1f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
2f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org/* -----------------------------------------------------------------------------------------------------------
3f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgSoftware License for The Fraunhofer FDK AAC Codec Library for Android
4f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
5f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org� Copyright  1995 - 2013 Fraunhofer-Gesellschaft zur F�rderung der angewandten Forschung e.V.
6f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  All rights reserved.
7f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
8f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org 1.    INTRODUCTION
9f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgThe Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
10f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgthe MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
11f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgThis FDK AAC Codec software is intended to be used on a wide variety of Android devices.
12f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
13f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgAAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
14f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgaudio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
15f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgindependent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
16f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgof the MPEG specifications.
17f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
18f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgPatent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
19f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgmay be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
20f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgindividually for the purpose of encoding or decoding bit streams in products that are compliant with
21f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgthe ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
22f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgthese patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
23f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgsoftware may already be covered under those patent licenses when it is used for those licensed purposes only.
24f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
25f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgCommercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
26f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgare also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
27f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgapplications information and documentation.
28f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
29f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org2.    COPYRIGHT LICENSE
30f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
31f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgRedistribution and use in source and binary forms, with or without modification, are permitted without
32f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgpayment of copyright license fees provided that you satisfy the following conditions:
33f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
34f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgYou must retain the complete text of this software license in redistributions of the FDK AAC Codec or
35f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgyour modifications thereto in source code form.
36f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
37f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgYou must retain the complete text of this software license in the documentation and/or other materials
38f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgprovided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
39f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgYou must make available free of charge copies of the complete source code of the FDK AAC Codec and your
40f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgmodifications thereto to recipients of copies in binary form.
41f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
42f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgThe name of Fraunhofer may not be used to endorse or promote products derived from this library without
43f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgprior written permission.
44f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
45f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgYou may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
46f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgsoftware or your modifications thereto.
47f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
48f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgYour modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
49f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.organd the date of any change. For modified versions of the FDK AAC Codec, the term
50f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
51f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
52f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
53f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org3.    NO PATENT LICENSE
54f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
55f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgNO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
56f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
57f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgrespect to this software.
58f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
59f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgYou may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
60f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgby appropriate patent licenses.
61f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
62f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org4.    DISCLAIMER
63f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
64f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgThis FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
65f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
66f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgof merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
67f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgCONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
68f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgincluding but not limited to procurement of substitute goods or services; loss of use, data, or profits,
69f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgor business interruption, however caused and on any theory of liability, whether in contract, strict
70f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgliability, or tort (including negligence), arising in any way out of the use of this software, even if
71f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgadvised of the possibility of such damage.
72f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
73f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org5.    CONTACT INFORMATION
74f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
75f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgFraunhofer Institute for Integrated Circuits IIS
76f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgAttention: Audio and Multimedia Departments - FDK AAC LL
77f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgAm Wolfsmantel 33
78f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org91058 Erlangen, Germany
79f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
80f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgwww.iis.fraunhofer.de/amm
81f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgamm-info@iis.fraunhofer.de
82f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org----------------------------------------------------------------------------------------------------------- */
83f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
84f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org/******************************** MPEG Audio Encoder **************************
85f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
86f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    Initial author:       M. Werner
87f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    contents/description: Threshold compensation
88f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
89f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org******************************************************************************/
90f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
91f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org#include "common_fix.h"
92f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
93f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org#include "adj_thr_data.h"
94f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org#include "adj_thr.h"
95f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org#include "qc_data.h"
96f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org#include "sf_estim.h"
97f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org#include "aacEnc_ram.h"
98f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
99f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
100f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
101f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
102f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org#define INV_INT_TAB_SIZE  (8)
103f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgstatic const FIXP_DBL invInt[INV_INT_TAB_SIZE] =
104f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org{
105f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  0x7fffffff, 0x7fffffff, 0x40000000, 0x2aaaaaaa, 0x20000000, 0x19999999, 0x15555555, 0x12492492
106f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org};
107f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
108f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
109f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org#define INV_SQRT4_TAB_SIZE  (8)
110f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgstatic const FIXP_DBL invSqrt4[INV_SQRT4_TAB_SIZE] =
111f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org{
112f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  0x7fffffff, 0x7fffffff, 0x6ba27e65, 0x61424bb5, 0x5a827999, 0x55994845, 0x51c8e33c, 0x4eb160d1
113f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org};
114f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
115f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
116f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org/*static const INT      invRedExp = 4;*/
117f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgstatic const FIXP_DBL  SnrLdMin1 = (FIXP_DBL)0xfcad0ddf; /*FL2FXCONST_DBL(FDKlog(0.316)/FDKlog(2.0)/LD_DATA_SCALING);*/
118f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgstatic const FIXP_DBL  SnrLdMin2 = (FIXP_DBL)0x0351e1a2; /*FL2FXCONST_DBL(FDKlog(3.16) /FDKlog(2.0)/LD_DATA_SCALING);*/
119f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgstatic const FIXP_DBL  SnrLdFac  = (FIXP_DBL)0xff5b2c3e; /*FL2FXCONST_DBL(FDKlog(0.8)  /FDKlog(2.0)/LD_DATA_SCALING);*/
120f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
121f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgstatic const FIXP_DBL  SnrLdMin3 = (FIXP_DBL)0xfe000000; /*FL2FXCONST_DBL(FDKlog(0.5)  /FDKlog(2.0)/LD_DATA_SCALING);*/
122f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgstatic const FIXP_DBL  SnrLdMin4 = (FIXP_DBL)0x02000000; /*FL2FXCONST_DBL(FDKlog(2.0)  /FDKlog(2.0)/LD_DATA_SCALING);*/
123f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgstatic const FIXP_DBL  SnrLdMin5 = (FIXP_DBL)0xfc000000; /*FL2FXCONST_DBL(FDKlog(0.25) /FDKlog(2.0)/LD_DATA_SCALING);*/
124f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
125f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
126f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org/*
127f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgThe bits2Pe factors are choosen for the case that some times
128f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgthe crash recovery strategy will be activated once.
