heap.cc revision e6da9af8dfe0a3e3fbc2be700554f6478380e7b9
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "heap.h"
18
19#define ATRACE_TAG ATRACE_TAG_DALVIK
20#include <cutils/trace.h>
21
22#include <limits>
23#include <vector>
24#include <valgrind.h>
25
26#include "base/histogram-inl.h"
27#include "base/stl_util.h"
28#include "common_throws.h"
29#include "cutils/sched_policy.h"
30#include "debugger.h"
31#include "gc/accounting/atomic_stack.h"
32#include "gc/accounting/card_table-inl.h"
33#include "gc/accounting/heap_bitmap-inl.h"
34#include "gc/accounting/mod_union_table.h"
35#include "gc/accounting/mod_union_table-inl.h"
36#include "gc/accounting/space_bitmap-inl.h"
37#include "gc/collector/mark_sweep-inl.h"
38#include "gc/collector/partial_mark_sweep.h"
39#include "gc/collector/semi_space.h"
40#include "gc/collector/sticky_mark_sweep.h"
41#include "gc/space/bump_pointer_space.h"
42#include "gc/space/dlmalloc_space-inl.h"
43#include "gc/space/image_space.h"
44#include "gc/space/large_object_space.h"
45#include "gc/space/rosalloc_space-inl.h"
46#include "gc/space/space-inl.h"
47#include "heap-inl.h"
48#include "image.h"
49#include "invoke_arg_array_builder.h"
50#include "mirror/art_field-inl.h"
51#include "mirror/class-inl.h"
52#include "mirror/object.h"
53#include "mirror/object-inl.h"
54#include "mirror/object_array-inl.h"
55#include "object_utils.h"
56#include "os.h"
57#include "runtime.h"
58#include "ScopedLocalRef.h"
59#include "scoped_thread_state_change.h"
60#include "sirt_ref.h"
61#include "thread_list.h"
62#include "UniquePtr.h"
63#include "well_known_classes.h"
64
65namespace art {
66
67extern void SetQuickAllocEntryPointsAllocator(gc::AllocatorType allocator);
68
69namespace gc {
70
71static constexpr bool kGCALotMode = false;
72static constexpr size_t kGcAlotInterval = KB;
73// Minimum amount of remaining bytes before a concurrent GC is triggered.
74static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
75
76Heap::Heap(size_t initial_size, size_t growth_limit, size_t min_free, size_t max_free,
77           double target_utilization, size_t capacity, const std::string& image_file_name,
78           CollectorType post_zygote_collector_type, CollectorType background_collector_type,
79           size_t parallel_gc_threads, size_t conc_gc_threads, bool low_memory_mode,
80           size_t long_pause_log_threshold, size_t long_gc_log_threshold,
81           bool ignore_max_footprint, bool use_tlab)
82    : non_moving_space_(nullptr),
83      rosalloc_space_(nullptr),
84      dlmalloc_space_(nullptr),
85      concurrent_gc_(false),
86      collector_type_(kCollectorTypeNone),
87      post_zygote_collector_type_(post_zygote_collector_type),
88      background_collector_type_(background_collector_type),
89      parallel_gc_threads_(parallel_gc_threads),
90      conc_gc_threads_(conc_gc_threads),
91      low_memory_mode_(low_memory_mode),
92      long_pause_log_threshold_(long_pause_log_threshold),
93      long_gc_log_threshold_(long_gc_log_threshold),
94      ignore_max_footprint_(ignore_max_footprint),
95      have_zygote_space_(false),
96      soft_reference_queue_(this),
97      weak_reference_queue_(this),
98      finalizer_reference_queue_(this),
99      phantom_reference_queue_(this),
100      cleared_references_(this),
101      is_gc_running_(false),
102      last_gc_type_(collector::kGcTypeNone),
103      next_gc_type_(collector::kGcTypePartial),
104      capacity_(capacity),
105      growth_limit_(growth_limit),
106      max_allowed_footprint_(initial_size),
107      native_footprint_gc_watermark_(initial_size),
108      native_footprint_limit_(2 * initial_size),
109      native_need_to_run_finalization_(false),
110      // Initially assume we perceive jank in case the process state is never updated.
111      process_state_(kProcessStateJankPerceptible),
112      concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
113      total_bytes_freed_ever_(0),
114      total_objects_freed_ever_(0),
115      num_bytes_allocated_(0),
116      native_bytes_allocated_(0),
117      gc_memory_overhead_(0),
118      verify_missing_card_marks_(false),
119      verify_system_weaks_(false),
120      verify_pre_gc_heap_(false),
121      verify_post_gc_heap_(false),
122      verify_mod_union_table_(false),
123      min_alloc_space_size_for_sticky_gc_(1112 * MB),
124      min_remaining_space_for_sticky_gc_(1 * MB),
125      last_trim_time_ms_(0),
126      allocation_rate_(0),
127      /* For GC a lot mode, we limit the allocations stacks to be kGcAlotInterval allocations. This
128       * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
129       * verification is enabled, we limit the size of allocation stacks to speed up their
130       * searching.
131       */
132      max_allocation_stack_size_(kGCALotMode ? kGcAlotInterval
133          : (kDesiredHeapVerification > kVerifyAllFast) ? KB : MB),
134      current_allocator_(kAllocatorTypeDlMalloc),
135      current_non_moving_allocator_(kAllocatorTypeNonMoving),
136      bump_pointer_space_(nullptr),
137      temp_space_(nullptr),
138      reference_referent_offset_(0),
139      reference_queue_offset_(0),
140      reference_queueNext_offset_(0),
141      reference_pendingNext_offset_(0),
142      finalizer_reference_zombie_offset_(0),
143      min_free_(min_free),
144      max_free_(max_free),
145      target_utilization_(target_utilization),
146      total_wait_time_(0),
147      total_allocation_time_(0),
148      verify_object_mode_(kHeapVerificationNotPermitted),
149      gc_disable_count_(0),
150      running_on_valgrind_(RUNNING_ON_VALGRIND),
151      use_tlab_(use_tlab) {
152  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
153    LOG(INFO) << "Heap() entering";
154  }
155  // If we aren't the zygote, switch to the default non zygote allocator. This may update the
156  // entrypoints.
157  if (!Runtime::Current()->IsZygote() || !kMovingCollector) {
158    ChangeCollector(post_zygote_collector_type_);
159  } else {
160    // We are the zygote, use bump pointer allocation + semi space collector.
161    ChangeCollector(kCollectorTypeSS);
162  }
163
164  live_bitmap_.reset(new accounting::HeapBitmap(this));
165  mark_bitmap_.reset(new accounting::HeapBitmap(this));
166  // Requested begin for the alloc space, to follow the mapped image and oat files
167  byte* requested_alloc_space_begin = nullptr;
168  if (!image_file_name.empty()) {
169    space::ImageSpace* image_space = space::ImageSpace::Create(image_file_name.c_str());
170    CHECK(image_space != nullptr) << "Failed to create space for " << image_file_name;
171    AddSpace(image_space);
172    // Oat files referenced by image files immediately follow them in memory, ensure alloc space
173    // isn't going to get in the middle
174    byte* oat_file_end_addr = image_space->GetImageHeader().GetOatFileEnd();
175    CHECK_GT(oat_file_end_addr, image_space->End());
176    if (oat_file_end_addr > requested_alloc_space_begin) {
177      requested_alloc_space_begin = AlignUp(oat_file_end_addr, kPageSize);
178    }
179  }
180  const char* name = Runtime::Current()->IsZygote() ? "zygote space" : "alloc space";
181  space::MallocSpace* malloc_space;
182  if (kUseRosAlloc) {
183    malloc_space = space::RosAllocSpace::Create(name, initial_size, growth_limit, capacity,
184                                                requested_alloc_space_begin, low_memory_mode_);
185    CHECK(malloc_space != nullptr) << "Failed to create rosalloc space";
186  } else {
187    malloc_space = space::DlMallocSpace::Create(name, initial_size, growth_limit, capacity,
188                                                requested_alloc_space_begin);
189    CHECK(malloc_space != nullptr) << "Failed to create dlmalloc space";
190  }
191
192  if (kMovingCollector) {
193    // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
194    // TODO: Having 3+ spaces as big as the large heap size can cause virtual memory fragmentation
195    // issues.
196    const size_t bump_pointer_space_size = std::min(malloc_space->Capacity(), 128 * MB);
197    bump_pointer_space_ = space::BumpPointerSpace::Create("Bump pointer space",
198                                                          bump_pointer_space_size, nullptr);
199    CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
200    AddSpace(bump_pointer_space_);
201    temp_space_ = space::BumpPointerSpace::Create("Bump pointer space 2", bump_pointer_space_size,
202                                                  nullptr);
203    CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
204    AddSpace(temp_space_);
205  }
206  non_moving_space_ = malloc_space;
207  malloc_space->SetFootprintLimit(malloc_space->Capacity());
208  AddSpace(malloc_space);
209
210  // Allocate the large object space.
211  constexpr bool kUseFreeListSpaceForLOS = false;
212  if (kUseFreeListSpaceForLOS) {
213    large_object_space_ = space::FreeListSpace::Create("large object space", nullptr, capacity);
214  } else {
215    large_object_space_ = space::LargeObjectMapSpace::Create("large object space");
216  }
217  CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
218  AddSpace(large_object_space_);
219
220  // Compute heap capacity. Continuous spaces are sorted in order of Begin().
221  CHECK(!continuous_spaces_.empty());
222  // Relies on the spaces being sorted.
223  byte* heap_begin = continuous_spaces_.front()->Begin();
224  byte* heap_end = continuous_spaces_.back()->Limit();
225  size_t heap_capacity = heap_end - heap_begin;
226
227  // Allocate the card table.
228  card_table_.reset(accounting::CardTable::Create(heap_begin, heap_capacity));
229  CHECK(card_table_.get() != NULL) << "Failed to create card table";
230
231  // Card cache for now since it makes it easier for us to update the references to the copying
232  // spaces.
233  accounting::ModUnionTable* mod_union_table =
234      new accounting::ModUnionTableCardCache("Image mod-union table", this, GetImageSpace());
235  CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
236  AddModUnionTable(mod_union_table);
237
238  // TODO: Count objects in the image space here.
239  num_bytes_allocated_ = 0;
240
241  // Default mark stack size in bytes.
242  static const size_t default_mark_stack_size = 64 * KB;
243  mark_stack_.reset(accounting::ObjectStack::Create("mark stack", default_mark_stack_size));
244  allocation_stack_.reset(accounting::ObjectStack::Create("allocation stack",
245                                                          max_allocation_stack_size_));
246  live_stack_.reset(accounting::ObjectStack::Create("live stack",
247                                                    max_allocation_stack_size_));
248
249  // It's still too early to take a lock because there are no threads yet, but we can create locks
250  // now. We don't create it earlier to make it clear that you can't use locks during heap
251  // initialization.
252  gc_complete_lock_ = new Mutex("GC complete lock");
253  gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
254                                                *gc_complete_lock_));
255  last_gc_time_ns_ = NanoTime();
256  last_gc_size_ = GetBytesAllocated();
257
258  if (ignore_max_footprint_) {
259    SetIdealFootprint(std::numeric_limits<size_t>::max());
260    concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
261  }
262  CHECK_NE(max_allowed_footprint_, 0U);
263
264  // Create our garbage collectors.
265  for (size_t i = 0; i < 2; ++i) {
266    const bool concurrent = i != 0;
267    garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
268    garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
269    garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
270  }
271  if (kMovingCollector) {
272    // TODO: Clean this up.
273    semi_space_collector_ = new collector::SemiSpace(this);
274    garbage_collectors_.push_back(semi_space_collector_);
275  }
276
277  if (running_on_valgrind_) {
278    Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
279  }
280
281  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
282    LOG(INFO) << "Heap() exiting";
283  }
284}
285
286void Heap::ChangeAllocator(AllocatorType allocator) {
287  // These two allocators are only used internally and don't have any entrypoints.
