utils.cc revision 700a402244a1a423da4f3ba8032459f4b65fa18f
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "utils.h"
18
19#include <inttypes.h>
20#include <pthread.h>
21#include <sys/stat.h>
22#include <sys/syscall.h>
23#include <sys/types.h>
24#include <sys/wait.h>
25#include <unistd.h>
26#include <memory>
27
28#include "base/stl_util.h"
29#include "base/unix_file/fd_file.h"
30#include "dex_file-inl.h"
31#include "mirror/art_field-inl.h"
32#include "mirror/art_method-inl.h"
33#include "mirror/class-inl.h"
34#include "mirror/class_loader.h"
35#include "mirror/object-inl.h"
36#include "mirror/object_array-inl.h"
37#include "mirror/string.h"
38#include "object_utils.h"
39#include "os.h"
40#include "scoped_thread_state_change.h"
41#include "utf-inl.h"
42
43#if !defined(HAVE_POSIX_CLOCKS)
44#include <sys/time.h>
45#endif
46
47#if defined(HAVE_PRCTL)
48#include <sys/prctl.h>
49#endif
50
51#if defined(__APPLE__)
52#include "AvailabilityMacros.h"  // For MAC_OS_X_VERSION_MAX_ALLOWED
53#include <sys/syscall.h>
54#endif
55
56#include <backtrace/Backtrace.h>  // For DumpNativeStack.
57
58#if defined(__linux__)
59#include <linux/unistd.h>
60#endif
61
62namespace art {
63
64pid_t GetTid() {
65#if defined(__APPLE__)
66  uint64_t owner;
67  CHECK_PTHREAD_CALL(pthread_threadid_np, (NULL, &owner), __FUNCTION__);  // Requires Mac OS 10.6
68  return owner;
69#else
70  // Neither bionic nor glibc exposes gettid(2).
71  return syscall(__NR_gettid);
72#endif
73}
74
75std::string GetThreadName(pid_t tid) {
76  std::string result;
77  if (ReadFileToString(StringPrintf("/proc/self/task/%d/comm", tid), &result)) {
78    result.resize(result.size() - 1);  // Lose the trailing '\n'.
79  } else {
80    result = "<unknown>";
81  }
82  return result;
83}
84
85void GetThreadStack(pthread_t thread, void** stack_base, size_t* stack_size) {
86#if defined(__APPLE__)
87  *stack_size = pthread_get_stacksize_np(thread);
88  void* stack_addr = pthread_get_stackaddr_np(thread);
89
90  // Check whether stack_addr is the base or end of the stack.
91  // (On Mac OS 10.7, it's the end.)
92  int stack_variable;
93  if (stack_addr > &stack_variable) {
94    *stack_base = reinterpret_cast<byte*>(stack_addr) - *stack_size;
95  } else {
96    *stack_base = stack_addr;
97  }
98#else
99  pthread_attr_t attributes;
100  CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__);
101  CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, stack_base, stack_size), __FUNCTION__);
102  CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
103#endif
104}
105
106bool ReadFileToString(const std::string& file_name, std::string* result) {
107  std::unique_ptr<File> file(new File);
108  if (!file->Open(file_name, O_RDONLY)) {
109    return false;
110  }
111
112  std::vector<char> buf(8 * KB);
113  while (true) {
114    int64_t n = TEMP_FAILURE_RETRY(read(file->Fd(), &buf[0], buf.size()));
115    if (n == -1) {
116      return false;
117    }
118    if (n == 0) {
119      return true;
120    }
121    result->append(&buf[0], n);
122  }
123}
124
125std::string GetIsoDate() {
126  time_t now = time(NULL);
127  tm tmbuf;
128  tm* ptm = localtime_r(&now, &tmbuf);
129  return StringPrintf("%04d-%02d-%02d %02d:%02d:%02d",
130      ptm->tm_year + 1900, ptm->tm_mon+1, ptm->tm_mday,
131      ptm->tm_hour, ptm->tm_min, ptm->tm_sec);
132}
133
134uint64_t MilliTime() {
135#if defined(HAVE_POSIX_CLOCKS)
136  timespec now;
137  clock_gettime(CLOCK_MONOTONIC, &now);
138  return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000) + now.tv_nsec / UINT64_C(1000000);
139#else
140  timeval now;
141  gettimeofday(&now, NULL);
142  return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000) + now.tv_usec / UINT64_C(1000);
143#endif
144}
145
146uint64_t MicroTime() {
147#if defined(HAVE_POSIX_CLOCKS)
148  timespec now;
149  clock_gettime(CLOCK_MONOTONIC, &now);
150  return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
151#else
152  timeval now;
153  gettimeofday(&now, NULL);
154  return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_usec;
155#endif
156}
157
158uint64_t NanoTime() {
159#if defined(HAVE_POSIX_CLOCKS)
160  timespec now;
161  clock_gettime(CLOCK_MONOTONIC, &now);
162  return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000000) + now.tv_nsec;
163#else
164  timeval now;
165  gettimeofday(&now, NULL);
166  return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000000) + now.tv_usec * UINT64_C(1000);
167#endif
168}
169
170uint64_t ThreadCpuNanoTime() {
171#if defined(HAVE_POSIX_CLOCKS)
172  timespec now;
173  clock_gettime(CLOCK_THREAD_CPUTIME_ID, &now);
174  return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000000) + now.tv_nsec;
175#else
176  UNIMPLEMENTED(WARNING);
177  return -1;
178#endif
179}
180
181void NanoSleep(uint64_t ns) {
182  timespec tm;
183  tm.tv_sec = 0;
184  tm.tv_nsec = ns;
185  nanosleep(&tm, NULL);
186}
187
188void InitTimeSpec(bool absolute, int clock, int64_t ms, int32_t ns, timespec* ts) {
189  int64_t endSec;
190
191  if (absolute) {
192#if !defined(__APPLE__)
193    clock_gettime(clock, ts);
194#else
195    UNUSED(clock);
196    timeval tv;
197    gettimeofday(&tv, NULL);
198    ts->tv_sec = tv.tv_sec;
199    ts->tv_nsec = tv.tv_usec * 1000;
200#endif
201  } else {
202    ts->tv_sec = 0;
203    ts->tv_nsec = 0;
204  }
205  endSec = ts->tv_sec + ms / 1000;
206  if (UNLIKELY(endSec >= 0x7fffffff)) {
207    std::ostringstream ss;
208    LOG(INFO) << "Note: end time exceeds epoch: " << ss.str();
209    endSec = 0x7ffffffe;
210  }
211  ts->tv_sec = endSec;
212  ts->tv_nsec = (ts->tv_nsec + (ms % 1000) * 1000000) + ns;
213
214  // Catch rollover.