129f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org*/
130f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
131f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgtypedef struct {
132f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  INT                 bitrate;
133f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  LONG                bits2PeFactor_mono;
134f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  LONG                bits2PeFactor_mono_slope;
135f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  LONG                bits2PeFactor_stereo;
136f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  LONG                bits2PeFactor_stereo_slope;
137f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  LONG                bits2PeFactor_mono_scfOpt;
138f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  LONG                bits2PeFactor_mono_scfOpt_slope;
139f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  LONG                bits2PeFactor_stereo_scfOpt;
140f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  LONG                bits2PeFactor_stereo_scfOpt_slope;
141f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
142f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org} BIT_PE_SFAC;
143f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
144f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgtypedef struct {
145f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  const INT           sampleRate;
146f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  const BIT_PE_SFAC * pPeTab;
147f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  const INT           nEntries;
148f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
149f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org} BITS2PE_CFG_TAB;
150f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
151f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgstatic const BIT_PE_SFAC S_Bits2PeTab16000[] = {
152f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 10000, 0x228F5C29, 0x02FEF55D, 0x1D70A3D7, 0x09BC9D6D, 0x228F5C29, 0x02FEF55D, 0x1C28F5C3, 0x0CBB92CA},
153f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 24000, 0x23D70A3D, 0x029F16B1, 0x2199999A, 0x07DD4413, 0x23D70A3D, 0x029F16B1, 0x2199999A, 0x07DD4413},
154f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 32000, 0x247AE148, 0x11B1D92B, 0x23851EB8, 0x01F75105, 0x247AE148, 0x110A137F, 0x23851EB8, 0x01F75105},
155f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 48000, 0x2D1EB852, 0x6833C600, 0x247AE148, 0x014F8B59, 0x2CCCCCCD, 0x68DB8BAC, 0x247AE148, 0x01F75105},
156f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 64000, 0x60000000, 0x00000000, 0x251EB852, 0x154C985F, 0x60000000, 0x00000000, 0x2570A3D7, 0x154C985F},
157f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 96000, 0x60000000, 0x00000000, 0x39EB851F, 0x088509C0, 0x60000000, 0x00000000, 0x3A3D70A4, 0x088509C0},
158f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  {128000, 0x60000000, 0x00000000, 0x423D70A4, 0x18A43BB4, 0x60000000, 0x00000000, 0x428F5C29, 0x181E03F7},
159f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  {148000, 0x60000000, 0x00000000, 0x5147AE14, 0x00000000, 0x60000000, 0x00000000, 0x5147AE14, 0x00000000}
160f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org};
161f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
162f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgstatic const BIT_PE_SFAC S_Bits2PeTab22050[] = {
163f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 16000, 0x1a8f5c29, 0x1797cc3a, 0x128f5c29, 0x18e75793, 0x175c28f6, 0x221426fe, 0x00000000, 0x5a708ede},
164f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 24000, 0x2051eb85, 0x092ccf6c, 0x18a3d70a, 0x13a92a30, 0x1fae147b, 0xbcbe61d,  0x16147ae1, 0x18e75793},
165f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 32000, 0x228f5c29, 0x029f16b1, 0x1d70a3d7, 0x088509c0, 0x228f5c29, 0x29f16b1,  0x1c28f5c3, 0x0b242071},
166f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 48000, 0x23d70a3d, 0x014f8b59, 0x2199999a, 0x03eea20a, 0x23d70a3d, 0x14f8b59,  0x2199999a, 0x03eea20a},
167f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 64000, 0x247ae148, 0x08d8ec96, 0x23851eb8, 0x00fba882, 0x247ae148, 0x88509c0,  0x23851eb8, 0x00fba882},
168f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 96000, 0x2d1eb852, 0x3419e300, 0x247ae148, 0x00a7c5ac, 0x2ccccccd, 0x346dc5d6, 0x247ae148, 0x00fba882},
169f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  {128000, 0x60000000, 0x00000000, 0x251eb852, 0x029f16b1, 0x60000000, 0x00000000, 0x2570a3d7, 0x009f16b1},
170f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  {148000, 0x60000000, 0x00000000, 0x26b851ec, 0x00000000, 0x60000000, 0x00000000, 0x270a3d71, 0x00000000}
171f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org};
172f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
173f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgstatic const BIT_PE_SFAC S_Bits2PeTab24000[] = {
174f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 16000, 0x19eb851f, 0x13a92a30, 0x1147ae14, 0x164840e1, 0x1999999a, 0x12599ed8, 0x00000000, 0x46c764ae},
175f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 24000, 0x1eb851ec, 0x0d1b7176, 0x16b851ec, 0x18e75793, 0x1e147ae1, 0x0fba8827, 0x1147ae14, 0x2c9081c3},
176f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 32000, 0x21eb851f, 0x049667b6, 0x1ccccccd, 0x07357e67, 0x21eb851f, 0x03eea20a, 0x1c28f5c3, 0x07357e67},
177f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 48000, 0x2428f5c3, 0x014f8b59, 0x2051eb85, 0x053e2d62, 0x23d70a3d, 0x01f75105, 0x1fae147b, 0x07357e67},
178f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 64000, 0x24cccccd, 0x05e5f30e, 0x22e147ae, 0x01a36e2f, 0x24cccccd, 0x05e5f30e, 0x23333333, 0x014f8b59},
179f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 96000, 0x2a8f5c29, 0x24b33db0, 0x247ae148, 0x00fba882, 0x2a8f5c29, 0x26fe718b, 0x247ae148, 0x00fba882},
180f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  {128000, 0x4e666666, 0x1cd5f99c, 0x2570a3d7, 0x010c6f7a, 0x50a3d70a, 0x192a7371, 0x2570a3d7, 0x010c6f7a},
181f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  {148000, 0x60000000, 0x00000000, 0x26147ae1, 0x00000000, 0x60000000, 0x00000000, 0x26147ae1, 0x00000000}
182f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org};
183f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
184f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgstatic const BIT_PE_SFAC S_Bits2PeTab32000[] = {
185f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 16000, 0x1199999a, 0x20c49ba6, 0x00000000, 0x4577d955, 0x00000000, 0x60fe4799, 0x00000000, 0x00000000},
186f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 24000, 0x1999999a, 0x0fba8827, 0x10f5c28f, 0x1b866e44, 0x17ae147b, 0x0fba8827, 0x00000000, 0x4d551d69},
187f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 32000, 0x1d70a3d7, 0x07357e67, 0x17ae147b, 0x09d49518, 0x1b851eb8, 0x0a7c5ac4, 0x12e147ae, 0x110a137f},
188f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 48000, 0x20f5c28f, 0x049667b6, 0x1c7ae148, 0x053e2d62, 0x20a3d70a, 0x053e2d62, 0x1b333333, 0x05e5f30e},
189f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 64000, 0x23333333, 0x029f16b1, 0x1f0a3d71, 0x02f2f987, 0x23333333, 0x029f16b1, 0x1e147ae1, 0x03eea20a},
190f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 96000, 0x25c28f5c, 0x2c3c9eed, 0x21eb851f, 0x01f75105, 0x25c28f5c, 0x0a7c5ac4, 0x21eb851f, 0x01a36e2f},
191f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  {128000, 0x50f5c28f, 0x18a43bb4, 0x23d70a3d, 0x010c6f7a, 0x30000000, 0x168b5cc0, 0x23851eb8, 0x0192a737},
192f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  {148000, 0x60000000, 0x00000000, 0x247ae148, 0x00dfb23b, 0x3dc28f5c, 0x300f4aaf, 0x247ae148, 0x01bf6476},
193f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  {160000, 0x60000000, 0xb15b5740, 0x24cccccd, 0x053e2d62, 0x4f5c28f6, 0xbefd0072, 0x251eb852, 0x04fb1184},
194f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  {200000, 0x00000000, 0x00000000, 0x2b333333, 0x0836be91, 0x00000000, 0x00000000, 0x2b333333, 0x0890390f},
195f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  {320000, 0x00000000, 0x00000000, 0x4947ae14, 0x00000000, 0x00000000, 0x00000000, 0x4a8f5c29, 0x00000000}
196f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org};
197f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
198f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgstatic const BIT_PE_SFAC S_Bits2PeTab44100[] = {
199f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 16000, 0x10a3d70a, 0x1797cc3a, 0x00000000, 0x00000000, 0x00000000, 0x59210386, 0x00000000, 0x00000000},
