != remembered_sets_.end());
2789  remembered_sets_.erase(it);
2790  CHECK(remembered_sets_.find(space) == remembered_sets_.end());
2791}
2792
2793}  // namespace gc
2794}  // namespace art
2795