215  if (ts->tv_nsec >= 1000000000L) {
216    ts->tv_sec++;
217    ts->tv_nsec -= 1000000000L;
218  }
219}
220
221std::string PrettyDescriptor(mirror::String* java_descriptor) {
222  if (java_descriptor == NULL) {
223    return "null";
224  }
225  return PrettyDescriptor(java_descriptor->ToModifiedUtf8());
226}
227
228std::string PrettyDescriptor(mirror::Class* klass) {
229  if (klass == NULL) {
230    return "null";
231  }
232  return PrettyDescriptor(klass->GetDescriptor());
233}
234
235std::string PrettyDescriptor(const std::string& descriptor) {
236  // Count the number of '['s to get the dimensionality.
237  const char* c = descriptor.c_str();
238  size_t dim = 0;
239  while (*c == '[') {
240    dim++;
241    c++;
242  }
243
244  // Reference or primitive?
245  if (*c == 'L') {
246    // "[[La/b/C;" -> "a.b.C[][]".
247    c++;  // Skip the 'L'.
248  } else {
249    // "[[B" -> "byte[][]".
250    // To make life easier, we make primitives look like unqualified
251    // reference types.
252    switch (*c) {
253    case 'B': c = "byte;"; break;
254    case 'C': c = "char;"; break;
255    case 'D': c = "double;"; break;
256    case 'F': c = "float;"; break;
257    case 'I': c = "int;"; break;
258    case 'J': c = "long;"; break;
259    case 'S': c = "short;"; break;
260    case 'Z': c = "boolean;"; break;
261    case 'V': c = "void;"; break;  // Used when decoding return types.
262    default: return descriptor;
263    }
264  }
265
266  // At this point, 'c' is a string of the form "fully/qualified/Type;"
267  // or "primitive;". Rewrite the type with '.' instead of '/':
268  std::string result;
269  const char* p = c;
270  while (*p != ';') {
271    char ch = *p++;
272    if (ch == '/') {
273      ch = '.';
274    }
275    result.push_back(ch);
276  }
277  // ...and replace the semicolon with 'dim' "[]" pairs:
278  while (dim--) {
279    result += "[]";
280  }
281  return result;
282}
283
284std::string PrettyDescriptor(Primitive::Type type) {
285  std::string descriptor_string(Primitive::Descriptor(type));
286  return PrettyDescriptor(descriptor_string);
287}
288
289std::string PrettyField(mirror::ArtField* f, bool with_type) {
290  if (f == NULL) {
291    return "null";
292  }
293  FieldHelper fh(f);
294  std::string result;
295  if (with_type) {
296    result += PrettyDescriptor(fh.GetTypeDescriptor());
297    result += ' ';
298  }
299  result += PrettyDescriptor(fh.GetDeclaringClassDescriptor());
300  result += '.';
301  result += fh.GetName();
302  return result;
303}
304
305std::string PrettyField(uint32_t field_idx, const DexFile& dex_file, bool with_type) {
306  if (field_idx >= dex_file.NumFieldIds()) {
307    return StringPrintf("<<invalid-field-idx-%d>>", field_idx);
308  }
309  const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx);
310  std::string result;
311  if (with_type) {
312    result += dex_file.GetFieldTypeDescriptor(field_id);
313    result += ' ';
314  }
315  result += PrettyDescriptor(dex_file.GetFieldDeclaringClassDescriptor(field_id));
316  result += '.';
317  result += dex_file.GetFieldName(field_id);
318  return result;
319}
320
321std::string PrettyType(uint32_t type_idx, const DexFile& dex_file) {
322  if (type_idx >= dex_file.NumTypeIds()) {
323    return StringPrintf("<<invalid-type-idx-%d>>", type_idx);
324  }
325  const DexFile::TypeId& type_id = dex_file.GetTypeId(type_idx);
326  return PrettyDescriptor(dex_file.GetTypeDescriptor(type_id));
327}
328
329std::string PrettyArguments(const char* signature) {
330  std::string result;
331  result += '(';
332  CHECK_EQ(*signature, '(');
333  ++signature;  // Skip the '('.
334  while (*signature != ')') {
335    size_t argument_length = 0;
336    while (signature[argument_length] == '[') {
337      ++argument_length;
338    }
339    if (signature[argument_length] == 'L') {
340      argument_length = (strchr(signature, ';') - signature + 1);
341    } else {
342      ++argument_length;
343    }
344    std::string argument_descriptor(signature, argument_length);
345    result += PrettyDescriptor(argument_descriptor);
346    if (signature[argument_length] != ')') {
347      result += ", ";
348    }
349    signature += argument_length;
350  }
351  CHECK_EQ(*signature, ')');
352  ++signature;  // Skip the ')'.
353  result += ')';
354  return result;
355}
356
357std::string PrettyReturnType(const char* signature) {
358  const char* return_type = strchr(signature, ')');
359  CHECK(return_type != NULL);
360  ++return_type;  // Skip ')'.