200f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 24000, 0x16666666, 0x1797cc3a, 0x00000000, 0x639d5e4a, 0x15c28f5c, 0x12599ed8, 0x00000000, 0x5bc01a37},
201f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 32000, 0x1c28f5c3, 0x049667b6, 0x1851eb85, 0x049667b6, 0x1a3d70a4, 0x088509c0, 0x16666666, 0x053e2d62},
202f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 48000, 0x1e666666, 0x05e5f30e, 0x1a8f5c29, 0x049667b6, 0x1e666666, 0x05e5f30e, 0x18f5c28f, 0x05e5f30e},
203f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 64000, 0x2147ae14, 0x0346dc5d, 0x1ccccccd, 0x02f2f987, 0x2147ae14, 0x02f2f987, 0x1bd70a3d, 0x039abf34},
204f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 96000, 0x247ae148, 0x068db8bb, 0x1fae147b, 0x029f16b1, 0x2428f5c3, 0x0639d5e5, 0x1f5c28f6, 0x029f16b1},
205f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  {128000, 0x2ae147ae, 0x1b435265, 0x223d70a4, 0x0192a737, 0x2a3d70a4, 0x1040bfe4, 0x21eb851f, 0x0192a737},
206f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  {148000, 0x3b851eb8, 0x2832069c, 0x23333333, 0x00dfb23b, 0x3428f5c3, 0x2054c288, 0x22e147ae, 0x00dfb23b},
207f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  {160000, 0x4a3d70a4, 0xc32ebe5a, 0x23851eb8, 0x01d5c316, 0x40000000, 0xcb923a2b, 0x23333333, 0x01d5c316},
208f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  {200000, 0x00000000, 0x00000000, 0x25c28f5c, 0x0713f078, 0x00000000, 0x00000000, 0x2570a3d7, 0x072a4f17},
209f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  {320000, 0x00000000, 0x00000000, 0x3fae147b, 0x00000000, 0x00000000, 0x00000000, 0x3fae147b, 0x00000000}
210f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org};
211f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
212f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgstatic const BIT_PE_SFAC S_Bits2PeTab48000[] = {
213f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 16000, 0x0f5c28f6, 0x31ceaf25, 0x00000000, 0x00000000, 0x00000000, 0x74a771c9, 0x00000000, 0x00000000},
214f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 24000, 0x1b851eb8, 0x029f16b1, 0x00000000, 0x663c74fb, 0x1c7ae148, 0xe47991bd, 0x00000000, 0x49667b5f},
215f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 32000, 0x1c28f5c3, 0x029f16b1, 0x18f5c28f, 0x07357e67, 0x15c28f5c, 0x0f12c27a, 0x11eb851f, 0x13016484},
216f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 48000, 0x1d70a3d7, 0x053e2d62, 0x1c7ae148, 0xfe08aefc, 0x1d1eb852, 0x068db8bb, 0x1b333333, 0xfeb074a8},
217f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 64000, 0x20000000, 0x03eea20a, 0x1b851eb8, 0x0346dc5d, 0x2051eb85, 0x0346dc5d, 0x1a8f5c29, 0x039abf34},
218f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 96000, 0x23d70a3d, 0x053e2d62, 0x1eb851ec, 0x029f16b1, 0x23851eb8, 0x04ea4a8c, 0x1e147ae1, 0x02f2f987},
219f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  {128000, 0x28f5c28f, 0x14727dcc, 0x2147ae14, 0x0218def4, 0x2851eb85, 0x0e27e0f0, 0x20f5c28f, 0x0218def4},
220f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  {148000, 0x3570a3d7, 0x1cd5f99c, 0x228f5c29, 0x01bf6476, 0x30f5c28f, 0x18777e75, 0x223d70a4, 0x01bf6476},
221f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  {160000, 0x40000000, 0xcb923a2b, 0x23333333, 0x0192a737, 0x39eb851f, 0xd08d4bae, 0x22e147ae, 0x0192a737},
222f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  {200000, 0x00000000, 0x00000000, 0x251eb852, 0x06775a1b, 0x00000000, 0x00000000, 0x24cccccd, 0x06a4175a},
223f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  {320000, 0x00000000, 0x00000000, 0x3ccccccd, 0x00000000, 0x00000000, 0x00000000, 0x3d1eb852, 0x00000000}
224f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org};
225f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
226f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgstatic const BITS2PE_CFG_TAB bits2PeConfigTab[] = {
227f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 16000, S_Bits2PeTab16000, sizeof(S_Bits2PeTab16000)/sizeof(BIT_PE_SFAC) },
228f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 22050, S_Bits2PeTab22050, sizeof(S_Bits2PeTab22050)/sizeof(BIT_PE_SFAC) },
229f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 24000, S_Bits2PeTab24000, sizeof(S_Bits2PeTab24000)/sizeof(BIT_PE_SFAC) },
230f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 32000, S_Bits2PeTab32000, sizeof(S_Bits2PeTab32000)/sizeof(BIT_PE_SFAC) },
231f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 44100, S_Bits2PeTab44100, sizeof(S_Bits2PeTab44100)/sizeof(BIT_PE_SFAC) },
232f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  { 48000, S_Bits2PeTab48000, sizeof(S_Bits2PeTab48000)/sizeof(BIT_PE_SFAC) }
233f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org};
234f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
235f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
236f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
237f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org/* values for avoid hole flag */
238f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgenum _avoid_hole_state {
239f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    NO_AH              =0,
240f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    AH_INACTIVE        =1,
241f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    AH_ACTIVE          =2
242f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org};
243f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
244f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
245f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org/*  Q format definitions */
246f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org#define Q_BITFAC    (24)   /* Q scaling used in FDKaacEnc_bitresCalcBitFac() calculation */
247f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org#define Q_AVGBITS   (17)   /* scale bit values */
248f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
249f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
250f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org/*****************************************************************************
251f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    functionname: FDKaacEnc_InitBits2PeFactor
252f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    description:  retrieve bits2PeFactor from table
253f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org*****************************************************************************/
254f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgstatic void FDKaacEnc_InitBits2PeFactor(
255f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        FIXP_DBL *bits2PeFactor_m,
256f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        INT *bits2PeFactor_e,
257f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        const INT bitRate,
258f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        const INT nChannels,
259f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        const INT sampleRate,
260f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        const INT advancedBitsToPe,
261f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        const INT invQuant
262f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        )
263f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org{
264f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  /* default bits2pe factor */
265f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  FIXP_DBL bit2PE_m = FL2FXCONST_DBL(1.18f/(1<<(1)));
266f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  INT      bit2PE_e = 1;
267f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
268f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  /* make use of advanced bits to pe factor table */
269f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  if (advancedBitsToPe) {
270f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
271f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    int i;
272f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    const BIT_PE_SFAC *peTab = NULL;
273f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    INT size = 0;
274f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
275f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
276f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    /* Get correct table entry */
277f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    for (i=0; i<(INT)(sizeof(bits2PeConfigTab)/sizeof(BITS2PE_CFG_TAB)); i++) {
278f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      if (sampleRate >= bits2PeConfigTab[i].sampleRate) {
279f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        peTab = bits2PeConfigTab[i].pPeTab;
280f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        size  = bits2PeConfigTab[i].nEntries;