288  DCHECK_NE(allocator, kAllocatorTypeLOS);
289  DCHECK_NE(allocator, kAllocatorTypeNonMoving);
290  if (current_allocator_ != allocator) {
291    current_allocator_ = allocator;
292    SetQuickAllocEntryPointsAllocator(current_allocator_);
293    Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
294  }
295}
296
297bool Heap::IsCompilingBoot() const {
298  for (const auto& space : continuous_spaces_) {
299    if (space->IsImageSpace()) {
300      return false;
301    } else if (space->IsZygoteSpace()) {
302      return false;
303    }
304  }
305  return true;
306}
307
308bool Heap::HasImageSpace() const {
309  for (const auto& space : continuous_spaces_) {
310    if (space->IsImageSpace()) {
311      return true;
312    }
313  }
314  return false;
315}
316
317void Heap::IncrementDisableGC(Thread* self) {
318  // Need to do this holding the lock to prevent races where the GC is about to run / running when
319  // we attempt to disable it.
320  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
321  MutexLock mu(self, *gc_complete_lock_);
322  WaitForGcToCompleteLocked(self);
323  ++gc_disable_count_;
324}
325
326void Heap::DecrementDisableGC(Thread* self) {
327  MutexLock mu(self, *gc_complete_lock_);
328  CHECK_GE(gc_disable_count_, 0U);
329  --gc_disable_count_;
330}
331
332void Heap::UpdateProcessState(ProcessState process_state) {
333  if (process_state_ != process_state) {
334    process_state_ = process_state;
335    if (process_state_ == kProcessStateJankPerceptible) {
336      TransitionCollector(post_zygote_collector_type_);
337    } else {
338      TransitionCollector(background_collector_type_);
339    }
340  } else {
341    CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
342  }
343}
344
345void Heap::CreateThreadPool() {
346  const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
347  if (num_threads != 0) {
348    thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
349  }
350}
351
352void Heap::VisitObjects(ObjectVisitorCallback callback, void* arg) {
353  Thread* self = Thread::Current();
354  // GCs can move objects, so don't allow this.
355  const char* old_cause = self->StartAssertNoThreadSuspension("Visiting objects");
356  if (bump_pointer_space_ != nullptr) {
357    // Visit objects in bump pointer space.
358    bump_pointer_space_->Walk(callback, arg);
359  }
360  // TODO: Switch to standard begin and end to use ranged a based loop.
361  for (mirror::Object** it = allocation_stack_->Begin(), **end = allocation_stack_->End();
362      it < end; ++it) {
363    mirror::Object* obj = *it;
364    callback(obj, arg);
365  }
366  GetLiveBitmap()->Walk(callback, arg);
367  self->EndAssertNoThreadSuspension(old_cause);
368}
369
370void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
371  space::ContinuousSpace* space1 = rosalloc_space_ != nullptr ? rosalloc_space_ : non_moving_space_;
372  space::ContinuousSpace* space2 = dlmalloc_space_ != nullptr ? dlmalloc_space_ : non_moving_space_;
373  // This is just logic to handle a case of either not having a rosalloc or dlmalloc space.
374  // TODO: Generalize this to n bitmaps?
375  if (space1 == nullptr) {
376    DCHECK(space2 != nullptr);
377    space1 = space2;
378  }
379  if (space2 == nullptr) {
380    DCHECK(space1 != nullptr);
381    space2 = space1;
382  }
383  MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
384                 large_object_space_->GetLiveObjects(), stack);
385}
386
387void Heap::DeleteThreadPool() {
388  thread_pool_.reset(nullptr);
389}
390
391void Heap::AddSpace(space::Space* space, bool set_as_default) {
392  DCHECK(space != nullptr);
393  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
394  if (space->IsContinuousSpace()) {
395    DCHECK(!space->IsDiscontinuousSpace());
396    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
397    // Continuous spaces don't necessarily have bitmaps.
398    accounting::SpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
399    accounting::SpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
400    if (live_bitmap != nullptr) {
401      DCHECK(mark_bitmap != nullptr);
402      live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
403      mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
404    }
405    continuous_spaces_.push_back(continuous_space);
406    if (set_as_default) {
407      if (continuous_space->IsDlMallocSpace()) {
408        dlmalloc_space_ = continuous_space->AsDlMallocSpace();
409      } else if (continuous_space->IsRosAllocSpace()) {
410        rosalloc_space_ = continuous_space->AsRosAllocSpace();
411      }
412    }
413    // Ensure that spaces remain sorted in increasing order of start address.
414    std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
415              [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
416      return a->Begin() < b->Begin();
417    });
418  } else {
419    DCHECK(space->IsDiscontinuousSpace());
420    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
421    DCHECK(discontinuous_space->GetLiveObjects() != nullptr);
422    live_bitmap_->AddDiscontinuousObjectSet(discontinuous_space->GetLiveObjects());
423    DCHECK(discontinuous_space->GetMarkObjects() != nullptr);
424    mark_bitmap_->AddDiscontinuousObjectSet(discontinuous_space->GetMarkObjects());
425    discontinuous_spaces_.push_back(discontinuous_space);
426  }
427  if (space->IsAllocSpace()) {
428    alloc_spaces_.push_back(space->AsAllocSpace());
429  }
430}
431
432void Heap::RemoveSpace(space::Space* space) {
433  DCHECK(space != nullptr);
434  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
435  if (space->IsContinuousSpace()) {
436    DCHECK(!space->IsDiscontinuousSpace());
437    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
438    // Continuous spaces don't necessarily have bitmaps.
439    accounting::SpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
440    accounting::SpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
441    if (live_bitmap != nullptr) {
442      DCHECK(mark_bitmap != nullptr);
443      live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
444      mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
445    }
446    auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
447    DCHECK(it != continuous_spaces_.end());
448    continuous_spaces_.erase(it);
449    if (continuous_space == dlmalloc_space_) {
450      dlmalloc_space_ = nullptr;
451    } else if (continuous_space == rosalloc_space_) {
452      rosalloc_space_ = nullptr;
453    }
454  } else {
455    DCHECK(space->IsDiscontinuousSpace());
456    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
457    DCHECK(discontinuous_space->GetLiveObjects() != nullptr);
458    live_bitmap_->RemoveDiscontinuousObjectSet(discontinuous_space->GetLiveObjects());
459    DCHECK(discontinuous_space->GetMarkObjects() != nullptr);
460    mark_bitmap_->RemoveDiscontinuousObjectSet(discontinuous_space->GetMarkObjects());
461    auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
462                        discontinuous_space);
463    DCHECK(it != discontinuous_spaces_.end());
464    discontinuous_spaces_.erase(it);
465  }
466  if (space->IsAllocSpace()) {
467    auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
468    DCHECK(it != alloc_spaces_.end());
469    alloc_spaces_.erase(it);
470  }
471}
472
473void Heap::RegisterGCAllocation(size_t bytes) {
474  if (this != nullptr) {
475    gc_memory_overhead_.FetchAndAdd(bytes);
476  }
477}
478
479void Heap::RegisterGCDeAllocation(size_t bytes) {
480  if (this != nullptr) {
481    gc_memory_overhead_.FetchAndSub(bytes);
482  }
483}
484
485void Heap::DumpGcPerformanceInfo(std::ostream& os) {
486  // Dump cumulative timings.
487  os << "Dumping cumulative Gc timings\n";
488  uint64_t total_duration = 0;
489
490  // Dump cumulative loggers for each GC type.
491  uint64_t total_paused_time = 0;
492  for (const auto& collector : garbage_collectors_) {
493    CumulativeLogger& logger = collector->GetCumulativeTimings();
494    if (logger.GetTotalNs() != 0) {
495      os << Dumpable<CumulativeLogger>(logger);
496      const uint64_t total_ns = logger.GetTotalNs();
497      const uint64_t total_pause_ns = collector->GetTotalPausedTimeNs();
498      double seconds = NsToMs(logger.GetTotalNs()) / 1000.0;
499      const uint64_t freed_bytes = collector->GetTotalFreedBytes();
500      const uint64_t freed_objects = collector->GetTotalFreedObjects();
501      Histogram<uint64_t>::CumulativeData cumulative_data;
502      collector->GetPauseHistogram().CreateHistogram(&cumulative_data);
503      collector->GetPauseHistogram().PrintConfidenceIntervals(os, 0.99, cumulative_data);
504      os << collector->GetName() << " total time: " << PrettyDuration(total_ns) << "\n"
505         << collector->GetName() << " freed: " << freed_objects
506         << " objects with total size " << PrettySize(freed_bytes) << "\n"
507         << collector->GetName() << " throughput: " << freed_objects / seconds << "/s / "
508         << PrettySize(freed_bytes / seconds) << "/s\n";
509      total_duration += total_ns;
510      total_paused_time += total_pause_ns;
511    }
512  }
513  uint64_t allocation_time = static_cast<uint64_t>(total_allocation_time_) * kTimeAdjust;
514  if (total_duration != 0) {
515    const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
516    os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
517    os << "Mean GC size throughput: "
518       << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
519    os << "Mean GC object throughput: "
520       << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
521  }
522  size_t total_objects_allocated = GetObjectsAllocatedEver();
523  os << "Total number of allocations: " << total_objects_allocated << "\n";
524  size_t total_bytes_allocated = GetBytesAllocatedEver();
525  os << "Total bytes allocated " << PrettySize(total_bytes_allocated) << "\n";
526  if (kMeasureAllocationTime) {
527    os << "Total time spent allocating: " << PrettyDuration(allocation_time) << "\n";
528    os << "Mean allocation time: " << PrettyDuration(allocation_time / total_objects_allocated)
529       << "\n";
530  }
531  os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
532  os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
533  os << "Approximate GC data structures memory overhead: " << gc_memory_overhead_;
534}
535
536Heap::~Heap() {
537  VLOG(heap) << "Starting ~Heap()";
538  STLDeleteElements(&garbage_collectors_);
539  // If we don't reset then the mark stack complains in its destructor.
540  allocation_stack_->Reset();
541  live_stack_->Reset();
542  STLDeleteValues(&mod_union_tables_);
543  STLDeleteElements(&continuous_spaces_);
544  STLDeleteElements(&discontinuous_spaces_);
545  delete gc_complete_lock_;
546  VLOG(heap) << "Finished ~Heap()";
547}
548
549space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(const mirror::Object* obj,
550                                                            bool fail_ok) const {
551  for (const auto& space : continuous_spaces_) {
552    if (space->Contains(obj)) {
553      return space;
554    }
555  }
556  if (!fail_ok) {
557    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
558  }
559  return NULL;
560}
561
562space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(const mirror::Object* obj,
563                                                                  bool fail_ok) const {
564  for (const auto& space : discontinuous_spaces_) {
565    if (space->Contains(obj)) {
566      return space;
567    }
568  }
569  if (!fail_ok) {
570    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
571  }
572  return NULL;
573}
574
575space::Space* Heap::FindSpaceFromObject(const mirror::Object* obj, bool fail_ok) const {
576  space::Space* result = FindContinuousSpaceFromObject(obj, true);
577  if (result != NULL) {
578    return result;
579  }
580  return FindDiscontinuousSpaceFromObject(obj, true);
581}
582
583struct SoftReferenceArgs {
584  RootVisitor* is_marked_callback_;
585  RootVisitor* recursive_mark_callback_;
586  void* arg_;
587};
588
589mirror::Object* Heap::PreserveSoftReferenceCallback(mirror::Object* obj, void* arg) {
590  SoftReferenceArgs* args  = reinterpret_cast<SoftReferenceArgs*>(arg);
591  // TODO: Not preserve all soft references.
592  return args->recursive_mark_callback_(obj, args->arg_);
593}
594
595// Process reference class instances and schedule finalizations.
596void Heap::ProcessReferences(TimingLogger& timings, bool clear_soft,
597                             RootVisitor* is_marked_callback,
598                             RootVisitor* recursive_mark_object_callback, void* arg) {
599  // Unless we are in the zygote or required to clear soft references with white references,
600  // preserve some white referents.
601  if (!clear_soft && !Runtime::Current()->IsZygote()) {
602    SoftReferenceArgs soft_reference_args;
603    soft_reference_args.is_marked_callback_ = is_marked_callback;
604    soft_reference_args.recursive_mark_callback_ = recursive_mark_object_callback;
605    soft_reference_args.arg_ = arg;
606    soft_reference_queue_.PreserveSomeSoftReferences(&PreserveSoftReferenceCallback,
607                                                     &soft_reference_args);
608  }
609  timings.StartSplit("ProcessReferences");
610  // Clear all remaining soft and weak references with white referents.