361  return PrettyDescriptor(return_type);
362}
363
364std::string PrettyMethod(mirror::ArtMethod* m, bool with_signature) {
365  if (m == nullptr) {
366    return "null";
367  }
368  MethodHelper mh(m);
369  std::string result(PrettyDescriptor(mh.GetDeclaringClassDescriptor()));
370  result += '.';
371  result += mh.GetName();
372  if (UNLIKELY(m->IsFastNative())) {
373    result += "!";
374  }
375  if (with_signature) {
376    const Signature signature = mh.GetSignature();
377    std::string sig_as_string(signature.ToString());
378    if (signature == Signature::NoSignature()) {
379      return result + sig_as_string;
380    }
381    result = PrettyReturnType(sig_as_string.c_str()) + " " + result +
382        PrettyArguments(sig_as_string.c_str());
383  }
384  return result;
385}
386
387std::string PrettyMethod(uint32_t method_idx, const DexFile& dex_file, bool with_signature) {
388  if (method_idx >= dex_file.NumMethodIds()) {
389    return StringPrintf("<<invalid-method-idx-%d>>", method_idx);
390  }
391  const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx);
392  std::string result(PrettyDescriptor(dex_file.GetMethodDeclaringClassDescriptor(method_id)));
393  result += '.';
394  result += dex_file.GetMethodName(method_id);
395  if (with_signature) {
396    const Signature signature = dex_file.GetMethodSignature(method_id);
397    std::string sig_as_string(signature.ToString());
398    if (signature == Signature::NoSignature()) {
399      return result + sig_as_string;
400    }
401    result = PrettyReturnType(sig_as_string.c_str()) + " " + result +
402        PrettyArguments(sig_as_string.c_str());
403  }
404  return result;
405}
406
407std::string PrettyTypeOf(mirror::Object* obj) {
408  if (obj == NULL) {
409    return "null";
410  }
411  if (obj->GetClass() == NULL) {
412    return "(raw)";
413  }
414  std::string result(PrettyDescriptor(obj->GetClass()->GetDescriptor()));
415  if (obj->IsClass()) {
416    result += "<" + PrettyDescriptor(obj->AsClass()->GetDescriptor()) + ">";
417  }
418  return result;
419}
420
421std::string PrettyClass(mirror::Class* c) {
422  if (c == NULL) {
423    return "null";
424  }
425  std::string result;
426  result += "java.lang.Class<";
427  result += PrettyDescriptor(c);
428  result += ">";
429  return result;
430}
431
432std::string PrettyClassAndClassLoader(mirror::Class* c) {
433  if (c == NULL) {
434    return "null";
435  }
436  std::string result;
437  result += "java.lang.Class<";
438  result += PrettyDescriptor(c);
439  result += ",";
440  result += PrettyTypeOf(c->GetClassLoader());
441  // TODO: add an identifying hash value for the loader
442  result += ">";
443  return result;
444}
445
446std::string PrettySize(int64_t byte_count) {
447  // The byte thresholds at which we display amounts.  A byte count is displayed
448  // in unit U when kUnitThresholds[U] <= bytes < kUnitThresholds[U+1].
449  static const int64_t kUnitThresholds[] = {
450    0,              // B up to...
451    3*1024,         // KB up to...
452    2*1024*1024,    // MB up to...
453    1024*1024*1024  // GB from here.
454  };
455  static const int64_t kBytesPerUnit[] = { 1, KB, MB, GB };
456  static const char* const kUnitStrings[] = { "B", "KB", "MB", "GB" };
457  const char* negative_str = "";
458  if (byte_count < 0) {
459    negative_str = "-";
460    byte_count = -byte_count;
461  }
462  int i = arraysize(kUnitThresholds);
463  while (--i > 0) {
464    if (byte_count >= kUnitThresholds[i]) {
465      break;
466    }
467  }
468  return StringPrintf("%s%" PRId64 "%s",
469                      negative_str, byte_count / kBytesPerUnit[i], kUnitStrings[i]);
470}
471
472std::string PrettyDuration(uint64_t nano_duration) {
473  if (nano_duration == 0) {
474    return "0";
475  } else {
476    return FormatDuration(nano_duration, GetAppropriateTimeUnit(nano_duration));
477  }
478}
479
480TimeUnit GetAppropriateTimeUnit(uint64_t nano_duration) {
481  const uint64_t one_sec = 1000 * 1000 * 1000;
482  const uint64_t one_ms  = 1000 * 1000;
483  const uint64_t one_us  = 1000;
484  if (nano_duration >= one_sec) {
485    return kTimeUnitSecond;
486  } else if (nano_duration >= one_ms) {
487    return kTimeUnitMillisecond;
488  } else if (nano_duration >= one_us) {
489    return kTimeUnitMicrosecond;
490  } else {
491    return kTimeUnitNanosecond;
492  }
493}
494
495uint64_t GetNsToTimeUnitDivisor(TimeUnit time_unit) {
496  const uint64_t one_sec = 1000 * 1000 * 1000;
497  const uint64_t one_ms  = 1000 * 1000;
498  const uint64_t one_us  = 1000;
499
500  switch (time_unit) {
501    case kTimeUnitSecond:
502      return one_sec;
503    case kTimeUnitMillisecond:
504      return one_ms;
505    case kTimeUnitMicrosecond:
506      return one_us;
507    case kTimeUnitNanosecond:
508      return 1;
509  }
510  return 0;
511}
512
513std::string FormatDuration(uint64_t nano_duration, TimeUnit time_unit) {
514  const char* unit = NULL;
515  uint64_t divisor = GetNsToTimeUnitDivisor(time_unit);
516  uint32_t zero_fill = 1;
517  switch (time_unit) {
518    case kTimeUnitSecond:
519      unit = "s";
520      zero_fill = 9;
521      break;
522    case kTimeUnitMillisecond:
523      unit = "ms";
524      zero_fill = 6;
525      break;
526    case kTimeUnitMicrosecond:
527      unit = "us";
528      zero_fill = 3;
529      break;