281f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      }
282f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    }
283f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
284f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    if ( (peTab!=NULL) && (size!=0) ) {
285f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
286f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      INT startB      = -1;
287f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      LONG startPF    = 0;
288f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      LONG peSlope    = 0;
289f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
290f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      /* stereo or mono mode and invQuant used or not */
291f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      for (i=0; i<size-1; i++)
292f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      {
293f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        if ((peTab[i].bitrate<=bitRate) && ((peTab[i+1].bitrate>bitRate) || ((i==size-2)) ))
294f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        {
295f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org          if (nChannels==1)
296f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org          {
297f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            startPF = (!invQuant) ? peTab[i].bits2PeFactor_mono   : peTab[i].bits2PeFactor_mono_scfOpt;
298f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            peSlope = (!invQuant) ? peTab[i].bits2PeFactor_mono_slope : peTab[i].bits2PeFactor_mono_scfOpt_slope;
299f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            /*endPF   = (!invQuant) ? peTab[i+1].bits2PeFactor_mono : peTab[i+1].bits2PeFactor_mono_scfOpt;
300f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            endB=peTab[i+1].bitrate;*/
301f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            startB=peTab[i].bitrate;
302f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            break;
303f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org          }
304f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org          else
305f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org          {
306f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            startPF = (!invQuant) ? peTab[i].bits2PeFactor_stereo   : peTab[i].bits2PeFactor_stereo_scfOpt;
307f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            peSlope = (!invQuant) ? peTab[i].bits2PeFactor_stereo_slope : peTab[i].bits2PeFactor_stereo_scfOpt_slope;
308f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            /*endPF   = (!invQuant) ? peTab[i+1].bits2PeFactor_stereo : peTab[i+1].bits2PeFactor_stereo_scfOpt;
309f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            endB=peTab[i+1].bitrate;*/
310f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            startB=peTab[i].bitrate;
311f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            break;
312f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org          }
313f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        }
314f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      } /* for i */
315f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
316f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      /* if a configuration is available */
317f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      if (startB!=-1) {
318f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        /* linear interpolate to actual PEfactor */
319f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        FIXP_DBL peFac = fMult((FIXP_DBL)(bitRate-startB)<<14, (FIXP_DBL)peSlope) << 2;
320f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        FIXP_DBL bit2PE = peFac + (FIXP_DBL)startPF; /* startPF_float = startPF << 2 */
321f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
322f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        /* sanity check if bits2pe value is high enough */
323f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        if ( bit2PE >= (FL2FXCONST_DBL(0.35f) >> 2) ) {
324f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org          bit2PE_m = bit2PE;
325f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org          bit2PE_e = 2; /*  table is fixed scaled */
326f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        }
327f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      } /* br */
328f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    } /* sr */
329f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  } /* advancedBitsToPe */
330f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
331f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
332f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  /* return bits2pe factor */
333f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  *bits2PeFactor_m = bit2PE_m;
334f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  *bits2PeFactor_e = bit2PE_e;
335f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org}
336f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
337f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
338f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org/*****************************************************************************
339f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgfunctionname: FDKaacEnc_bits2pe2
340f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgdescription:  convert from bits to pe
341f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org*****************************************************************************/
342f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgstatic INT FDKaacEnc_bits2pe2(
343f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        const INT                 bits,
344f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        const FIXP_DBL            factor_m,
345f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        const INT                 factor_e
346f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        )
347f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org{
348f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org   return (INT)(fMult(factor_m, (FIXP_DBL)(bits<<Q_AVGBITS)) >> (Q_AVGBITS-factor_e));
349f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org}
350f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
351f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org/*****************************************************************************
352f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgfunctionname: FDKaacEnc_calcThreshExp
353f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgdescription:  loudness calculation (threshold to the power of redExp)
354f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org*****************************************************************************/
355f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgstatic void FDKaacEnc_calcThreshExp(FIXP_DBL thrExp[(2)][MAX_GROUPED_SFB],
356f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                          QC_OUT_CHANNEL*  qcOutChannel[(2)],
357f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                          PSY_OUT_CHANNEL*  psyOutChannel[(2)],
358f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                          const INT nChannels)
359f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org{
360f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org   INT ch, sfb, sfbGrp;
361f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org   FIXP_DBL thrExpLdData;
362f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
363f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org   for (ch=0; ch<nChannels; ch++) {
364f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org     for(sfbGrp = 0;sfbGrp < psyOutChannel[ch]->sfbCnt;sfbGrp+= psyOutChannel[ch]->sfbPerGroup) {
365f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org       for (sfb=0; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
366f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org         thrExpLdData = psyOutChannel[ch]->sfbThresholdLdData[sfbGrp+sfb]>>2 ;
367f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org         thrExp[ch][sfbGrp+sfb] = CalcInvLdData(thrExpLdData);
368f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org       }
369f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org     }
370f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org   }
371f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org}
372f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