611  soft_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
612  weak_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
613  timings.EndSplit();
614  // Preserve all white objects with finalize methods and schedule them for finalization.
615  timings.StartSplit("EnqueueFinalizerReferences");
616  finalizer_reference_queue_.EnqueueFinalizerReferences(cleared_references_, is_marked_callback,
617                                                        recursive_mark_object_callback, arg);
618  timings.EndSplit();
619  timings.StartSplit("ProcessReferences");
620  // Clear all f-reachable soft and weak references with white referents.
621  soft_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
622  weak_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
623  // Clear all phantom references with white referents.
624  phantom_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
625  // At this point all reference queues other than the cleared references should be empty.
626  DCHECK(soft_reference_queue_.IsEmpty());
627  DCHECK(weak_reference_queue_.IsEmpty());
628  DCHECK(finalizer_reference_queue_.IsEmpty());
629  DCHECK(phantom_reference_queue_.IsEmpty());
630  timings.EndSplit();
631}
632
633bool Heap::IsEnqueued(mirror::Object* ref) const {
634  // Since the references are stored as cyclic lists it means that once enqueued, the pending next
635  // will always be non-null.
636  return ref->GetFieldObject<mirror::Object*>(GetReferencePendingNextOffset(), false) != nullptr;
637}
638
639bool Heap::IsEnqueuable(const mirror::Object* ref) const {
640  DCHECK(ref != nullptr);
641  const mirror::Object* queue =
642      ref->GetFieldObject<mirror::Object*>(GetReferenceQueueOffset(), false);
643  const mirror::Object* queue_next =
644      ref->GetFieldObject<mirror::Object*>(GetReferenceQueueNextOffset(), false);
645  return queue != nullptr && queue_next == nullptr;
646}
647
648// Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
649// marked, put it on the appropriate list in the heap for later processing.
650void Heap::DelayReferenceReferent(mirror::Class* klass, mirror::Object* obj,
651                                  RootVisitor mark_visitor, void* arg) {
652  DCHECK(klass != nullptr);
653  DCHECK(klass->IsReferenceClass());
654  DCHECK(obj != nullptr);
655  mirror::Object* referent = GetReferenceReferent(obj);
656  if (referent != nullptr) {
657    mirror::Object* forward_address = mark_visitor(referent, arg);
658    // Null means that the object is not currently marked.
659    if (forward_address == nullptr) {
660      Thread* self = Thread::Current();
661      // TODO: Remove these locks, and use atomic stacks for storing references?
662      // We need to check that the references haven't already been enqueued since we can end up
663      // scanning the same reference multiple times due to dirty cards.
664      if (klass->IsSoftReferenceClass()) {
665        soft_reference_queue_.AtomicEnqueueIfNotEnqueued(self, obj);
666      } else if (klass->IsWeakReferenceClass()) {
667        weak_reference_queue_.AtomicEnqueueIfNotEnqueued(self, obj);
668      } else if (klass->IsFinalizerReferenceClass()) {
669        finalizer_reference_queue_.AtomicEnqueueIfNotEnqueued(self, obj);
670      } else if (klass->IsPhantomReferenceClass()) {
671        phantom_reference_queue_.AtomicEnqueueIfNotEnqueued(self, obj);
672      } else {
673        LOG(FATAL) << "Invalid reference type " << PrettyClass(klass) << " " << std::hex
674                   << klass->GetAccessFlags();
675      }
676    } else if (referent != forward_address) {
677      // Referent is already marked and we need to update it.
678      SetReferenceReferent(obj, forward_address);
679    }
680  }
681}
682
683space::ImageSpace* Heap::GetImageSpace() const {
684  for (const auto& space : continuous_spaces_) {
685    if (space->IsImageSpace()) {
686      return space->AsImageSpace();
687    }
688  }
689  return NULL;
690}
691
692static void MSpaceChunkCallback(void* start, void* end, size_t used_bytes, void* arg) {
693  size_t chunk_size = reinterpret_cast<uint8_t*>(end) - reinterpret_cast<uint8_t*>(start);
694  if (used_bytes < chunk_size) {
695    size_t chunk_free_bytes = chunk_size - used_bytes;
696    size_t& max_contiguous_allocation = *reinterpret_cast<size_t*>(arg);
697    max_contiguous_allocation = std::max(max_contiguous_allocation, chunk_free_bytes);
698  }
699}
700
701void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, bool large_object_allocation) {
702  std::ostringstream oss;
703  int64_t total_bytes_free = GetFreeMemory();
704  oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
705      << " free bytes";
706  // If the allocation failed due to fragmentation, print out the largest continuous allocation.
707  if (!large_object_allocation && total_bytes_free >= byte_count) {
708    size_t max_contiguous_allocation = 0;
709    for (const auto& space : continuous_spaces_) {
710      if (space->IsMallocSpace()) {
711        // To allow the Walk/InspectAll() to exclusively-lock the mutator
712        // lock, temporarily release the shared access to the mutator
713        // lock here by transitioning to the suspended state.
714        Locks::mutator_lock_->AssertSharedHeld(self);
715        self->TransitionFromRunnableToSuspended(kSuspended);
716        space->AsMallocSpace()->Walk(MSpaceChunkCallback, &max_contiguous_allocation);
717        self->TransitionFromSuspendedToRunnable();
718        Locks::mutator_lock_->AssertSharedHeld(self);
719      }
720    }
721    oss << "; failed due to fragmentation (largest possible contiguous allocation "
722        <<  max_contiguous_allocation << " bytes)";
723  }
724  self->ThrowOutOfMemoryError(oss.str().c_str());
725}
726
727void Heap::Trim() {
728  uint64_t start_ns = NanoTime();
729  // Trim the managed spaces.
730  uint64_t total_alloc_space_allocated = 0;
731  uint64_t total_alloc_space_size = 0;
732  uint64_t managed_reclaimed = 0;
733  for (const auto& space : continuous_spaces_) {
734    if (space->IsMallocSpace() && !space->IsZygoteSpace()) {
735      gc::space::MallocSpace* alloc_space = space->AsMallocSpace();
736      total_alloc_space_size += alloc_space->Size();
737      managed_reclaimed += alloc_space->Trim();
738    }
739  }
740  total_alloc_space_allocated = GetBytesAllocated() - large_object_space_->GetBytesAllocated() -
741      bump_pointer_space_->Size();
742  const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
743      static_cast<float>(total_alloc_space_size);
744  uint64_t gc_heap_end_ns = NanoTime();
745  // Trim the native heap.
746  dlmalloc_trim(0);
747  size_t native_reclaimed = 0;
748  dlmalloc_inspect_all(DlmallocMadviseCallback, &native_reclaimed);
749  uint64_t end_ns = NanoTime();
750  VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
751      << ", advised=" << PrettySize(managed_reclaimed) << ") and native (duration="
752      << PrettyDuration(end_ns - gc_heap_end_ns) << ", advised=" << PrettySize(native_reclaimed)
753      << ") heaps. Managed heap utilization of " << static_cast<int>(100 * managed_utilization)
754      << "%.";
755}
756
757bool Heap::IsValidObjectAddress(const mirror::Object* obj) const {
758  // Note: we deliberately don't take the lock here, and mustn't test anything that would require
759  // taking the lock.
760  if (obj == nullptr) {
761    return true;
762  }
763  return IsAligned<kObjectAlignment>(obj) && IsHeapAddress(obj);
764}
765
766bool Heap::IsHeapAddress(const mirror::Object* obj) const {
767  if (kMovingCollector && bump_pointer_space_->HasAddress(obj)) {
768    return true;
769  }
770  // TODO: This probably doesn't work for large objects.
771  return FindSpaceFromObject(obj, true) != nullptr;
772}
773
774bool Heap::IsLiveObjectLocked(const mirror::Object* obj, bool search_allocation_stack,
775                              bool search_live_stack, bool sorted) {
776  // Locks::heap_bitmap_lock_->AssertReaderHeld(Thread::Current());
777  if (obj == nullptr || UNLIKELY(!IsAligned<kObjectAlignment>(obj))) {
778    return false;
779  }
780  space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
781  space::DiscontinuousSpace* d_space = NULL;
782  if (c_space != NULL) {
783    if (c_space->GetLiveBitmap()->Test(obj)) {
784      return true;
785    }
786  } else if (bump_pointer_space_->Contains(obj) || temp_space_->Contains(obj)) {
787      return true;
788  } else {
789    d_space = FindDiscontinuousSpaceFromObject(obj, true);
790    if (d_space != NULL) {
791      if (d_space->GetLiveObjects()->Test(obj)) {
792        return true;
793      }
794    }
795  }
796  // This is covering the allocation/live stack swapping that is done without mutators suspended.
797  for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
798    if (i > 0) {
799      NanoSleep(MsToNs(10));
800    }
801    if (search_allocation_stack) {
802      if (sorted) {
803        if (allocation_stack_->ContainsSorted(const_cast<mirror::Object*>(obj))) {
804          return true;
805        }
806      } else if (allocation_stack_->Contains(const_cast<mirror::Object*>(obj))) {
807        return true;
808      }
809    }
810
811    if (search_live_stack) {
812      if (sorted) {
813        if (live_stack_->ContainsSorted(const_cast<mirror::Object*>(obj))) {
814          return true;
815        }
816      } else if (live_stack_->Contains(const_cast<mirror::Object*>(obj))) {
817        return true;
818      }
819    }
820  }
821  // We need to check the bitmaps again since there is a race where we mark something as live and
822  // then clear the stack containing it.
823  if (c_space != NULL) {
824    if (c_space->GetLiveBitmap()->Test(obj)) {
825      return true;
826    }
827  } else {
828    d_space = FindDiscontinuousSpaceFromObject(obj, true);
829    if (d_space != NULL && d_space->GetLiveObjects()->Test(obj)) {
830      return true;
831    }
832  }
833  return false;
834}
835
836void Heap::VerifyObjectImpl(const mirror::Object* obj) {
837  if (Thread::Current() == NULL ||
838      Runtime::Current()->GetThreadList()->GetLockOwner() == Thread::Current()->GetTid()) {
839    return;
840  }
841  VerifyObjectBody(obj);
842}
843
844void Heap::DumpSpaces(std::ostream& stream) {
845  for (const auto& space : continuous_spaces_) {
846    accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
847    accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
848    stream << space << " " << *space << "\n";
849    if (live_bitmap != nullptr) {
850      stream << live_bitmap << " " << *live_bitmap << "\n";
851    }
852    if (mark_bitmap != nullptr) {
853      stream << mark_bitmap << " " << *mark_bitmap << "\n";
854    }
855  }
856  for (const auto& space : discontinuous_spaces_) {
857    stream << space << " " << *space << "\n";
858  }
859}
860
861void Heap::VerifyObjectBody(const mirror::Object* obj) {
862  CHECK(IsAligned<kObjectAlignment>(obj)) << "Object isn't aligned: " << obj;
863  // Ignore early dawn of the universe verifications.
864  if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_.Load()) < 10 * KB)) {
865    return;
866  }
867  const byte* raw_addr = reinterpret_cast<const byte*>(obj) +
868      mirror::Object::ClassOffset().Int32Value();
869  const mirror::Class* c = *reinterpret_cast<mirror::Class* const *>(raw_addr);
870  if (UNLIKELY(c == NULL)) {
871    LOG(FATAL) << "Null class in object: " << obj;
872  } else if (UNLIKELY(!IsAligned<kObjectAlignment>(c))) {
873    LOG(FATAL) << "Class isn't aligned: " << c << " in object: " << obj;
874  }
875  // Check obj.getClass().getClass() == obj.getClass().getClass().getClass()
876  // Note: we don't use the accessors here as they have internal sanity checks
877  // that we don't want to run
878  raw_addr = reinterpret_cast<const byte*>(c) + mirror::Object::ClassOffset().Int32Value();
879  const mirror::Class* c_c = *reinterpret_cast<mirror::Class* const *>(raw_addr);
880  raw_addr = reinterpret_cast<const byte*>(c_c) + mirror::Object::ClassOffset().Int32Value();
881  const mirror::Class* c_c_c = *reinterpret_cast<mirror::Class* const *>(raw_addr);
882  CHECK_EQ(c_c, c_c_c);
883
884  if (verify_object_mode_ > kVerifyAllFast) {
885    // TODO: the bitmap tests below are racy if VerifyObjectBody is called without the
886    //       heap_bitmap_lock_.