530    case kTimeUnitNanosecond:
531      unit = "ns";
532      zero_fill = 0;
533      break;
534  }
535
536  uint64_t whole_part = nano_duration / divisor;
537  uint64_t fractional_part = nano_duration % divisor;
538  if (fractional_part == 0) {
539    return StringPrintf("%" PRIu64 "%s", whole_part, unit);
540  } else {
541    while ((fractional_part % 1000) == 0) {
542      zero_fill -= 3;
543      fractional_part /= 1000;
544    }
545    if (zero_fill == 3) {
546      return StringPrintf("%" PRIu64 ".%03" PRIu64 "%s", whole_part, fractional_part, unit);
547    } else if (zero_fill == 6) {
548      return StringPrintf("%" PRIu64 ".%06" PRIu64 "%s", whole_part, fractional_part, unit);
549    } else {
550      return StringPrintf("%" PRIu64 ".%09" PRIu64 "%s", whole_part, fractional_part, unit);
551    }
552  }
553}
554
555std::string PrintableString(const std::string& utf) {
556  std::string result;
557  result += '"';
558  const char* p = utf.c_str();
559  size_t char_count = CountModifiedUtf8Chars(p);
560  for (size_t i = 0; i < char_count; ++i) {
561    uint16_t ch = GetUtf16FromUtf8(&p);
562    if (ch == '\\') {
563      result += "\\\\";
564    } else if (ch == '\n') {
565      result += "\\n";
566    } else if (ch == '\r') {
567      result += "\\r";
568    } else if (ch == '\t') {
569      result += "\\t";
570    } else if (NeedsEscaping(ch)) {
571      StringAppendF(&result, "\\u%04x", ch);
572    } else {
573      result += ch;
574    }
575  }
576  result += '"';
577  return result;
578}
579
580// See http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/design.html#wp615 for the full rules.
581std::string MangleForJni(const std::string& s) {
582  std::string result;
583  size_t char_count = CountModifiedUtf8Chars(s.c_str());
584  const char* cp = &s[0];
585  for (size_t i = 0; i < char_count; ++i) {
586    uint16_t ch = GetUtf16FromUtf8(&cp);
587    if ((ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z') || (ch >= '0' && ch <= '9')) {
588      result.push_back(ch);
589    } else if (ch == '.' || ch == '/') {
590      result += "_";
591    } else if (ch == '_') {
592      result += "_1";
593    } else if (ch == ';') {
594      result += "_2";
595    } else if (ch == '[') {
596      result += "_3";
597    } else {
598      StringAppendF(&result, "_0%04x", ch);
599    }
600  }
601  return result;
602}
603
604std::string DotToDescriptor(const char* class_name) {
605  std::string descriptor(class_name);
606  std::replace(descriptor.begin(), descriptor.end(), '.', '/');
607  if (descriptor.length() > 0 && descriptor[0] != '[') {
608    descriptor = "L" + descriptor + ";";
609  }
610  return descriptor;
611}
612
613std::string DescriptorToDot(const char* descriptor) {
614  size_t length = strlen(descriptor);
615  if (descriptor[0] == 'L' && descriptor[length - 1] == ';') {
616    std::string result(descriptor + 1, length - 2);
617    std::replace(result.begin(), result.end(), '/', '.');
618    return result;
619  }
620  return descriptor;
621}
622
623std::string DescriptorToName(const char* descriptor) {
624  size_t length = strlen(descriptor);
625  if (descriptor[0] == 'L' && descriptor[length - 1] == ';') {
626    std::string result(descriptor + 1, length - 2);
627    return result;
628  }
629  return descriptor;
630}
631
632std::string JniShortName(mirror::ArtMethod* m) {
633  MethodHelper mh(m);
634  std::string class_name(mh.GetDeclaringClassDescriptor());
635  // Remove the leading 'L' and trailing ';'...
636  CHECK_EQ(class_name[0], 'L') << class_name;
637  CHECK_EQ(class_name[class_name.size() - 1], ';') << class_name;
638  class_name.erase(0, 1);
639  class_name.erase(class_name.size() - 1, 1);
640
641  std::string method_name(mh.GetName());
642
643  std::string short_name;
644  short_name += "Java_";
645  short_name += MangleForJni(class_name);
646  short_name += "_";
647  short_name += MangleForJni(method_name);
648  return short_name;
649}
650
651std::string JniLongName(mirror::ArtMethod* m) {
652  std::string long_name;
653  long_name += JniShortName(m);
654  long_name += "__";
655
656  std::string signature(MethodHelper(m).GetSignature().ToString());
657  signature.erase(0, 1);
658  signature.erase(signature.begin() + signature.find(')'), signature.end());
659
660  long_name += MangleForJni(signature);
661
662  return long_name;
663}
664
665// Helper for IsValidPartOfMemberNameUtf8(), a bit vector indicating valid low ascii.
666uint32_t DEX_MEMBER_VALID_LOW_ASCII[4] = {
667  0x00000000,  // 00..1f low control characters; nothing valid
668  0x03ff2010,  // 20..3f digits and symbols; valid: '0'..'9', '$', '-'
669  0x87fffffe,  // 40..5f uppercase etc.; valid: 'A'..'Z', '_'
670  0x07fffffe   // 60..7f lowercase etc.; valid: 'a'..'z'
671};
672
673// Helper for IsValidPartOfMemberNameUtf8(); do not call directly.
674bool IsValidPartOfMemberNameUtf8Slow(const char** pUtf8Ptr) {
675  /*
676   * It's a multibyte encoded character. Decode it and analyze. We
677   * accept anything that isn't (a) an improperly encoded low value,
678   * (b) an improper surrogate pair, (c) an encoded '\0', (d) a high
679   * control character, or (e) a high space, layout, or special
680   * character (U+00a0, U+2000..U+200f, U+2028..U+202f,
681   * U+fff0..U+ffff). This is all specified in the dex format
682   * document.