373f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
374f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org/*****************************************************************************
375f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    functionname: FDKaacEnc_adaptMinSnr
376f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    description:  reduce minSnr requirements for bands with relative low energies
377f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org*****************************************************************************/
378f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgstatic void FDKaacEnc_adaptMinSnr(QC_OUT_CHANNEL     *qcOutChannel[(2)],
379f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                                  PSY_OUT_CHANNEL    *psyOutChannel[(2)],
380f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                                  MINSNR_ADAPT_PARAM *msaParam,
381f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                                  const INT           nChannels)
382f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org{
383f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  INT ch, sfb, sfbGrp, nSfb;
384f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  FIXP_DBL avgEnLD64, dbRatio, minSnrRed;
385f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  FIXP_DBL minSnrLimitLD64 = FL2FXCONST_DBL(-0.00503012648262f); /* ld64(0.8f) */
386f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  FIXP_DBL nSfbLD64;
387f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  FIXP_DBL accu;
388f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
389f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  for (ch=0; ch<nChannels; ch++) {
390f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    /* calc average energy per scalefactor band */
391f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    nSfb = 0;
392f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    accu = FL2FXCONST_DBL(0.0f);
393f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
394f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    for (sfbGrp=0; sfbGrp < psyOutChannel[ch]->sfbCnt; sfbGrp+=psyOutChannel[ch]->sfbPerGroup) {
395f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      for (sfb=0; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
396f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        accu += psyOutChannel[ch]->sfbEnergy[sfbGrp+sfb]>>6;
397f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org				 nSfb++;
398f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org			 }
399f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    }
400f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
401f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    if ((accu == FL2FXCONST_DBL(0.0f)) || (nSfb == 0)) {
402f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      avgEnLD64 = FL2FXCONST_DBL(-1.0f);
403f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    }
404f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    else {
405f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      nSfbLD64  = CalcLdInt(nSfb);
406f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      avgEnLD64 = CalcLdData(accu);
407f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      avgEnLD64 = avgEnLD64 + FL2FXCONST_DBL(0.09375f) - nSfbLD64;  /* 0.09375f: compensate shift with 6 */
408f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    }
409f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
410f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    /* reduce minSnr requirement by minSnr^minSnrRed dependent on avgEn/sfbEn */
411f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    for (sfbGrp=0; sfbGrp < psyOutChannel[ch]->sfbCnt; sfbGrp+=psyOutChannel[ch]->sfbPerGroup) {
412f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      for (sfb=0; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
413f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        if ( (msaParam->startRatio + qcOutChannel[ch]->sfbEnergyLdData[sfbGrp+sfb]) < avgEnLD64 ) {
414f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org          dbRatio = fMult((avgEnLD64 - qcOutChannel[ch]->sfbEnergyLdData[sfbGrp+sfb]),FL2FXCONST_DBL(0.3010299956f)); /* scaled by (1.0f/(10.0f*64.0f)) */
415f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org          minSnrRed = msaParam->redOffs + fMult(msaParam->redRatioFac,dbRatio); /* scaled by 1.0f/64.0f*/
416f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org          minSnrRed = fixMax(minSnrRed, msaParam->maxRed); /* scaled by 1.0f/64.0f*/
417f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org          qcOutChannel[ch]->sfbMinSnrLdData[sfbGrp+sfb] = (fMult(qcOutChannel[ch]->sfbMinSnrLdData[sfbGrp+sfb],minSnrRed)) << 6;
418f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org          qcOutChannel[ch]->sfbMinSnrLdData[sfbGrp+sfb] = fixMin(minSnrLimitLD64, qcOutChannel[ch]->sfbMinSnrLdData[sfbGrp+sfb]);
419f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        }
420f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      }
421f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    }
422f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  }
423f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org}
424f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
425f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
426f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org/*****************************************************************************
427f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgfunctionname: FDKaacEnc_initAvoidHoleFlag
428f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgdescription:  determine bands where avoid hole is not necessary resp. possible
429f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org*****************************************************************************/
430f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgstatic void FDKaacEnc_initAvoidHoleFlag(QC_OUT_CHANNEL  *qcOutChannel[(2)],
431f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                              PSY_OUT_CHANNEL *psyOutChannel[(2)],
432f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                              UCHAR ahFlag[(2)][MAX_GROUPED_SFB],
433f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                              struct TOOLSINFO *toolsInfo,
434f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                              const INT nChannels,
435f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                              const PE_DATA *peData,
436f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                              AH_PARAM *ahParam)
437f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org{
438f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org   INT ch, sfb, sfbGrp;
439f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org   FIXP_DBL sfbEn, sfbEnm1;
440f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org   FIXP_DBL sfbEnLdData;
441f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org   FIXP_DBL avgEnLdData;
442f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
443f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org   /* decrease spread energy by 3dB for long blocks, resp. 2dB for shorts
444f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      (avoid more holes in long blocks) */
445f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org   for (ch=0; ch<nChannels; ch++) {
446f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      INT sfbGrp, sfb;
447f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      QC_OUT_CHANNEL*  qcOutChan  = qcOutChannel[ch];
448f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
449f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      if (psyOutChannel[ch]->lastWindowSequence != SHORT_WINDOW) {
450f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org         for (sfbGrp = 0;sfbGrp < psyOutChannel[ch]->sfbCnt;sfbGrp+= psyOutChannel[ch]->sfbPerGroup)
451f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org           for (sfb=0; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++)
452f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org              qcOutChan->sfbSpreadEnergy[sfbGrp+sfb] >>= 1 ;
453f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      }
454f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      else {
455f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org         for (sfbGrp = 0;sfbGrp < psyOutChannel[ch]->sfbCnt;sfbGrp+= psyOutChannel[ch]->sfbPerGroup)