887    if (!IsLiveObjectLocked(obj)) {
888      DumpSpaces();
889      LOG(FATAL) << "Object is dead: " << obj;
890    }
891    if (!IsLiveObjectLocked(c)) {
892      LOG(FATAL) << "Class of object is dead: " << c << " in object: " << obj;
893    }
894  }
895}
896
897void Heap::VerificationCallback(mirror::Object* obj, void* arg) {
898  DCHECK(obj != NULL);
899  reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj);
900}
901
902void Heap::VerifyHeap() {
903  ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
904  GetLiveBitmap()->Walk(Heap::VerificationCallback, this);
905}
906
907void Heap::RecordFree(int64_t freed_objects, int64_t freed_bytes) {
908  DCHECK_LE(freed_bytes, num_bytes_allocated_.Load());
909  num_bytes_allocated_.FetchAndSub(freed_bytes);
910  if (Runtime::Current()->HasStatsEnabled()) {
911    RuntimeStats* thread_stats = Thread::Current()->GetStats();
912    thread_stats->freed_objects += freed_objects;
913    thread_stats->freed_bytes += freed_bytes;
914    // TODO: Do this concurrently.
915    RuntimeStats* global_stats = Runtime::Current()->GetStats();
916    global_stats->freed_objects += freed_objects;
917    global_stats->freed_bytes += freed_bytes;
918  }
919}
920
921mirror::Object* Heap::AllocateInternalWithGc(Thread* self, AllocatorType allocator,
922                                             size_t alloc_size, size_t* bytes_allocated,
923                                             mirror::Class** klass) {
924  mirror::Object* ptr = nullptr;
925  bool was_default_allocator = allocator == GetCurrentAllocator();
926  DCHECK(klass != nullptr);
927  SirtRef<mirror::Class> sirt_klass(self, *klass);
928  // The allocation failed. If the GC is running, block until it completes, and then retry the
929  // allocation.
930  collector::GcType last_gc = WaitForGcToComplete(self);
931  if (last_gc != collector::kGcTypeNone) {
932    // If we were the default allocator but the allocator changed while we were suspended,
933    // abort the allocation.
934    if (was_default_allocator && allocator != GetCurrentAllocator()) {
935      *klass = sirt_klass.get();
936      return nullptr;
937    }
938    // A GC was in progress and we blocked, retry allocation now that memory has been freed.
939    ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated);
940  }
941
942  // Loop through our different Gc types and try to Gc until we get enough free memory.
943  for (collector::GcType gc_type : gc_plan_) {
944    if (ptr != nullptr) {
945      break;
946    }
947    // Attempt to run the collector, if we succeed, re-try the allocation.
948    bool gc_ran =
949        CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
950    if (was_default_allocator && allocator != GetCurrentAllocator()) {
951      *klass = sirt_klass.get();
952      return nullptr;
953    }
954    if (gc_ran) {
955      // Did we free sufficient memory for the allocation to succeed?
956      ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated);
957    }
958  }
959  // Allocations have failed after GCs;  this is an exceptional state.
960  if (ptr == nullptr) {
961    // Try harder, growing the heap if necessary.
962    ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated);
963  }
964  if (ptr == nullptr) {
965    // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
966    // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
967    // VM spec requires that all SoftReferences have been collected and cleared before throwing
968    // OOME.
969    VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
970             << " allocation";
971    // TODO: Run finalization, but this may cause more allocations to occur.
972    // We don't need a WaitForGcToComplete here either.
973    DCHECK(!gc_plan_.empty());
974    CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true);
975    if (was_default_allocator && allocator != GetCurrentAllocator()) {
976      *klass = sirt_klass.get();
977      return nullptr;
978    }
979    ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated);
980    if (ptr == nullptr) {
981      ThrowOutOfMemoryError(self, alloc_size, false);
982    }
983  }
984  *klass = sirt_klass.get();
985  return ptr;
986}
987
988void Heap::SetTargetHeapUtilization(float target) {
989  DCHECK_GT(target, 0.0f);  // asserted in Java code
990  DCHECK_LT(target, 1.0f);
991  target_utilization_ = target;
992}
993
994size_t Heap::GetObjectsAllocated() const {
995  size_t total = 0;
996  for (space::AllocSpace* space : alloc_spaces_) {
997    total += space->GetObjectsAllocated();
998  }
999  return total;
1000}
1001
1002size_t Heap::GetObjectsAllocatedEver() const {
1003  return GetObjectsFreedEver() + GetObjectsAllocated();
1004}
1005
1006size_t Heap::GetBytesAllocatedEver() const {
1007  return GetBytesFreedEver() + GetBytesAllocated();
1008}
1009
1010class InstanceCounter {
1011 public:
1012  InstanceCounter(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, uint64_t* counts)
1013      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1014      : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) {
1015  }
1016
1017  void operator()(const mirror::Object* o) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1018    for (size_t i = 0; i < classes_.size(); ++i) {
1019      const mirror::Class* instance_class = o->GetClass();
1020      if (use_is_assignable_from_) {
1021        if (instance_class != NULL && classes_[i]->IsAssignableFrom(instance_class)) {
1022          ++counts_[i];
1023        }
1024      } else {
1025        if (instance_class == classes_[i]) {
1026          ++counts_[i];
1027        }
1028      }
1029    }
1030  }
1031
1032 private:
1033  const std::vector<mirror::Class*>& classes_;
1034  bool use_is_assignable_from_;
1035  uint64_t* const counts_;
1036
1037  DISALLOW_COPY_AND_ASSIGN(InstanceCounter);
1038};
1039
1040void Heap::CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
1041                          uint64_t* counts) {
1042  // We only want reachable instances, so do a GC. This also ensures that the alloc stack
1043  // is empty, so the live bitmap is the only place we need to look.
1044  Thread* self = Thread::Current();
1045  self->TransitionFromRunnableToSuspended(kNative);
1046  CollectGarbage(false);
1047  self->TransitionFromSuspendedToRunnable();
1048
1049  InstanceCounter counter(classes, use_is_assignable_from, counts);
1050  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1051  GetLiveBitmap()->Visit(counter);
1052}
1053
1054class InstanceCollector {
1055 public:
1056  InstanceCollector(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
1057      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1058      : class_(c), max_count_(max_count), instances_(instances) {
1059  }
1060
1061  void operator()(const mirror::Object* o) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1062    const mirror::Class* instance_class = o->GetClass();
1063    if (instance_class == class_) {
1064      if (max_count_ == 0 || instances_.size() < max_count_) {
1065        instances_.push_back(const_cast<mirror::Object*>(o));
1066      }
1067    }
1068  }
1069
1070 private:
1071  mirror::Class* class_;
1072  uint32_t max_count_;
1073  std::vector<mirror::Object*>& instances_;
1074
1075  DISALLOW_COPY_AND_ASSIGN(InstanceCollector);
1076};
1077
1078void Heap::GetInstances(mirror::Class* c, int32_t max_count,
1079                        std::vector<mirror::Object*>& instances) {
1080  // We only want reachable instances, so do a GC. This also ensures that the alloc stack
1081  // is empty, so the live bitmap is the only place we need to look.
1082  Thread* self = Thread::Current();
1083  self->TransitionFromRunnableToSuspended(kNative);
1084  CollectGarbage(false);
1085  self->TransitionFromSuspendedToRunnable();
1086
1087  InstanceCollector collector(c, max_count, instances);
1088  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1089  GetLiveBitmap()->Visit(collector);
1090}
1091
1092class ReferringObjectsFinder {
1093 public:
1094  ReferringObjectsFinder(mirror::Object* object, int32_t max_count,
1095                         std::vector<mirror::Object*>& referring_objects)
1096      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1097      : object_(object), max_count_(max_count), referring_objects_(referring_objects) {
1098  }
1099
1100  // For bitmap Visit.
1101  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
1102  // annotalysis on visitors.
1103  void operator()(const mirror::Object* o) const NO_THREAD_SAFETY_ANALYSIS {
1104    collector::MarkSweep::VisitObjectReferences(const_cast<mirror::Object*>(o), *this, true);
1105  }
1106
1107  // For MarkSweep::VisitObjectReferences.
1108  void operator()(mirror::Object* referrer, mirror::Object* object,
1109                  const MemberOffset&, bool) const {
1110    if (object == object_ && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
1111      referring_objects_.push_back(referrer);
1112    }
1113  }
1114
1115 private:
1116  mirror::Object* object_;
1117  uint32_t max_count_;
1118  std::vector<mirror::Object*>& referring_objects_;
1119
1120  DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
1121};
1122
1123void Heap::GetReferringObjects(mirror::Object* o, int32_t max_count,
1124                               std::vector<mirror::Object*>& referring_objects) {
1125  // We only want reachable instances, so do a GC. This also ensures that the alloc stack
1126  // is empty, so the live bitmap is the only place we need to look.
1127  Thread* self = Thread::Current();
1128  self->TransitionFromRunnableToSuspended(kNative);
1129  CollectGarbage(false);
1130  self->TransitionFromSuspendedToRunnable();
1131
1132  ReferringObjectsFinder finder(o, max_count, referring_objects);
1133  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1134  GetLiveBitmap()->Visit(finder);
1135}
1136
1137void Heap::CollectGarbage(bool clear_soft_references) {
1138  // Even if we waited for a GC we still need to do another GC since weaks allocated during the
1139  // last GC will not have necessarily been cleared.
1140  CollectGarbageInternal(gc_plan_.back(), kGcCauseExplicit, clear_soft_references);
1141}
1142
1143void Heap::TransitionCollector(CollectorType collector_type) {
1144  if (collector_type == collector_type_) {
1145    return;
1146  }
1147  uint64_t start_time = NanoTime();
1148  int32_t before_size  = GetTotalMemory();
1149  int32_t before_allocated = num_bytes_allocated_.Load();
1150  ThreadList* tl = Runtime::Current()->GetThreadList();
1151  Thread* self = Thread::Current();
1152  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1153  Locks::mutator_lock_->AssertNotHeld(self);
1154  // Busy wait until we can GC (StartGC can fail if we have a non-zero gc_disable_count_, this
1155  // rarely occurs however).
1156  while (!StartGC(self)) {
1157    usleep(100);
1158  }
1159  tl->SuspendAll();
1160  switch (collector_type) {
1161    case kCollectorTypeSS: {
1162      mprotect(temp_space_->Begin(), temp_space_->Capacity(), PROT_READ | PROT_WRITE);
1163      space::MallocSpace* main_space;
1164      if (rosalloc_space_ != nullptr) {
1165        DCHECK(kUseRosAlloc);
1166        main_space = rosalloc_space_;
1167      } else {
1168        DCHECK(dlmalloc_space_ != nullptr);
1169        main_space = dlmalloc_space_;
1170      }
1171      Compact(temp_space_, main_space);
1172      DCHECK(allocator_mem_map_.get() == nullptr);
1173      allocator_mem_map_.reset(main_space->ReleaseMemMap());
1174      madvise(main_space->Begin(), main_space->Size(), MADV_DONTNEED);
1175      RemoveSpace(main_space);
1176      break;
1177    }
1178    case kCollectorTypeMS:
1179      // Fall through.
1180    case kCollectorTypeCMS: {
1181      if (collector_type_ == kCollectorTypeSS) {
1182        // TODO: Use mem-map from temp space?