683   */
684
685  uint16_t utf16 = GetUtf16FromUtf8(pUtf8Ptr);
686
687  // Perform follow-up tests based on the high 8 bits.
688  switch (utf16 >> 8) {
689  case 0x00:
690    // It's only valid if it's above the ISO-8859-1 high space (0xa0).
691    return (utf16 > 0x00a0);
692  case 0xd8:
693  case 0xd9:
694  case 0xda:
695  case 0xdb:
696    // It's a leading surrogate. Check to see that a trailing
697    // surrogate follows.
698    utf16 = GetUtf16FromUtf8(pUtf8Ptr);
699    return (utf16 >= 0xdc00) && (utf16 <= 0xdfff);
700  case 0xdc:
701  case 0xdd:
702  case 0xde:
703  case 0xdf:
704    // It's a trailing surrogate, which is not valid at this point.
705    return false;
706  case 0x20:
707  case 0xff:
708    // It's in the range that has spaces, controls, and specials.
709    switch (utf16 & 0xfff8) {
710    case 0x2000:
711    case 0x2008:
712    case 0x2028:
713    case 0xfff0:
714    case 0xfff8:
715      return false;
716    }
717    break;
718  }
719  return true;
720}
721
722/* Return whether the pointed-at modified-UTF-8 encoded character is
723 * valid as part of a member name, updating the pointer to point past
724 * the consumed character. This will consume two encoded UTF-16 code
725 * points if the character is encoded as a surrogate pair. Also, if
726 * this function returns false, then the given pointer may only have
727 * been partially advanced.
728 */
729static bool IsValidPartOfMemberNameUtf8(const char** pUtf8Ptr) {
730  uint8_t c = (uint8_t) **pUtf8Ptr;
731  if (LIKELY(c <= 0x7f)) {
732    // It's low-ascii, so check the table.
733    uint32_t wordIdx = c >> 5;
734    uint32_t bitIdx = c & 0x1f;
735    (*pUtf8Ptr)++;
736    return (DEX_MEMBER_VALID_LOW_ASCII[wordIdx] & (1 << bitIdx)) != 0;
737  }
738
739  // It's a multibyte encoded character. Call a non-inline function
740  // for the heavy lifting.
741  return IsValidPartOfMemberNameUtf8Slow(pUtf8Ptr);
742}
743
744bool IsValidMemberName(const char* s) {
745  bool angle_name = false;
746
747  switch (*s) {
748    case '\0':
749      // The empty string is not a valid name.
750      return false;
751    case '<':
752      angle_name = true;
753      s++;
754      break;
755  }
756
757  while (true) {
758    switch (*s) {
759      case '\0':
760        return !angle_name;
761      case '>':
762        return angle_name && s[1] == '\0';
763    }
764
765    if (!IsValidPartOfMemberNameUtf8(&s)) {
766      return false;
767    }
768  }
769}
770
771enum ClassNameType { kName, kDescriptor };
772static bool IsValidClassName(const char* s, ClassNameType type, char separator) {
773  int arrayCount = 0;
774  while (*s == '[') {
775    arrayCount++;
776    s++;
777  }
778
779  if (arrayCount > 255) {
780    // Arrays may have no more than 255 dimensions.
781    return false;
782  }
783
784  if (arrayCount != 0) {
785    /*
786     * If we're looking at an array of some sort, then it doesn't
787     * matter if what is being asked for is a class name; the
788     * format looks the same as a type descriptor in that case, so
789     * treat it as such.
790     */
791    type = kDescriptor;
792  }
793
794  if (type == kDescriptor) {
795    /*
796     * We are looking for a descriptor. Either validate it as a
797     * single-character primitive type, or continue on to check the
798     * embedded class name (bracketed by "L" and ";").
799     */
800    switch (*(s++)) {
801    case 'B':
802    case 'C':
803    case 'D':
804    case 'F':
805    case 'I':
806    case 'J':
807    case 'S':
808    case 'Z':
809      // These are all single-character descriptors for primitive types.
810      return (*s == '\0');
811    case 'V':
812      // Non-array void is valid, but you can't have an array of void.
813      return (arrayCount == 0) && (*s == '\0');
814    case 'L':
815      // Class name: Break out and continue below.
816      break;
817    default:
818      // Oddball descriptor character.
819      return false;
820    }
821  }
822
823  /*
824   * We just consumed the 'L' that introduces a class name as part
825   * of a type descriptor, or we are looking for an unadorned class
826   * name.
827   */
828
829  bool sepOrFirst = true;  // first character or just encountered a separator.
830  for (;;) {
831    uint8_t c = (uint8_t) *s;
832    switch (c) {
833    case '\0':
834      /*
835       * Premature end for a type descriptor, but valid for
836       * a class name as long as we haven't encountered an
837       * empty component (including the degenerate case of
838       * the empty string "").
839       */
840      return (type == kName) && !sepOrFirst;
841    case ';':
842      /*
843       * Invalid character for a class name, but the
844       * legitimate end of a type descriptor. In the latter
845       * case, make sure that this is the end of the string
846       * and that it doesn't end with an empty component
847       * (including the degenerate case of "L;").
848       */
849      return (type == kDescriptor) && !sepOrFirst && (s[1] == '\0');
850    case '/':
851    case '.':
852      if (c != separator) {
853        // The wrong separator character.
854        return false;
855      }
856      if (sepOrFirst) {
857        // Separator at start or two separators in a row.