456f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org           for (sfb=0; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++)
457f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org              qcOutChan->sfbSpreadEnergy[sfbGrp+sfb] =
458f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                   fMult(FL2FXCONST_DBL(0.63f),
459f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                         qcOutChan->sfbSpreadEnergy[sfbGrp+sfb]) ;
460f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      }
461f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org   }
462f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
463f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org   /* increase minSnr for local peaks, decrease it for valleys */
464f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org   if (ahParam->modifyMinSnr) {
465f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      for(ch=0; ch<nChannels; ch++) {
466f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org         QC_OUT_CHANNEL*  qcOutChan  = qcOutChannel[ch];
467f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org         for(sfbGrp = 0;sfbGrp < psyOutChannel[ch]->sfbCnt;sfbGrp+= psyOutChannel[ch]->sfbPerGroup){
468f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            for (sfb=0; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
469f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org               FIXP_DBL sfbEnp1, avgEn;
470f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org               if (sfb > 0)
471f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                  sfbEnm1 = qcOutChan->sfbEnergy[sfbGrp+sfb-1];
472f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org               else
473f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                  sfbEnm1 = qcOutChan->sfbEnergy[sfbGrp+sfb];
474f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
475f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org               if (sfb < psyOutChannel[ch]->maxSfbPerGroup-1)
476f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                  sfbEnp1 = qcOutChan->sfbEnergy[sfbGrp+sfb+1];
477f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org               else
478f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                  sfbEnp1 = qcOutChan->sfbEnergy[sfbGrp+sfb];
479f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
480f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org               avgEn = (sfbEnm1>>1) + (sfbEnp1>>1);
481f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org               avgEnLdData = CalcLdData(avgEn);
482f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org               sfbEn = qcOutChan->sfbEnergy[sfbGrp+sfb];
483f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org               sfbEnLdData = qcOutChan->sfbEnergyLdData[sfbGrp+sfb];
484f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org               /* peak ? */
485f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org               if (sfbEn > avgEn) {
486f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                  FIXP_DBL tmpMinSnrLdData;
487f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                  if (psyOutChannel[ch]->lastWindowSequence==LONG_WINDOW)
488f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                     tmpMinSnrLdData = fixMax( SnrLdFac + (FIXP_DBL)(avgEnLdData - sfbEnLdData), (FIXP_DBL)SnrLdMin1 ) ;
489f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                  else
490f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                     tmpMinSnrLdData = fixMax( SnrLdFac + (FIXP_DBL)(avgEnLdData - sfbEnLdData), (FIXP_DBL)SnrLdMin3 ) ;
491f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
492f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                  qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] =
493f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                     fixMin(qcOutChan->sfbMinSnrLdData[sfbGrp+sfb], tmpMinSnrLdData);
494f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org               }
495f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org               /* valley ? */
496f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org               if ( ((sfbEnLdData+(FIXP_DBL)SnrLdMin4) < (FIXP_DBL)avgEnLdData) && (sfbEn > FL2FXCONST_DBL(0.0)) ) {
497f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                  FIXP_DBL tmpMinSnrLdData = avgEnLdData - sfbEnLdData -(FIXP_DBL)SnrLdMin4 + qcOutChan->sfbMinSnrLdData[sfbGrp+sfb];
498f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                  tmpMinSnrLdData = fixMin((FIXP_DBL)SnrLdFac, tmpMinSnrLdData);
499f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                  qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] = fixMin(tmpMinSnrLdData,
500f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                        (FIXP_DBL)(qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] + SnrLdMin2 ));
501f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org               }
502f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            }
503f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org         }
504f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      }
505f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org   }
506f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
507f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org   /* stereo: adapt the minimum requirements sfbMinSnr of mid and
508f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      side channels to avoid spending unnoticable bits */
509f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org   if (nChannels == 2) {
510f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      QC_OUT_CHANNEL*  qcOutChanM  = qcOutChannel[0];
511f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      QC_OUT_CHANNEL*  qcOutChanS  = qcOutChannel[1];
512f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      PSY_OUT_CHANNEL*  psyOutChanM  = psyOutChannel[0];
513f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      for(sfbGrp = 0;sfbGrp < psyOutChanM->sfbCnt;sfbGrp+= psyOutChanM->sfbPerGroup){
514f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        for (sfb=0; sfb<psyOutChanM->maxSfbPerGroup; sfb++) {
515f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org          if (toolsInfo->msMask[sfbGrp+sfb]) {
516f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org             FIXP_DBL maxSfbEnLd = fixMax(qcOutChanM->sfbEnergyLdData[sfbGrp+sfb],qcOutChanS->sfbEnergyLdData[sfbGrp+sfb]);
517f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org             FIXP_DBL maxThrLd, sfbMinSnrTmpLd;
518f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
519f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org             if ( ((SnrLdMin5>>1) + (maxSfbEnLd>>1) + (qcOutChanM->sfbMinSnrLdData[sfbGrp+sfb]>>1)) <= FL2FXCONST_DBL(-0.5f))
520f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org               maxThrLd = FL2FXCONST_DBL(-1.0f) ;
521f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org             else
522f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org               maxThrLd = SnrLdMin5 + maxSfbEnLd + qcOutChanM->sfbMinSnrLdData[sfbGrp+sfb];
523f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
524f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org             if (qcOutChanM->sfbEnergy[sfbGrp+sfb] > FL2FXCONST_DBL(0.0f))
525f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org               sfbMinSnrTmpLd = maxThrLd - qcOutChanM->sfbEnergyLdData[sfbGrp+sfb];
526f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org             else
527f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org               sfbMinSnrTmpLd = FL2FXCONST_DBL(0.0f);
528f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
529f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org             qcOutChanM->sfbMinSnrLdData[sfbGrp+sfb] = fixMax(qcOutChanM->sfbMinSnrLdData[sfbGrp+sfb],sfbMinSnrTmpLd);
530f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
531f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org             if (qcOutChanM->sfbMinSnrLdData[sfbGrp+sfb] <= FL2FXCONST_DBL(0.0f))
532f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                qcOutChanM->sfbMinSnrLdData[sfbGrp+sfb] = fixMin(qcOutChanM->sfbMinSnrLdData[sfbGrp+sfb], (FIXP_DBL)SnrLdFac);
533f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
534f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org             if (qcOutChanS->sfbEnergy[sfbGrp+sfb] > FL2FXCONST_DBL(0.0f))