1183        MemMap* mem_map = allocator_mem_map_.release();
1184        CHECK(mem_map != nullptr);
1185        size_t initial_size = kDefaultInitialSize;
1186        mprotect(mem_map->Begin(), initial_size, PROT_READ | PROT_WRITE);
1187        space::MallocSpace* malloc_space;
1188        if (kUseRosAlloc) {
1189          malloc_space =
1190              space::RosAllocSpace::CreateFromMemMap(mem_map, "alloc space", kPageSize,
1191                                                     initial_size, mem_map->Size(),
1192                                                     mem_map->Size(), low_memory_mode_);
1193        } else {
1194          malloc_space =
1195              space::DlMallocSpace::CreateFromMemMap(mem_map, "alloc space", kPageSize,
1196                                                     initial_size, mem_map->Size(),
1197                                                     mem_map->Size());
1198        }
1199        malloc_space->SetFootprintLimit(malloc_space->Capacity());
1200        AddSpace(malloc_space);
1201        Compact(malloc_space, bump_pointer_space_);
1202      }
1203      break;
1204    }
1205    default: {
1206      LOG(FATAL) << "Attempted to transition to invalid collector type";
1207      break;
1208    }
1209  }
1210  ChangeCollector(collector_type);
1211  tl->ResumeAll();
1212  // Can't call into java code with all threads suspended.
1213  EnqueueClearedReferences();
1214  uint64_t duration = NanoTime() - start_time;
1215  GrowForUtilization(collector::kGcTypeFull, duration);
1216  FinishGC(self, collector::kGcTypeFull);
1217  int32_t after_size = GetTotalMemory();
1218  int32_t delta_size = before_size - after_size;
1219  int32_t after_allocated = num_bytes_allocated_.Load();
1220  int32_t delta_allocated = before_allocated - after_allocated;
1221  const std::string saved_bytes_str =
1222      delta_size < 0 ? "-" + PrettySize(-delta_size) : PrettySize(delta_size);
1223  LOG(INFO) << "Heap transition to " << process_state_ << " took "
1224      << PrettyDuration(duration) << " " << PrettySize(before_size) << "->"
1225      << PrettySize(after_size) << " from " << PrettySize(delta_allocated) << " to "
1226      << PrettySize(delta_size) << " saved";
1227}
1228
1229void Heap::ChangeCollector(CollectorType collector_type) {
1230  // TODO: Only do this with all mutators suspended to avoid races.
1231  if (collector_type != collector_type_) {
1232    collector_type_ = collector_type;
1233    gc_plan_.clear();
1234    switch (collector_type_) {
1235      case kCollectorTypeSS: {
1236        concurrent_gc_ = false;
1237        gc_plan_.push_back(collector::kGcTypeFull);
1238        if (use_tlab_) {
1239          ChangeAllocator(kAllocatorTypeTLAB);
1240        } else {
1241          ChangeAllocator(kAllocatorTypeBumpPointer);
1242        }
1243        break;
1244      }
1245      case kCollectorTypeMS: {
1246        concurrent_gc_ = false;
1247        gc_plan_.push_back(collector::kGcTypeSticky);
1248        gc_plan_.push_back(collector::kGcTypePartial);
1249        gc_plan_.push_back(collector::kGcTypeFull);
1250        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1251        break;
1252      }
1253      case kCollectorTypeCMS: {
1254        concurrent_gc_ = true;
1255        gc_plan_.push_back(collector::kGcTypeSticky);
1256        gc_plan_.push_back(collector::kGcTypePartial);
1257        gc_plan_.push_back(collector::kGcTypeFull);
1258        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1259        break;
1260      }
1261      default: {
1262        LOG(FATAL) << "Unimplemented";
1263      }
1264    }
1265    if (concurrent_gc_) {
1266      concurrent_start_bytes_ =
1267          std::max(max_allowed_footprint_, kMinConcurrentRemainingBytes) - kMinConcurrentRemainingBytes;
1268    } else {
1269      concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
1270    }
1271  }
1272}
1273
1274static void MarkInBitmapCallback(mirror::Object* obj, void* arg) {
1275  reinterpret_cast<accounting::SpaceBitmap*>(arg)->Set(obj);
1276}
1277
1278void Heap::PreZygoteFork() {
1279  static Mutex zygote_creation_lock_("zygote creation lock", kZygoteCreationLock);
1280  Thread* self = Thread::Current();
1281  MutexLock mu(self, zygote_creation_lock_);
1282  // Try to see if we have any Zygote spaces.
1283  if (have_zygote_space_) {
1284    return;
1285  }
1286  VLOG(heap) << "Starting PreZygoteFork";
1287  CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
1288  // Trim the pages at the end of the non moving space.
1289  non_moving_space_->Trim();
1290  non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1291  // Change the collector to the post zygote one.
1292  ChangeCollector(post_zygote_collector_type_);
1293  // TODO: Delete bump_pointer_space_ and temp_pointer_space_?
1294  if (semi_space_collector_ != nullptr) {
1295    // Create a new bump pointer space which we will compact into.
1296    space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
1297                                         non_moving_space_->Limit());
1298    // Compact the bump pointer space to a new zygote bump pointer space.
1299    temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1300    Compact(&target_space, bump_pointer_space_);
1301    CHECK(temp_space_->IsEmpty());
1302    total_objects_freed_ever_ += semi_space_collector_->GetFreedObjects();
1303    total_bytes_freed_ever_ += semi_space_collector_->GetFreedBytes();
1304    // Update the end and write out image.
1305    non_moving_space_->SetEnd(target_space.End());
1306    non_moving_space_->SetLimit(target_space.Limit());
1307    accounting::SpaceBitmap* bitmap = non_moving_space_->GetLiveBitmap();
1308    // Record the allocations in the bitmap.
1309    VLOG(heap) << "Recording zygote allocations";
1310    target_space.Walk(MarkInBitmapCallback, bitmap);
1311  }
1312  // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
1313  // the remaining available heap memory.
1314  space::MallocSpace* zygote_space = non_moving_space_;
1315  non_moving_space_ = non_moving_space_->CreateZygoteSpace("alloc space", low_memory_mode_);
1316  if (non_moving_space_->IsRosAllocSpace()) {
1317    rosalloc_space_ = non_moving_space_->AsRosAllocSpace();
1318  } else if (non_moving_space_->IsDlMallocSpace()) {
1319    dlmalloc_space_ = non_moving_space_->AsDlMallocSpace();
1320  }
1321  // Can't use RosAlloc for non moving space due to thread local buffers.
1322  non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
1323  // Change the GC retention policy of the zygote space to only collect when full.
1324  zygote_space->SetGcRetentionPolicy(space::kGcRetentionPolicyFullCollect);
1325  AddSpace(non_moving_space_);
1326  have_zygote_space_ = true;
1327  zygote_space->InvalidateAllocator();
1328  // Create the zygote space mod union table.
1329  accounting::ModUnionTable* mod_union_table =
1330      new accounting::ModUnionTableCardCache("zygote space mod-union table", this, zygote_space);
1331  CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
1332  AddModUnionTable(mod_union_table);
1333  // Reset the cumulative loggers since we now have a few additional timing phases.
1334  for (const auto& collector : garbage_collectors_) {
1335    collector->ResetCumulativeStatistics();
1336  }
1337  // TODO: Not limited space for non-movable objects?
1338  space::MallocSpace* new_non_moving_space
1339      = space::DlMallocSpace::Create("Non moving dlmalloc space", 2 * MB, 64 * MB, 64 * MB,
1340                                     nullptr);
1341  AddSpace(new_non_moving_space, false);
1342  CHECK(new_non_moving_space != nullptr) << "Failed to create new non-moving space";
1343  new_non_moving_space->SetFootprintLimit(new_non_moving_space->Capacity());
1344  non_moving_space_ = new_non_moving_space;
1345}
1346
1347void Heap::FlushAllocStack() {
1348  MarkAllocStackAsLive(allocation_stack_.get());
1349  allocation_stack_->Reset();
1350}
1351
1352void Heap::MarkAllocStack(accounting::SpaceBitmap* bitmap1,
1353                          accounting::SpaceBitmap* bitmap2,
1354                          accounting::SpaceSetMap* large_objects,
1355                          accounting::ObjectStack* stack) {
1356  DCHECK(bitmap1 != nullptr);
1357  DCHECK(bitmap2 != nullptr);
1358  mirror::Object** limit = stack->End();
1359  for (mirror::Object** it = stack->Begin(); it != limit; ++it) {
1360    const mirror::Object* obj = *it;
1361    DCHECK(obj != nullptr);
1362    if (bitmap1->HasAddress(obj)) {
1363      bitmap1->Set(obj);
1364    } else if (bitmap2->HasAddress(obj)) {
1365      bitmap2->Set(obj);
1366    } else {
1367      large_objects->Set(obj);
1368    }
1369  }
1370}
1371
1372const char* PrettyCause(GcCause cause) {
1373  switch (cause) {
1374    case kGcCauseForAlloc: return "Alloc";
1375    case kGcCauseBackground: return "Background";
1376    case kGcCauseExplicit: return "Explicit";
1377    default:
1378      LOG(FATAL) << "Unreachable";
1379  }
1380  return "";
1381}
1382
1383void Heap::SwapSemiSpaces() {
1384  // Swap the spaces so we allocate into the space which we just evacuated.
1385  std::swap(bump_pointer_space_, temp_space_);
1386}
1387
1388void Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
1389                   space::ContinuousMemMapAllocSpace* source_space) {
1390  CHECK(kMovingCollector);
1391  CHECK_NE(target_space, source_space) << "In-place compaction currently unsupported";
1392  if (target_space != source_space) {
1393    semi_space_collector_->SetFromSpace(source_space);
1394    semi_space_collector_->SetToSpace(target_space);
1395    semi_space_collector_->Run(false);
1396  }
1397}
1398
1399collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type, GcCause gc_cause,
1400                                               bool clear_soft_references) {
1401  Thread* self = Thread::Current();
1402  Runtime* runtime = Runtime::Current();
1403  // If the heap can't run the GC, silently fail and return that no GC was run.
1404  switch (gc_type) {
1405    case collector::kGcTypePartial: {
1406      if (!have_zygote_space_) {
1407        return collector::kGcTypeNone;
1408      }
1409      break;
1410    }
1411    default: {
1412      // Other GC types don't have any special cases which makes them not runnable. The main case
1413      // here is full GC.
1414    }
1415  }
1416  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1417  Locks::mutator_lock_->AssertNotHeld(self);
1418  if (self->IsHandlingStackOverflow()) {
1419    LOG(WARNING) << "Performing GC on a thread that is handling a stack overflow.";
1420  }
1421  gc_complete_lock_->AssertNotHeld(self);
1422  if (!StartGC(self)) {
1423    return collector::kGcTypeNone;
1424  }
1425  if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
1426    ++runtime->GetStats()->gc_for_alloc_count;
1427    ++self->GetStats()->gc_for_alloc_count;
1428  }
1429  uint64_t gc_start_time_ns = NanoTime();
1430  uint64_t gc_start_size = GetBytesAllocated();
1431  // Approximate allocation rate in bytes / second.
1432  uint64_t ms_delta = NsToMs(gc_start_time_ns - last_gc_time_ns_);
1433  // Back to back GCs can cause 0 ms of wait time in between GC invocations.
1434  if (LIKELY(ms_delta != 0)) {
1435    allocation_rate_ = ((gc_start_size - last_gc_size_) * 1000) / ms_delta;
1436    VLOG(heap) << "Allocation rate: " << PrettySize(allocation_rate_) << "/s";
1437  }
1438
1439  DCHECK_LT(gc_type, collector::kGcTypeMax);
1440  DCHECK_NE(gc_type, collector::kGcTypeNone);
1441
1442  collector::GarbageCollector* collector = nullptr;
1443  // TODO: Clean this up.