858        return false;
859      }
860      sepOrFirst = true;
861      s++;
862      break;
863    default:
864      if (!IsValidPartOfMemberNameUtf8(&s)) {
865        return false;
866      }
867      sepOrFirst = false;
868      break;
869    }
870  }
871}
872
873bool IsValidBinaryClassName(const char* s) {
874  return IsValidClassName(s, kName, '.');
875}
876
877bool IsValidJniClassName(const char* s) {
878  return IsValidClassName(s, kName, '/');
879}
880
881bool IsValidDescriptor(const char* s) {
882  return IsValidClassName(s, kDescriptor, '/');
883}
884
885void Split(const std::string& s, char separator, std::vector<std::string>& result) {
886  const char* p = s.data();
887  const char* end = p + s.size();
888  while (p != end) {
889    if (*p == separator) {
890      ++p;
891    } else {
892      const char* start = p;
893      while (++p != end && *p != separator) {
894        // Skip to the next occurrence of the separator.
895      }
896      result.push_back(std::string(start, p - start));
897    }
898  }
899}
900
901std::string Trim(std::string s) {
902  std::string result;
903  unsigned int start_index = 0;
904  unsigned int end_index = s.size() - 1;
905
906  // Skip initial whitespace.
907  while (start_index < s.size()) {
908    if (!isspace(s[start_index])) {
909      break;
910    }
911    start_index++;
912  }
913
914  // Skip terminating whitespace.
915  while (end_index >= start_index) {
916    if (!isspace(s[end_index])) {
917      break;
918    }
919    end_index--;
920  }
921
922  // All spaces, no beef.
923  if (end_index < start_index) {
924    return "";
925  }
926  // Start_index is the first non-space, end_index is the last one.
927  return s.substr(start_index, end_index - start_index + 1);
928}
929
930template <typename StringT>
931std::string Join(std::vector<StringT>& strings, char separator) {
932  if (strings.empty()) {
933    return "";
934  }
935
936  std::string result(strings[0]);
937  for (size_t i = 1; i < strings.size(); ++i) {
938    result += separator;
939    result += strings[i];
940  }
941  return result;
942}
943
944// Explicit instantiations.
945template std::string Join<std::string>(std::vector<std::string>& strings, char separator);
946template std::string Join<const char*>(std::vector<const char*>& strings, char separator);
947template std::string Join<char*>(std::vector<char*>& strings, char separator);
948
949bool StartsWith(const std::string& s, const char* prefix) {
950  return s.compare(0, strlen(prefix), prefix) == 0;
951}
952
953bool EndsWith(const std::string& s, const char* suffix) {
954  size_t suffix_length = strlen(suffix);
955  size_t string_length = s.size();
956  if (suffix_length > string_length) {
957    return false;
958  }
959  size_t offset = string_length - suffix_length;
960  return s.compare(offset, suffix_length, suffix) == 0;
961}
962
963void SetThreadName(const char* thread_name) {
964  int hasAt = 0;
965  int hasDot = 0;
966  const char* s = thread_name;
967  while (*s) {
968    if (*s == '.') {
969      hasDot = 1;
970    } else if (*s == '@') {
971      hasAt = 1;
972    }
973    s++;
974  }
975  int len = s - thread_name;
976  if (len < 15 || hasAt || !hasDot) {
977    s = thread_name;
978  } else {
979    s = thread_name + len - 15;
980  }
981#if defined(HAVE_ANDROID_PTHREAD_SETNAME_NP)
982  // pthread_setname_np fails rather than truncating long strings.
983  char buf[16];       // MAX_TASK_COMM_LEN=16 is hard-coded into bionic
984  strncpy(buf, s, sizeof(buf)-1);
985  buf[sizeof(buf)-1] = '\0';
986  errno = pthread_setname_np(pthread_self(), buf);
987  if (errno != 0) {
988    PLOG(WARNING) << "Unable to set the name of current thread to '" << buf << "'";
989  }
990#elif defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED >= 1060
991  pthread_setname_np(thread_name);
992#elif defined(HAVE_PRCTL)
993  prctl(PR_SET_NAME, (unsigned long) s, 0, 0, 0);  // NOLINT (unsigned long)
994#else
995  UNIMPLEMENTED(WARNING) << thread_name;
996#endif
997}
998
999void GetTaskStats(pid_t tid, char* state, int* utime, int* stime, int* task_cpu) {
1000  *utime = *stime = *task_cpu = 0;
1001  std::string stats;
1002  if (!ReadFileToString(StringPrintf("/proc/self/task/%d/stat", tid), &stats)) {
1003    return;
1004  }
1005  // Skip the command, which may contain spaces.
1006  stats = stats.substr(stats.find(')') + 2);
1007  // Extract the three fields we care about.
1008  std::vector<std::string> fields;
1009  Split(stats, ' ', fields);
1010  *state = fields[0][0];
1011  *utime = strtoull(fields[11].c_str(), NULL, 10);
1012  *stime = strtoull(fields[12].c_str(), NULL, 10);
1013  *task_cpu = strtoull(fields[36].c_str(), NULL, 10);
1014}
1015
1016std::string GetSchedulerGroupName(pid_t tid) {
1017  // /proc/<pid>/cgroup looks like this:
1018  // 2:devices:/
1019  // 1:cpuacct,cpu:/
1020  // We want the third field from the line whose second field contains the "cpu" token.
1021  std::string cgroup_file;
1022  if (!ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid), &cgroup_file)) {
1023    return "";
1024  }
1025  std::vector<std::string> cgroup_lines;
1026  Split(cgroup_file, '\n', cgroup_lines);
1027  for (size_t i = 0; i < cgroup_lines.size(); ++i) {
1028    std::vector<std::string> cgroup_fields;
1029    Split(cgroup_lines[i], ':', cgroup_fields);
1030    std::vector<std::string> cgroups;
1031    Split(cgroup_fields[1], ',', cgroups);
1032    for (size_t i = 0; i < cgroups.size(); ++i) {
1033      if (cgroups[i] == "cpu") {
1034        return cgroup_fields[2].substr(1);  // Skip the leading slash.