535f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org               sfbMinSnrTmpLd = maxThrLd - qcOutChanS->sfbEnergyLdData[sfbGrp+sfb];
536f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org             else
537f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org               sfbMinSnrTmpLd = FL2FXCONST_DBL(0.0f);
538f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
539f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org             qcOutChanS->sfbMinSnrLdData[sfbGrp+sfb] = fixMax(qcOutChanS->sfbMinSnrLdData[sfbGrp+sfb],sfbMinSnrTmpLd);
540f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
541f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org             if (qcOutChanS->sfbMinSnrLdData[sfbGrp+sfb] <= FL2FXCONST_DBL(0.0f))
542f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                qcOutChanS->sfbMinSnrLdData[sfbGrp+sfb] = fixMin(qcOutChanS->sfbMinSnrLdData[sfbGrp+sfb],(FIXP_DBL)SnrLdFac);
543f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
544f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org             if (qcOutChanM->sfbEnergy[sfbGrp+sfb]>qcOutChanM->sfbSpreadEnergy[sfbGrp+sfb])
545f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                qcOutChanS->sfbSpreadEnergy[sfbGrp+sfb] =
546f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                   fMult(qcOutChanS->sfbEnergy[sfbGrp+sfb], FL2FXCONST_DBL(0.9f));
547f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
548f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org             if (qcOutChanS->sfbEnergy[sfbGrp+sfb]>qcOutChanS->sfbSpreadEnergy[sfbGrp+sfb])
549f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                qcOutChanM->sfbSpreadEnergy[sfbGrp+sfb] =
550f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                   fMult(qcOutChanM->sfbEnergy[sfbGrp+sfb], FL2FXCONST_DBL(0.9f));
551f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org          }
552f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        }
553f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      }
554f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org   }
555f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
556f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org   /* init ahFlag (0: no ah necessary, 1: ah possible, 2: ah active */
557f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org   for(ch=0; ch<nChannels; ch++) {
558f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      QC_OUT_CHANNEL  *qcOutChan  = qcOutChannel[ch];
559f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      PSY_OUT_CHANNEL  *psyOutChan  = psyOutChannel[ch];
560f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      for(sfbGrp = 0;sfbGrp < psyOutChan->sfbCnt;sfbGrp+= psyOutChan->sfbPerGroup){
561f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        for (sfb=0; sfb<psyOutChan->maxSfbPerGroup; sfb++) {
562f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org          if ((qcOutChan->sfbSpreadEnergy[sfbGrp+sfb] > qcOutChan->sfbEnergy[sfbGrp+sfb])
563f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org              || (qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] > FL2FXCONST_DBL(0.0f))) {
564f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org             ahFlag[ch][sfbGrp+sfb] = NO_AH;
565f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org          }
566f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org          else {
567f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org             ahFlag[ch][sfbGrp+sfb] = AH_INACTIVE;
568f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org          }
569f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        }
570f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      }
571f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org   }
572f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org}
573f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
574f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
575f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
576f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org/**
577f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org * \brief  Calculate constants that do not change during successive pe calculations.
578f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org *
579f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org * \param peData                Pointer to structure containing PE data of current element.
580f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org * \param psyOutChannel         Pointer to PSY_OUT_CHANNEL struct holding nChannels elements.
581f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org * \param qcOutChannel          Pointer to QC_OUT_CHANNEL struct holding nChannels elements.
582f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org * \param nChannels             Number of channels in element.
583f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org * \param peOffset              Fixed PE offset defined while FDKaacEnc_AdjThrInit() depending on bitrate.
584f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org *
585f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org * \return  void
586f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org */
587f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgstatic
588f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgvoid FDKaacEnc_preparePe(PE_DATA *peData,
589f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org               PSY_OUT_CHANNEL* psyOutChannel[(2)],
590f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org               QC_OUT_CHANNEL* qcOutChannel[(2)],
591f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org               const INT nChannels,
592f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org               const INT peOffset)
593f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org{
594f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    INT ch;
595f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
596f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    for(ch=0; ch<nChannels; ch++) {
597f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        PSY_OUT_CHANNEL *psyOutChan = psyOutChannel[ch];
598f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        FDKaacEnc_prepareSfbPe(&peData->peChannelData[ch],
599f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            psyOutChan->sfbEnergyLdData,
600f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            psyOutChan->sfbThresholdLdData,
601f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            qcOutChannel[ch]->sfbFormFactorLdData,
602f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            psyOutChan->sfbOffsets,
603f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            psyOutChan->sfbCnt,
604f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            psyOutChan->sfbPerGroup,
605f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            psyOutChan->maxSfbPerGroup);
606f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    }
607f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    peData->offset = peOffset;
608f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org}
609f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
610f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org/**
611f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org * \brief  Calculate weighting factor for threshold adjustment.
612f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org *
613f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org * Calculate weighting factor to be applied at energies and thresholds in ld64 format.
614f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org *
615f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org * \param peData,               Pointer to PE data in current element.
616f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org * \param psyOutChannel         Pointer to PSY_OUT_CHANNEL struct holding nChannels elements.
617f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org * \param qcOutChannel          Pointer to QC_OUT_CHANNEL struct holding nChannels elements.
618f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org * \param toolsInfo             Pointer to tools info struct of current element.
619f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org * \param adjThrStateElement    Pointer to ATS_ELEMENT holding enFacPatch states.
620f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org * \param nChannels             Number of channels in element.
621f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org * \param usePatchTool          Apply the weighting tool 0 (no) else (yes).