1444  if (collector_type_ == kCollectorTypeSS) {
1445    DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
1446           current_allocator_ == kAllocatorTypeTLAB);
1447    gc_type = semi_space_collector_->GetGcType();
1448    CHECK(temp_space_->IsEmpty());
1449    semi_space_collector_->SetFromSpace(bump_pointer_space_);
1450    semi_space_collector_->SetToSpace(temp_space_);
1451    mprotect(temp_space_->Begin(), temp_space_->Capacity(), PROT_READ | PROT_WRITE);
1452    collector = semi_space_collector_;
1453    gc_type = collector::kGcTypeFull;
1454  } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
1455      current_allocator_ == kAllocatorTypeDlMalloc) {
1456    for (const auto& cur_collector : garbage_collectors_) {
1457      if (cur_collector->IsConcurrent() == concurrent_gc_ &&
1458          cur_collector->GetGcType() == gc_type) {
1459        collector = cur_collector;
1460        break;
1461      }
1462    }
1463  } else {
1464    LOG(FATAL) << "Invalid current allocator " << current_allocator_;
1465  }
1466  CHECK(collector != nullptr)
1467      << "Could not find garbage collector with concurrent=" << concurrent_gc_
1468      << " and type=" << gc_type;
1469
1470  ATRACE_BEGIN(StringPrintf("%s %s GC", PrettyCause(gc_cause), collector->GetName()).c_str());
1471
1472  collector->Run(clear_soft_references);
1473  total_objects_freed_ever_ += collector->GetFreedObjects();
1474  total_bytes_freed_ever_ += collector->GetFreedBytes();
1475
1476  // Enqueue cleared references.
1477  Locks::mutator_lock_->AssertNotHeld(self);
1478  EnqueueClearedReferences();
1479
1480  // Grow the heap so that we know when to perform the next GC.
1481  GrowForUtilization(gc_type, collector->GetDurationNs());
1482
1483  if (CareAboutPauseTimes()) {
1484    const size_t duration = collector->GetDurationNs();
1485    std::vector<uint64_t> pauses = collector->GetPauseTimes();
1486    // GC for alloc pauses the allocating thread, so consider it as a pause.
1487    bool was_slow = duration > long_gc_log_threshold_ ||
1488        (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
1489    if (!was_slow) {
1490      for (uint64_t pause : pauses) {
1491        was_slow = was_slow || pause > long_pause_log_threshold_;
1492      }
1493    }
1494    if (was_slow) {
1495        const size_t percent_free = GetPercentFree();
1496        const size_t current_heap_size = GetBytesAllocated();
1497        const size_t total_memory = GetTotalMemory();
1498        std::ostringstream pause_string;
1499        for (size_t i = 0; i < pauses.size(); ++i) {
1500            pause_string << PrettyDuration((pauses[i] / 1000) * 1000)
1501                         << ((i != pauses.size() - 1) ? ", " : "");
1502        }
1503        LOG(INFO) << gc_cause << " " << collector->GetName()
1504                  << " GC freed "  <<  collector->GetFreedObjects() << "("
1505                  << PrettySize(collector->GetFreedBytes()) << ") AllocSpace objects, "
1506                  << collector->GetFreedLargeObjects() << "("
1507                  << PrettySize(collector->GetFreedLargeObjectBytes()) << ") LOS objects, "
1508                  << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
1509                  << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
1510                  << " total " << PrettyDuration((duration / 1000) * 1000);
1511        if (VLOG_IS_ON(heap)) {
1512            LOG(INFO) << Dumpable<TimingLogger>(collector->GetTimings());
1513        }
1514    }
1515  }
1516  FinishGC(self, gc_type);
1517  ATRACE_END();
1518
1519  // Inform DDMS that a GC completed.
1520  Dbg::GcDidFinish();
1521  return gc_type;
1522}
1523
1524bool Heap::StartGC(Thread* self) {
1525  MutexLock mu(self, *gc_complete_lock_);
1526  // Ensure there is only one GC at a time.
1527  WaitForGcToCompleteLocked(self);
1528  // TODO: if another thread beat this one to do the GC, perhaps we should just return here?
1529  //       Not doing at the moment to ensure soft references are cleared.
1530  // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
1531  if (gc_disable_count_ != 0) {
1532    LOG(WARNING) << "Skipping GC due to disable count " << gc_disable_count_;
1533    return false;
1534  }
1535  is_gc_running_ = true;
1536  return true;
1537}
1538
1539void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
1540  MutexLock mu(self, *gc_complete_lock_);
1541  is_gc_running_ = false;
1542  last_gc_type_ = gc_type;
1543  // Wake anyone who may have been waiting for the GC to complete.
1544  gc_complete_cond_->Broadcast(self);
1545}
1546
1547static mirror::Object* RootMatchesObjectVisitor(mirror::Object* root, void* arg) {
1548  mirror::Object* obj = reinterpret_cast<mirror::Object*>(arg);
1549  if (root == obj) {
1550    LOG(INFO) << "Object " << obj << " is a root";
1551  }
1552  return root;
1553}
1554
1555class ScanVisitor {
1556 public:
1557  void operator()(const mirror::Object* obj) const {
1558    LOG(ERROR) << "Would have rescanned object " << obj;
1559  }
1560};
1561
1562// Verify a reference from an object.
1563class VerifyReferenceVisitor {
1564 public:
1565  explicit VerifyReferenceVisitor(Heap* heap)
1566      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
1567      : heap_(heap), failed_(false) {}
1568
1569  bool Failed() const {
1570    return failed_;
1571  }
1572
1573  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for smarter
1574  // analysis on visitors.
1575  void operator()(const mirror::Object* obj, const mirror::Object* ref,
1576                  const MemberOffset& offset, bool /* is_static */) const
1577      NO_THREAD_SAFETY_ANALYSIS {
1578    // Verify that the reference is live.
1579    if (UNLIKELY(ref != NULL && !IsLive(ref))) {
1580      accounting::CardTable* card_table = heap_->GetCardTable();
1581      accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
1582      accounting::ObjectStack* live_stack = heap_->live_stack_.get();
1583      if (!failed_) {
1584        // Print message on only on first failure to prevent spam.
1585        LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
1586        failed_ = true;
1587      }
1588      if (obj != nullptr) {
1589        byte* card_addr = card_table->CardFromAddr(obj);
1590        LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
1591                   << offset << "\n card value = " << static_cast<int>(*card_addr);
1592        if (heap_->IsValidObjectAddress(obj->GetClass())) {
1593          LOG(ERROR) << "Obj type " << PrettyTypeOf(obj);
1594        } else {
1595          LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
1596        }
1597
1598        // Attmept to find the class inside of the recently freed objects.
1599        space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
1600        if (ref_space != nullptr && ref_space->IsMallocSpace()) {
1601          space::MallocSpace* space = ref_space->AsMallocSpace();
1602          mirror::Class* ref_class = space->FindRecentFreedObject(ref);
1603          if (ref_class != nullptr) {
1604            LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
1605                       << PrettyClass(ref_class);
1606          } else {
1607            LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
1608          }
1609        }
1610
1611        if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
1612            ref->GetClass()->IsClass()) {
1613          LOG(ERROR) << "Ref type " << PrettyTypeOf(ref);
1614        } else {
1615          LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
1616                     << ") is not a valid heap address";
1617        }
1618
1619        card_table->CheckAddrIsInCardTable(reinterpret_cast<const byte*>(obj));
1620        void* cover_begin = card_table->AddrFromCard(card_addr);
1621        void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
1622            accounting::CardTable::kCardSize);
1623        LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
1624            << "-" << cover_end;
1625        accounting::SpaceBitmap* bitmap = heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
1626
1627        // Print out how the object is live.
1628        if (bitmap != NULL && bitmap->Test(obj)) {
1629          LOG(ERROR) << "Object " << obj << " found in live bitmap";
1630        }
1631        if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
1632          LOG(ERROR) << "Object " << obj << " found in allocation stack";
1633        }
1634        if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
1635          LOG(ERROR) << "Object " << obj << " found in live stack";
1636        }
1637        if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
1638          LOG(ERROR) << "Ref " << ref << " found in allocation stack";
1639        }
1640        if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
1641          LOG(ERROR) << "Ref " << ref << " found in live stack";
1642        }
1643        // Attempt to see if the card table missed the reference.
1644        ScanVisitor scan_visitor;
1645        byte* byte_cover_begin = reinterpret_cast<byte*>(card_table->AddrFromCard(card_addr));
1646        card_table->Scan(bitmap, byte_cover_begin,
1647                         byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
1648
1649        // Search to see if any of the roots reference our object.
1650        void* arg = const_cast<void*>(reinterpret_cast<const void*>(obj));
1651        Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg, false, false);
1652
1653        // Search to see if any of the roots reference our reference.
1654        arg = const_cast<void*>(reinterpret_cast<const void*>(ref));
1655        Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg, false, false);
1656      } else {
1657        LOG(ERROR) << "Root references dead object " << ref << "\nRef type " << PrettyTypeOf(ref);
1658      }
1659    }
1660  }
1661
1662  bool IsLive(const mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
1663    return heap_->IsLiveObjectLocked(obj, true, false, true);
1664  }
1665
1666  static mirror::Object* VerifyRoots(mirror::Object* root, void* arg) {
1667    VerifyReferenceVisitor* visitor = reinterpret_cast<VerifyReferenceVisitor*>(arg);
1668    (*visitor)(nullptr, root, MemberOffset(0), true);
1669    return root;
1670  }
1671
1672 private:
1673  Heap* const heap_;
1674  mutable bool failed_;
1675};
1676
1677// Verify all references within an object, for use with HeapBitmap::Visit.
1678class VerifyObjectVisitor {
1679 public:
1680  explicit VerifyObjectVisitor(Heap* heap) : heap_(heap), failed_(false) {}
1681
1682  void operator()(mirror::Object* obj) const
1683      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1684    // Note: we are verifying the references in obj but not obj itself, this is because obj must
1685    // be live or else how did we find it in the live bitmap?
1686    VerifyReferenceVisitor visitor(heap_);
1687    // The class doesn't count as a reference but we should verify it anyways.
1688    collector::MarkSweep::VisitObjectReferences(obj, visitor, true);
1689    if (obj->GetClass()->IsReferenceClass()) {
1690      visitor(obj, heap_->GetReferenceReferent(obj), MemberOffset(0), false);
1691    }
1692    failed_ = failed_ || visitor.Failed();
1693  }
1694
1695  static void VisitCallback(mirror::Object* obj, void* arg)
1696      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1697    VerifyObjectVisitor* visitor = reinterpret_cast<VerifyObjectVisitor*>(arg);
1698    visitor->operator()(obj);
1699  }
1700
1701  bool Failed() const {
1702    return failed_;
1703  }
1704
1705 private:
1706  Heap* const heap_;
1707  mutable bool failed_;
1708};
1709
1710// Must do this with mutators suspended since we are directly accessing the allocation stacks.
1711bool Heap::VerifyHeapReferences() {
1712  Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
1713  // Lets sort our allocation stacks so that we can efficiently binary search them.
1714  allocation_stack_->Sort();
1715  live_stack_->Sort();
1716  VerifyObjectVisitor visitor(this);
1717  // Verify objects in the allocation stack since these will be objects which were:
1718  // 1. Allocated prior to the GC (pre GC verification).
1719  // 2. Allocated during the GC (pre sweep GC verification).
1720  // We don't want to verify the objects in the live stack since they themselves may be
1721  // pointing to dead objects if they are not reachable.
1722  VisitObjects(VerifyObjectVisitor::VisitCallback, &visitor);
1723  // Verify the roots:
1724  Runtime::Current()->VisitRoots(VerifyReferenceVisitor::VerifyRoots, &visitor, false, false);
1725  if (visitor.Failed()) {
1726    // Dump mod-union tables.
1727    for (const auto& table_pair : mod_union_tables_) {
1728      accounting::ModUnionTable* mod_union_table = table_pair.second;
1729      mod_union_table->Dump(LOG(ERROR) << mod_union_table->GetName() << ": ");
1730    }
1731    DumpSpaces();
1732    return false;
1733  }
1734  return true;
1735}
1736
1737class VerifyReferenceCardVisitor {
1738 public:
1739  VerifyReferenceCardVisitor(Heap* heap, bool* failed)
1740      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_,
1741                            Locks::heap_bitmap_lock_)
1742      : heap_(heap), failed_(failed) {
1743  }
1744
1745  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
1746  // annotalysis on visitors.
1747  void operator()(const mirror::Object* obj, const mirror::Object* ref, const MemberOffset& offset,
1748                  bool is_static) const NO_THREAD_SAFETY_ANALYSIS {
1749    // Filter out class references since changing an object's class does not mark the card as dirty.