1035      }
1036    }
1037  }
1038  return "";
1039}
1040
1041void DumpNativeStack(std::ostream& os, pid_t tid, const char* prefix,
1042    mirror::ArtMethod* current_method) {
1043  // We may be called from contexts where current_method is not null, so we must assert this.
1044  if (current_method != nullptr) {
1045    Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
1046  }
1047  std::unique_ptr<Backtrace> backtrace(Backtrace::Create(BACKTRACE_CURRENT_PROCESS, tid));
1048  if (!backtrace->Unwind(0)) {
1049    os << prefix << "(backtrace::Unwind failed for thread " << tid << ")\n";
1050    return;
1051  } else if (backtrace->NumFrames() == 0) {
1052    os << prefix << "(no native stack frames for thread " << tid << ")\n";
1053    return;
1054  }
1055
1056  for (Backtrace::const_iterator it = backtrace->begin();
1057       it != backtrace->end(); ++it) {
1058    // We produce output like this:
1059    // ]    #00 pc 000075bb8  /system/lib/libc.so (unwind_backtrace_thread+536)
1060    // In order for parsing tools to continue to function, the stack dump
1061    // format must at least adhere to this format:
1062    //  #XX pc <RELATIVE_ADDR>  <FULL_PATH_TO_SHARED_LIBRARY> ...
1063    // The parsers require a single space before and after pc, and two spaces
1064    // after the <RELATIVE_ADDR>. There can be any prefix data before the
1065    // #XX. <RELATIVE_ADDR> has to be a hex number but with no 0x prefix.
1066    os << prefix << StringPrintf("#%02zu pc ", it->num);
1067    if (!it->map) {
1068      os << StringPrintf("%08" PRIxPTR "  ???", it->pc);
1069    } else {
1070      os << StringPrintf("%08" PRIxPTR "  ", it->pc - it->map->start)
1071         << it->map->name << " (";
1072      if (!it->func_name.empty()) {
1073        os << it->func_name;
1074        if (it->func_offset != 0) {
1075          os << "+" << it->func_offset;
1076        }
1077      } else if (current_method != nullptr && current_method->IsWithinQuickCode(it->pc)) {
1078        const void* start_of_code = current_method->GetEntryPointFromQuickCompiledCode();
1079        os << JniLongName(current_method) << "+"
1080           << (it->pc - reinterpret_cast<uintptr_t>(start_of_code));
1081      } else {
1082        os << "???";
1083      }
1084      os << ")";
1085    }
1086    os << "\n";
1087  }
1088}
1089
1090#if defined(__APPLE__)
1091
1092// TODO: is there any way to get the kernel stack on Mac OS?
1093void DumpKernelStack(std::ostream&, pid_t, const char*, bool) {}
1094
1095#else
1096
1097void DumpKernelStack(std::ostream& os, pid_t tid, const char* prefix, bool include_count) {
1098  if (tid == GetTid()) {
1099    // There's no point showing that we're reading our stack out of /proc!
1100    return;
1101  }
1102
1103  std::string kernel_stack_filename(StringPrintf("/proc/self/task/%d/stack", tid));
1104  std::string kernel_stack;
1105  if (!ReadFileToString(kernel_stack_filename, &kernel_stack)) {
1106    os << prefix << "(couldn't read " << kernel_stack_filename << ")\n";
1107    return;
1108  }
1109
1110  std::vector<std::string> kernel_stack_frames;
1111  Split(kernel_stack, '\n', kernel_stack_frames);
1112  // We skip the last stack frame because it's always equivalent to "[<ffffffff>] 0xffffffff",
1113  // which looking at the source appears to be the kernel's way of saying "that's all, folks!".
1114  kernel_stack_frames.pop_back();
1115  for (size_t i = 0; i < kernel_stack_frames.size(); ++i) {
1116    // Turn "[<ffffffff8109156d>] futex_wait_queue_me+0xcd/0x110"
1117    // into "futex_wait_queue_me+0xcd/0x110".
1118    const char* text = kernel_stack_frames[i].c_str();
1119    const char* close_bracket = strchr(text, ']');
1120    if (close_bracket != NULL) {
1121      text = close_bracket + 2;
1122    }
1123    os << prefix;
1124    if (include_count) {
1125      os << StringPrintf("#%02zd ", i);
1126    }
1127    os << text << "\n";
1128  }
1129}
1130
1131#endif
1132
1133const char* GetAndroidRoot() {
1134  const char* android_root = getenv("ANDROID_ROOT");
1135  if (android_root == NULL) {
1136    if (OS::DirectoryExists("/system")) {
1137      android_root = "/system";
1138    } else {
1139      LOG(FATAL) << "ANDROID_ROOT not set and /system does not exist";
1140      return "";
1141    }
1142  }
1143  if (!OS::DirectoryExists(android_root)) {
1144    LOG(FATAL) << "Failed to find ANDROID_ROOT directory " << android_root;
1145    return "";
1146  }
1147  return android_root;
1148}
1149
1150const char* GetAndroidData() {
1151  const char* android_data = getenv("ANDROID_DATA");
1152  if (android_data == NULL) {
1153    if (OS::DirectoryExists("/data")) {
1154      android_data = "/data";
1155    } else {
1156      LOG(FATAL) << "ANDROID_DATA not set and /data does not exist";
1157      return "";
1158    }
1159  }
1160  if (!OS::DirectoryExists(android_data)) {
1161    LOG(FATAL) << "Failed to find ANDROID_DATA directory " << android_data;
1162    return "";
1163  }
1164  return android_data;
1165}
1166
1167std::string GetDalvikCacheOrDie(const char* subdir, const bool create_if_absent) {
1168  CHECK(subdir != nullptr);
1169  const char* android_data = GetAndroidData();
1170  const std::string dalvik_cache_root(StringPrintf("%s/dalvik-cache/", android_data));
1171  const std::string dalvik_cache = dalvik_cache_root + subdir;
1172  if (create_if_absent && !OS::DirectoryExists(dalvik_cache.c_str())) {
1173    // Don't create the system's /data/dalvik-cache/... because it needs special permissions.