1750    // Also handles large objects, since the only reference they hold is a class reference.
1751    if (ref != NULL && !ref->IsClass()) {
1752      accounting::CardTable* card_table = heap_->GetCardTable();
1753      // If the object is not dirty and it is referencing something in the live stack other than
1754      // class, then it must be on a dirty card.
1755      if (!card_table->AddrIsInCardTable(obj)) {
1756        LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
1757        *failed_ = true;
1758      } else if (!card_table->IsDirty(obj)) {
1759        // Card should be either kCardDirty if it got re-dirtied after we aged it, or
1760        // kCardDirty - 1 if it didnt get touched since we aged it.
1761        accounting::ObjectStack* live_stack = heap_->live_stack_.get();
1762        if (live_stack->ContainsSorted(const_cast<mirror::Object*>(ref))) {
1763          if (live_stack->ContainsSorted(const_cast<mirror::Object*>(obj))) {
1764            LOG(ERROR) << "Object " << obj << " found in live stack";
1765          }
1766          if (heap_->GetLiveBitmap()->Test(obj)) {
1767            LOG(ERROR) << "Object " << obj << " found in live bitmap";
1768          }
1769          LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj)
1770                    << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack";
1771
1772          // Print which field of the object is dead.
1773          if (!obj->IsObjectArray()) {
1774            const mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass();
1775            CHECK(klass != NULL);
1776            const mirror::ObjectArray<mirror::ArtField>* fields = is_static ? klass->GetSFields()
1777                                                                            : klass->GetIFields();
1778            CHECK(fields != NULL);
1779            for (int32_t i = 0; i < fields->GetLength(); ++i) {
1780              const mirror::ArtField* cur = fields->Get(i);
1781              if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
1782                LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
1783                          << PrettyField(cur);
1784                break;
1785              }
1786            }
1787          } else {
1788            const mirror::ObjectArray<mirror::Object>* object_array =
1789                obj->AsObjectArray<mirror::Object>();
1790            for (int32_t i = 0; i < object_array->GetLength(); ++i) {
1791              if (object_array->Get(i) == ref) {
1792                LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
1793              }
1794            }
1795          }
1796
1797          *failed_ = true;
1798        }
1799      }
1800    }
1801  }
1802
1803 private:
1804  Heap* const heap_;
1805  bool* const failed_;
1806};
1807
1808class VerifyLiveStackReferences {
1809 public:
1810  explicit VerifyLiveStackReferences(Heap* heap)
1811      : heap_(heap),
1812        failed_(false) {}
1813
1814  void operator()(mirror::Object* obj) const
1815      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1816    VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
1817    collector::MarkSweep::VisitObjectReferences(const_cast<mirror::Object*>(obj), visitor, true);
1818  }
1819
1820  bool Failed() const {
1821    return failed_;
1822  }
1823
1824 private:
1825  Heap* const heap_;
1826  bool failed_;
1827};
1828
1829bool Heap::VerifyMissingCardMarks() {
1830  Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
1831
1832  // We need to sort the live stack since we binary search it.
1833  live_stack_->Sort();
1834  VerifyLiveStackReferences visitor(this);
1835  GetLiveBitmap()->Visit(visitor);
1836
1837  // We can verify objects in the live stack since none of these should reference dead objects.
1838  for (mirror::Object** it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
1839    visitor(*it);
1840  }
1841
1842  if (visitor.Failed()) {
1843    DumpSpaces();
1844    return false;
1845  }
1846  return true;
1847}
1848
1849void Heap::SwapStacks() {
1850  allocation_stack_.swap(live_stack_);
1851}
1852
1853accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
1854  auto it = mod_union_tables_.find(space);
1855  if (it == mod_union_tables_.end()) {
1856    return nullptr;
1857  }
1858  return it->second;
1859}
1860
1861void Heap::ProcessCards(TimingLogger& timings) {
1862  // Clear cards and keep track of cards cleared in the mod-union table.
1863  for (const auto& space : continuous_spaces_) {
1864    accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
1865    if (table != nullptr) {
1866      const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
1867          "ImageModUnionClearCards";
1868      TimingLogger::ScopedSplit split(name, &timings);
1869      table->ClearCards();
1870    } else if (space->GetType() != space::kSpaceTypeBumpPointerSpace) {
1871      TimingLogger::ScopedSplit split("AllocSpaceClearCards", &timings);
1872      // No mod union table for the AllocSpace. Age the cards so that the GC knows that these cards
1873      // were dirty before the GC started.
1874      // TODO: Don't need to use atomic.
1875      // The races are we either end up with: Aged card, unaged card. Since we have the checkpoint
1876      // roots and then we scan / update mod union tables after. We will always scan either card.//
1877      // If we end up with the non aged card, we scan it it in the pause.
1878      card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(), VoidFunctor());
1879    }
1880  }
1881}
1882
1883static mirror::Object* IdentityCallback(mirror::Object* obj, void*) {
1884  return obj;
1885}
1886
1887void Heap::PreGcVerification(collector::GarbageCollector* gc) {
1888  ThreadList* thread_list = Runtime::Current()->GetThreadList();
1889  Thread* self = Thread::Current();
1890
1891  if (verify_pre_gc_heap_) {
1892    thread_list->SuspendAll();
1893    {
1894      ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1895      if (!VerifyHeapReferences()) {
1896        LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed";
1897      }
1898    }
1899    thread_list->ResumeAll();
1900  }
1901
1902  // Check that all objects which reference things in the live stack are on dirty cards.
1903  if (verify_missing_card_marks_) {
1904    thread_list->SuspendAll();
1905    {
1906      ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1907      SwapStacks();
1908      // Sort the live stack so that we can quickly binary search it later.
1909      if (!VerifyMissingCardMarks()) {
1910        LOG(FATAL) << "Pre " << gc->GetName() << " missing card mark verification failed";
1911      }
1912      SwapStacks();
1913    }
1914    thread_list->ResumeAll();
1915  }
1916
1917  if (verify_mod_union_table_) {
1918    thread_list->SuspendAll();
1919    ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
1920    for (const auto& table_pair : mod_union_tables_) {
1921      accounting::ModUnionTable* mod_union_table = table_pair.second;
1922      mod_union_table->UpdateAndMarkReferences(IdentityCallback, nullptr);
1923      mod_union_table->Verify();
1924    }
1925    thread_list->ResumeAll();
1926  }
1927}
1928
1929void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
1930  // Called before sweeping occurs since we want to make sure we are not going so reclaim any
1931  // reachable objects.
1932  if (verify_post_gc_heap_) {
1933    Thread* self = Thread::Current();
1934    CHECK_NE(self->GetState(), kRunnable);
1935    {
1936      WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1937      // Swapping bound bitmaps does nothing.
1938      gc->SwapBitmaps();
1939      if (!VerifyHeapReferences()) {
1940        LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed";
1941      }
1942      gc->SwapBitmaps();
1943    }
1944  }
1945}
1946
1947void Heap::PostGcVerification(collector::GarbageCollector* gc) {
1948  if (verify_system_weaks_) {
1949    Thread* self = Thread::Current();
1950    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1951    collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
1952    mark_sweep->VerifySystemWeaks();
1953  }
1954}
1955
1956collector::GcType Heap::WaitForGcToComplete(Thread* self) {
1957  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1958  MutexLock mu(self, *gc_complete_lock_);
1959  return WaitForGcToCompleteLocked(self);
1960}
1961
1962collector::GcType Heap::WaitForGcToCompleteLocked(Thread* self) {
1963  collector::GcType last_gc_type = collector::kGcTypeNone;
1964  uint64_t wait_start = NanoTime();
1965  while (is_gc_running_) {
1966    ATRACE_BEGIN("GC: Wait For Completion");
1967    // We must wait, change thread state then sleep on gc_complete_cond_;
1968    gc_complete_cond_->Wait(self);
1969    last_gc_type = last_gc_type_;
1970    ATRACE_END();
1971  }
1972  uint64_t wait_time = NanoTime() - wait_start;
1973  total_wait_time_ += wait_time;
1974  if (wait_time > long_pause_log_threshold_) {
1975    LOG(INFO) << "WaitForGcToComplete blocked for " << PrettyDuration(wait_time);
1976  }
1977  return last_gc_type;
1978}
1979
1980void Heap::DumpForSigQuit(std::ostream& os) {
1981  os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
1982     << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
1983  DumpGcPerformanceInfo(os);
1984}
1985
1986size_t Heap::GetPercentFree() {
1987  return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / GetTotalMemory());
1988}
1989
1990void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
1991  if (max_allowed_footprint > GetMaxMemory()) {
1992    VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to "
1993             << PrettySize(GetMaxMemory());
1994    max_allowed_footprint = GetMaxMemory();
1995  }
1996  max_allowed_footprint_ = max_allowed_footprint;
1997}
1998
1999bool Heap::IsMovableObject(const mirror::Object* obj) const {
2000  if (kMovingCollector) {
2001    DCHECK(!IsInTempSpace(obj));
2002    if (bump_pointer_space_->HasAddress(obj)) {
2003      return true;
2004    }
2005  }
2006  return false;
2007}
2008
2009bool Heap::IsInTempSpace(const mirror::Object* obj) const {
2010  if (temp_space_->HasAddress(obj) && !temp_space_->Contains(obj)) {
2011    return true;
2012  }
2013  return false;
2014}
2015
2016void Heap::UpdateMaxNativeFootprint() {
2017  size_t native_size = native_bytes_allocated_;
2018  // TODO: Tune the native heap utilization to be a value other than the java heap utilization.
2019  size_t target_size = native_size / GetTargetHeapUtilization();
2020  if (target_size > native_size + max_free_) {
2021    target_size = native_size + max_free_;
2022  } else if (target_size < native_size + min_free_) {
2023    target_size = native_size + min_free_;
2024  }
2025  native_footprint_gc_watermark_ = target_size;
2026  native_footprint_limit_ = 2 * target_size - native_size;
2027}
2028
2029void Heap::GrowForUtilization(collector::GcType gc_type, uint64_t gc_duration) {
2030  // We know what our utilization is at this moment.
2031  // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
2032  const size_t bytes_allocated = GetBytesAllocated();
2033  last_gc_size_ = bytes_allocated;
2034  last_gc_time_ns_ = NanoTime();
2035  size_t target_size;
2036  if (gc_type != collector::kGcTypeSticky) {
2037    // Grow the heap for non sticky GC.
2038    target_size = bytes_allocated / GetTargetHeapUtilization();
2039    if (target_size > bytes_allocated + max_free_) {
2040      target_size = bytes_allocated + max_free_;
2041    } else if (target_size < bytes_allocated + min_free_) {
2042      target_size = bytes_allocated + min_free_;
2043    }
2044    native_need_to_run_finalization_ = true;
2045    next_gc_type_ = collector::kGcTypeSticky;
2046  } else {
2047    // Based on how close the current heap size is to the target size, decide
2048    // whether or not to do a partial or sticky GC next.
2049    if (bytes_allocated + min_free_ <= max_allowed_footprint_) {
2050      next_gc_type_ = collector::kGcTypeSticky;
2051    } else {
2052      next_gc_type_ = collector::kGcTypePartial;
2053    }
2054    // If we have freed enough memory, shrink the heap back down.
2055    if (bytes_allocated + max_free_ < max_allowed_footprint_) {
2056      target_size = bytes_allocated + max_free_;
2057    } else {
2058      target_size = std::max(bytes_allocated, max_allowed_footprint_);
2059    }
2060  }
2061  if (!ignore_max_footprint_) {
2062    SetIdealFootprint(target_size);
2063    if (concurrent_gc_) {
2064      // Calculate when to perform the next ConcurrentGC.
2065      // Calculate the estimated GC duration.
2066      double gc_duration_seconds = NsToMs(gc_duration) / 1000.0;
2067      // Estimate how many remaining bytes we will have when we need to start the next GC.
2068      size_t remaining_bytes = allocation_rate_ * gc_duration_seconds;
2069      remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
2070      if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) {
2071        // A never going to happen situation that from the estimated allocation rate we will exceed
2072        // the applications entire footprint with the given estimated allocation rate. Schedule
2073        // another GC straight away.