1174    if (strcmp(android_data, "/data") != 0) {
1175      int result = mkdir(dalvik_cache_root.c_str(), 0700);
1176      if (result != 0 && errno != EEXIST) {
1177        PLOG(FATAL) << "Failed to create dalvik-cache directory " << dalvik_cache_root;
1178        return "";
1179      }
1180      result = mkdir(dalvik_cache.c_str(), 0700);
1181      if (result != 0) {
1182        PLOG(FATAL) << "Failed to create dalvik-cache directory " << dalvik_cache;
1183        return "";
1184      }
1185    } else {
1186      LOG(FATAL) << "Failed to find dalvik-cache directory " << dalvik_cache;
1187      return "";
1188    }
1189  }
1190  return dalvik_cache;
1191}
1192
1193std::string GetDalvikCacheFilenameOrDie(const char* location, const char* cache_location) {
1194  if (location[0] != '/') {
1195    LOG(FATAL) << "Expected path in location to be absolute: "<< location;
1196  }
1197  std::string cache_file(&location[1]);  // skip leading slash
1198  if (!EndsWith(location, ".dex") && !EndsWith(location, ".art")) {
1199    cache_file += "/";
1200    cache_file += DexFile::kClassesDex;
1201  }
1202  std::replace(cache_file.begin(), cache_file.end(), '/', '@');
1203  return StringPrintf("%s/%s", cache_location, cache_file.c_str());
1204}
1205
1206static void InsertIsaDirectory(const InstructionSet isa, std::string* filename) {
1207  // in = /foo/bar/baz
1208  // out = /foo/bar/<isa>/baz
1209  size_t pos = filename->rfind('/');
1210  CHECK_NE(pos, std::string::npos) << *filename << " " << isa;
1211  filename->insert(pos, "/", 1);
1212  filename->insert(pos + 1, GetInstructionSetString(isa));
1213}
1214
1215std::string GetSystemImageFilename(const char* location, const InstructionSet isa) {
1216  // location = /system/framework/boot.art
1217  // filename = /system/framework/<isa>/boot.art
1218  std::string filename(location);
1219  InsertIsaDirectory(isa, &filename);
1220  return filename;
1221}
1222
1223std::string DexFilenameToOdexFilename(const std::string& location, const InstructionSet isa) {
1224  // location = /foo/bar/baz.jar
1225  // odex_location = /foo/bar/<isa>/baz.odex
1226  CHECK_GE(location.size(), 4U) << location;  // must be at least .123
1227  std::string odex_location(location);
1228  InsertIsaDirectory(isa, &odex_location);
1229  size_t dot_index = odex_location.size() - 3 - 1;  // 3=dex or zip or apk
1230  CHECK_EQ('.', odex_location[dot_index]) << location;
1231  odex_location.resize(dot_index + 1);
1232  CHECK_EQ('.', odex_location[odex_location.size()-1]) << location << " " << odex_location;
1233  odex_location += "odex";
1234  return odex_location;
1235}
1236
1237bool IsZipMagic(uint32_t magic) {
1238  return (('P' == ((magic >> 0) & 0xff)) &&
1239          ('K' == ((magic >> 8) & 0xff)));
1240}
1241
1242bool IsDexMagic(uint32_t magic) {
1243  return DexFile::IsMagicValid(reinterpret_cast<const byte*>(&magic));
1244}
1245
1246bool IsOatMagic(uint32_t magic) {
1247  return (memcmp(reinterpret_cast<const byte*>(magic),
1248                 OatHeader::kOatMagic,
1249                 sizeof(OatHeader::kOatMagic)) == 0);
1250}
1251
1252bool Exec(std::vector<std::string>& arg_vector, std::string* error_msg) {
1253  const std::string command_line(Join(arg_vector, ' '));
1254
1255  CHECK_GE(arg_vector.size(), 1U) << command_line;
1256
1257  // Convert the args to char pointers.
1258  const char* program = arg_vector[0].c_str();
1259  std::vector<char*> args;
1260  for (size_t i = 0; i < arg_vector.size(); ++i) {
1261    const std::string& arg = arg_vector[i];
1262    char* arg_str = const_cast<char*>(arg.c_str());
1263    CHECK(arg_str != nullptr) << i;
1264    args.push_back(arg_str);
1265  }
1266  args.push_back(NULL);
1267
1268  // fork and exec
1269  pid_t pid = fork();
1270  if (pid == 0) {
1271    // no allocation allowed between fork and exec
1272
1273    // change process groups, so we don't get reaped by ProcessManager
1274    setpgid(0, 0);
1275
1276    execv(program, &args[0]);
1277
1278    PLOG(ERROR) << "Failed to execv(" << command_line << ")";
1279    exit(1);
1280  } else {
1281    if (pid == -1) {
1282      *error_msg = StringPrintf("Failed to execv(%s) because fork failed: %s",
1283                                command_line.c_str(), strerror(errno));
1284      return false;
1285    }
1286
1287    // wait for subprocess to finish
1288    int status;
1289    pid_t got_pid = TEMP_FAILURE_RETRY(waitpid(pid, &status, 0));
1290    if (got_pid != pid) {
1291      *error_msg = StringPrintf("Failed after fork for execv(%s) because waitpid failed: "
1292                                "wanted %d, got %d: %s",
1293                                command_line.c_str(), pid, got_pid, strerror(errno));
1294      return false;
1295    }
1296    if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) {
1297      *error_msg = StringPrintf("Failed execv(%s) because non-0 exit status",
1298                                command_line.c_str());
1299      return false;
1300    }
1301  }
1302  return true;
1303}
1304
1305}  // namespace art
1306