2074        concurrent_start_bytes_ = bytes_allocated;
2075      } else {
2076        // Start a concurrent GC when we get close to the estimated remaining bytes. When the
2077        // allocation rate is very high, remaining_bytes could tell us that we should start a GC
2078        // right away.
2079        concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes,
2080                                           bytes_allocated);
2081      }
2082      DCHECK_LE(concurrent_start_bytes_, max_allowed_footprint_);
2083      DCHECK_LE(max_allowed_footprint_, growth_limit_);
2084    }
2085  }
2086}
2087
2088void Heap::ClearGrowthLimit() {
2089  growth_limit_ = capacity_;
2090  non_moving_space_->ClearGrowthLimit();
2091}
2092
2093void Heap::SetReferenceOffsets(MemberOffset reference_referent_offset,
2094                               MemberOffset reference_queue_offset,
2095                               MemberOffset reference_queueNext_offset,
2096                               MemberOffset reference_pendingNext_offset,
2097                               MemberOffset finalizer_reference_zombie_offset) {
2098  reference_referent_offset_ = reference_referent_offset;
2099  reference_queue_offset_ = reference_queue_offset;
2100  reference_queueNext_offset_ = reference_queueNext_offset;
2101  reference_pendingNext_offset_ = reference_pendingNext_offset;
2102  finalizer_reference_zombie_offset_ = finalizer_reference_zombie_offset;
2103  CHECK_NE(reference_referent_offset_.Uint32Value(), 0U);
2104  CHECK_NE(reference_queue_offset_.Uint32Value(), 0U);
2105  CHECK_NE(reference_queueNext_offset_.Uint32Value(), 0U);
2106  CHECK_NE(reference_pendingNext_offset_.Uint32Value(), 0U);
2107  CHECK_NE(finalizer_reference_zombie_offset_.Uint32Value(), 0U);
2108}
2109
2110void Heap::SetReferenceReferent(mirror::Object* reference, mirror::Object* referent) {
2111  DCHECK(reference != NULL);
2112  DCHECK_NE(reference_referent_offset_.Uint32Value(), 0U);
2113  reference->SetFieldObject(reference_referent_offset_, referent, true);
2114}
2115
2116mirror::Object* Heap::GetReferenceReferent(mirror::Object* reference) {
2117  DCHECK(reference != NULL);
2118  DCHECK_NE(reference_referent_offset_.Uint32Value(), 0U);
2119  return reference->GetFieldObject<mirror::Object*>(reference_referent_offset_, true);
2120}
2121
2122void Heap::AddFinalizerReference(Thread* self, mirror::Object* object) {
2123  ScopedObjectAccess soa(self);
2124  JValue result;
2125  ArgArray arg_array(NULL, 0);
2126  arg_array.Append(reinterpret_cast<uint32_t>(object));
2127  soa.DecodeMethod(WellKnownClasses::java_lang_ref_FinalizerReference_add)->Invoke(self,
2128      arg_array.GetArray(), arg_array.GetNumBytes(), &result, 'V');
2129}
2130
2131void Heap::EnqueueClearedReferences() {
2132  if (!cleared_references_.IsEmpty()) {
2133    // When a runtime isn't started there are no reference queues to care about so ignore.
2134    if (LIKELY(Runtime::Current()->IsStarted())) {
2135      ScopedObjectAccess soa(Thread::Current());
2136      JValue result;
2137      ArgArray arg_array(NULL, 0);
2138      arg_array.Append(reinterpret_cast<uint32_t>(cleared_references_.GetList()));
2139      soa.DecodeMethod(WellKnownClasses::java_lang_ref_ReferenceQueue_add)->Invoke(soa.Self(),
2140          arg_array.GetArray(), arg_array.GetNumBytes(), &result, 'V');
2141    }
2142    cleared_references_.Clear();
2143  }
2144}
2145
2146void Heap::RequestConcurrentGC(Thread* self) {
2147  // Make sure that we can do a concurrent GC.
2148  Runtime* runtime = Runtime::Current();
2149  if (runtime == NULL || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self) ||
2150      self->IsHandlingStackOverflow()) {
2151    return;
2152  }
2153  // We already have a request pending, no reason to start more until we update
2154  // concurrent_start_bytes_.
2155  concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2156  JNIEnv* env = self->GetJniEnv();
2157  DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
2158  DCHECK(WellKnownClasses::java_lang_Daemons_requestGC != nullptr);
2159  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
2160                            WellKnownClasses::java_lang_Daemons_requestGC);
2161  CHECK(!env->ExceptionCheck());
2162}
2163
2164void Heap::ConcurrentGC(Thread* self) {
2165  if (Runtime::Current()->IsShuttingDown(self)) {
2166    return;
2167  }
2168  // Wait for any GCs currently running to finish.
2169  if (WaitForGcToComplete(self) == collector::kGcTypeNone) {
2170    // If the we can't run the GC type we wanted to run, find the next appropriate one and try that
2171    // instead. E.g. can't do partial, so do full instead.
2172    if (CollectGarbageInternal(next_gc_type_, kGcCauseBackground, false) ==
2173        collector::kGcTypeNone) {
2174      for (collector::GcType gc_type : gc_plan_) {
2175        // Attempt to run the collector, if we succeed, we are done.
2176        if (gc_type > next_gc_type_ &&
2177            CollectGarbageInternal(gc_type, kGcCauseBackground, false) != collector::kGcTypeNone) {
2178          break;
2179        }
2180      }
2181    }
2182  }
2183}
2184
2185void Heap::RequestHeapTrim() {
2186  // GC completed and now we must decide whether to request a heap trim (advising pages back to the
2187  // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
2188  // a space it will hold its lock and can become a cause of jank.
2189  // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
2190  // forking.
2191
2192  // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
2193  // because that only marks object heads, so a large array looks like lots of empty space. We
2194  // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
2195  // to utilization (which is probably inversely proportional to how much benefit we can expect).
2196  // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
2197  // not how much use we're making of those pages.
2198  uint64_t ms_time = MilliTime();
2199  // Don't bother trimming the alloc space if a heap trim occurred in the last two seconds.
2200  if (ms_time - last_trim_time_ms_ < 2 * 1000) {
2201    return;
2202  }
2203
2204  Thread* self = Thread::Current();
2205  Runtime* runtime = Runtime::Current();
2206  if (runtime == nullptr || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self)) {
2207    // Heap trimming isn't supported without a Java runtime or Daemons (such as at dex2oat time)
2208    // Also: we do not wish to start a heap trim if the runtime is shutting down (a racy check
2209    // as we don't hold the lock while requesting the trim).
2210    return;
2211  }
2212
2213  last_trim_time_ms_ = ms_time;
2214
2215  // Trim only if we do not currently care about pause times.
2216  if (!CareAboutPauseTimes()) {
2217    JNIEnv* env = self->GetJniEnv();
2218    DCHECK(WellKnownClasses::java_lang_Daemons != NULL);
2219    DCHECK(WellKnownClasses::java_lang_Daemons_requestHeapTrim != NULL);
2220    env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
2221                              WellKnownClasses::java_lang_Daemons_requestHeapTrim);
2222    CHECK(!env->ExceptionCheck());
2223  }
2224}
2225
2226void Heap::RevokeThreadLocalBuffers(Thread* thread) {
2227  if (rosalloc_space_ != nullptr) {
2228    rosalloc_space_->RevokeThreadLocalBuffers(thread);
2229  }
2230  if (bump_pointer_space_ != nullptr) {
2231    bump_pointer_space_->RevokeThreadLocalBuffers(thread);
2232  }
2233}
2234
2235void Heap::RevokeAllThreadLocalBuffers() {
2236  if (rosalloc_space_ != nullptr) {
2237    rosalloc_space_->RevokeAllThreadLocalBuffers();
2238  }
2239  if (bump_pointer_space_ != nullptr) {
2240    bump_pointer_space_->RevokeAllThreadLocalBuffers();
2241  }
2242}
2243
2244bool Heap::IsGCRequestPending() const {
2245  return concurrent_start_bytes_ != std::numeric_limits<size_t>::max();
2246}
2247
2248void Heap::RunFinalization(JNIEnv* env) {
2249  // Can't do this in WellKnownClasses::Init since System is not properly set up at that point.
2250  if (WellKnownClasses::java_lang_System_runFinalization == nullptr) {
2251    CHECK(WellKnownClasses::java_lang_System != nullptr);
2252    WellKnownClasses::java_lang_System_runFinalization =
2253        CacheMethod(env, WellKnownClasses::java_lang_System, true, "runFinalization", "()V");
2254    CHECK(WellKnownClasses::java_lang_System_runFinalization != nullptr);
2255  }
2256  env->CallStaticVoidMethod(WellKnownClasses::java_lang_System,
2257                            WellKnownClasses::java_lang_System_runFinalization);
2258}
2259
2260void Heap::RegisterNativeAllocation(JNIEnv* env, int bytes) {
2261  Thread* self = ThreadForEnv(env);
2262  if (native_need_to_run_finalization_) {
2263    RunFinalization(env);
2264    UpdateMaxNativeFootprint();
2265    native_need_to_run_finalization_ = false;
2266  }
2267  // Total number of native bytes allocated.
2268  native_bytes_allocated_.FetchAndAdd(bytes);
2269  if (static_cast<size_t>(native_bytes_allocated_) > native_footprint_gc_watermark_) {
2270    collector::GcType gc_type = have_zygote_space_ ? collector::kGcTypePartial :
2271        collector::kGcTypeFull;
2272
2273    // The second watermark is higher than the gc watermark. If you hit this it means you are
2274    // allocating native objects faster than the GC can keep up with.
2275    if (static_cast<size_t>(native_bytes_allocated_) > native_footprint_limit_) {
2276      if (WaitForGcToComplete(self) != collector::kGcTypeNone) {
2277        // Just finished a GC, attempt to run finalizers.
2278        RunFinalization(env);
2279        CHECK(!env->ExceptionCheck());
2280      }
2281      // If we still are over the watermark, attempt a GC for alloc and run finalizers.
2282      if (static_cast<size_t>(native_bytes_allocated_) > native_footprint_limit_) {
2283        CollectGarbageInternal(gc_type, kGcCauseForAlloc, false);
2284        RunFinalization(env);
2285        native_need_to_run_finalization_ = false;
2286        CHECK(!env->ExceptionCheck());
2287      }
2288      // We have just run finalizers, update the native watermark since it is very likely that
2289      // finalizers released native managed allocations.
2290      UpdateMaxNativeFootprint();
2291    } else if (!IsGCRequestPending()) {
2292      if (concurrent_gc_) {
2293        RequestConcurrentGC(self);
2294      } else {
2295        CollectGarbageInternal(gc_type, kGcCauseForAlloc, false);
2296      }
2297    }
2298  }
2299}
2300
2301void Heap::RegisterNativeFree(JNIEnv* env, int bytes) {
2302  int expected_size, new_size;
2303  do {
2304    expected_size = native_bytes_allocated_.Load();
2305    new_size = expected_size - bytes;
2306    if (UNLIKELY(new_size < 0)) {
2307      ScopedObjectAccess soa(env);
2308      env->ThrowNew(WellKnownClasses::java_lang_RuntimeException,
2309                    StringPrintf("Attempted to free %d native bytes with only %d native bytes "
2310                                 "registered as allocated", bytes, expected_size).c_str());
2311      break;
2312    }
2313  } while (!native_bytes_allocated_.CompareAndSwap(expected_size, new_size));
2314}
2315
2316int64_t Heap::GetTotalMemory() const {
2317  int64_t ret = 0;
2318  for (const auto& space : continuous_spaces_) {
2319    // Currently don't include the image space.
2320    if (!space->IsImageSpace()) {
2321      ret += space->Size();
2322    }
2323  }
2324  for (const auto& space : discontinuous_spaces_) {
2325    if (space->IsLargeObjectSpace()) {
2326      ret += space->AsLargeObjectSpace()->GetBytesAllocated();
2327    }
2328  }
2329  return ret;
2330}
2331
2332void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
2333  DCHECK(mod_union_table != nullptr);
2334  mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
2335}
2336
2337}  // namespace gc
2338}  // namespace art
2339