622f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org *
623f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org * \return  void
624f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org */
625f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgstatic
626f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgvoid FDKaacEnc_calcWeighting(PE_DATA *peData,
627f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org               PSY_OUT_CHANNEL* psyOutChannel[(2)],
628f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org               QC_OUT_CHANNEL* qcOutChannel[(2)],
629f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org               struct TOOLSINFO *toolsInfo,
630f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org               ATS_ELEMENT* adjThrStateElement,
631f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org               const INT nChannels,
632f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org               const INT usePatchTool)
633f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org{
634f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    int ch, noShortWindowInFrame = TRUE;
635f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    INT exePatchM = 0;
636f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
637f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    for (ch=0; ch<nChannels; ch++) {
638f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        if (psyOutChannel[ch]->lastWindowSequence == SHORT_WINDOW) {
639f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            noShortWindowInFrame = FALSE;
640f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        }
641f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        FDKmemclear(qcOutChannel[ch]->sfbEnFacLd, MAX_GROUPED_SFB*sizeof(FIXP_DBL));
642f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    }
643f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
644f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    if (usePatchTool==0) {
645f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        return; /* tool is disabled */
646f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    }
647f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
648f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    for (ch=0; ch<nChannels; ch++) {
649f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
650f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        PSY_OUT_CHANNEL *psyOutChan = psyOutChannel[ch];
651f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
652f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        if (noShortWindowInFrame) { /* retain energy ratio between blocks of different length */
653f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
654f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            FIXP_DBL nrgSum14, nrgSum12, nrgSum34, nrgTotal;
655f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            FIXP_DBL nrgFacLd_14, nrgFacLd_12, nrgFacLd_34;
656f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            INT usePatch, exePatch;
657f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            int sfb, sfbGrp, nLinesSum = 0;
658f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
659f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            nrgSum14 = nrgSum12 = nrgSum34 = nrgTotal = FL2FXCONST_DBL(0.f);
660f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
661f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            /* calculate flatness of audible spectrum, i.e. spectrum above masking threshold. */
662f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            for (sfbGrp = 0;sfbGrp < psyOutChannel[ch]->sfbCnt; sfbGrp+=psyOutChannel[ch]->sfbPerGroup) {
663f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org              for (sfb=0; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
664f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                FIXP_DBL nrgFac12 = CalcInvLdData(psyOutChan->sfbEnergyLdData[sfbGrp+sfb]>>1); /* nrg^(1/2) */
665f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                FIXP_DBL nrgFac14 = CalcInvLdData(psyOutChan->sfbEnergyLdData[sfbGrp+sfb]>>2); /* nrg^(1/4) */
666f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
667f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                /* maximal number of bands is 64, results scaling factor 6 */
668f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                nLinesSum += peData->peChannelData[ch].sfbNLines[sfbGrp+sfb];             /* relevant lines */
669f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                nrgTotal  += ( psyOutChan->sfbEnergy[sfbGrp+sfb] >> 6 );                  /* sum up nrg */
670f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                nrgSum12  += ( nrgFac12 >> 6 );                                           /* sum up nrg^(2/4) */
671f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                nrgSum14  += ( nrgFac14 >> 6 );                                           /* sum up nrg^(1/4) */
672f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                nrgSum34  += ( fMult(nrgFac14, nrgFac12) >> 6 );                          /* sum up nrg^(3/4) */
673f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org              }
674f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            }
675f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
676f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            nrgTotal = CalcLdData(nrgTotal);                                              /* get ld64 of total nrg */
677f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
678f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            nrgFacLd_14 = CalcLdData(nrgSum14) - nrgTotal;                                /* ld64(nrgSum14/nrgTotal) */
679f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            nrgFacLd_12 = CalcLdData(nrgSum12) - nrgTotal;                                /* ld64(nrgSum12/nrgTotal) */
680f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            nrgFacLd_34 = CalcLdData(nrgSum34) - nrgTotal;                                /* ld64(nrgSum34/nrgTotal) */
681f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
682f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            adjThrStateElement->chaosMeasureEnFac[ch] = FDKmax( FL2FXCONST_DBL(0.1875f), fDivNorm(nLinesSum,psyOutChan->sfbOffsets[psyOutChan->sfbCnt]) );
683f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
684f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            usePatch = (adjThrStateElement->chaosMeasureEnFac[ch] > FL2FXCONST_DBL(0.78125f));
685f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            exePatch = ((usePatch) && (adjThrStateElement->lastEnFacPatch[ch]));
686f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
687f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            for (sfbGrp = 0;sfbGrp < psyOutChannel[ch]->sfbCnt; sfbGrp+=psyOutChannel[ch]->sfbPerGroup) {
688f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org              for (sfb=0; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
689f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
690f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                INT sfbExePatch;
691f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
692f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                /* for MS coupled SFBs, also execute patch in side channel if done in mid channel */
693f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                if ((ch == 1) && (toolsInfo->msMask[sfbGrp+sfb])) {
694f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                    sfbExePatch = exePatchM;
695f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                }
696f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                else {
697f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                    sfbExePatch = exePatch;
698f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                }
699f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
700f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                if ( (sfbExePatch) && (psyOutChan->sfbEnergy[sfbGrp+sfb]>FL2FXCONST_DBL(0.f)) )
701f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                {
702f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                    /* execute patch based on spectral flatness calculated above */
703f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                    if (adjThrStateElement->chaosMeasureEnFac[ch] > FL2FXCONST_DBL(0.8125f)) {
704f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                        qcOutChannel[ch]->sfbEnFacLd[sfbGrp+sfb] = ( (nrgFacLd_14 + (psyOutChan->sfbEnergyLdData[sfbGrp+sfb]+(psyOutChan->sfbEnergyLdData[sfbGrp+sfb]>>1)))>>1 ); /* sfbEnergy^(3/4) */
705f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                    }
706f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                    else if (adjThrStateElement->chaosMeasureEnFac[ch] > FL2FXCONST_DBL(0.796875f)) {
707f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                        qcOutChannel[ch]->sfbEnFacLd[sfbGrp+sfb] = ( (nrgFacLd_12 + psyOutChan->sfbEnergyLdData[sfbGrp+sfb])>>1 );          /* sfbEnergy^(2/4) */
708f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                    }
709f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                    else {
710f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                        qcOutChannel[ch]->sfbEnFacLd[sfbGrp+sfb] = ( (nrgFacLd_34 + (psyOutChan->sfbEnergyLdData[sfbGrp+sfb]>>1))>>1 );     /* sfbEnergy^(1/4) */
711f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                    }
712f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                    qcOutChannel[ch]->sfbEnFacLd[sfbGrp+sfb] = fixMin(qcOutChannel[ch]->sfbEnFacLd[sfbGrp+sfb],(FIXP_DBL)0);
713f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
714f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                }
715f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org              }
716f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            } /* sfb loop */
717f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
718f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            adjThrStateElement->lastEnFacPatch[ch] = usePatch;
719f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            exePatchM = exePatch;
720f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        }
721f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        else {
722f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            /* !noShortWindowInFrame */
723f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            adjThrStateElement->chaosMeasureEnFac[ch] = FL2FXCONST_DBL(0.75f);
724f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            adjThrStateElement->lastEnFacPatch[ch] = TRUE; /* allow use of sfbEnFac patch in upcoming frame */
725f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        }
726f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
727f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    } /* ch loop */
728f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
729f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org}
730f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
731f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
732f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
733f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
734f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org/*****************************************************************************
735f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgfunctionname: FDKaacEnc_calcPe
736f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgdescription:  calculate pe for both channels
737f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org*****************************************************************************/
738f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgstatic
739f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgvoid FDKaacEnc_calcPe(PSY_OUT_CHANNEL* psyOutChannel[(2)],
740f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            QC_OUT_CHANNEL* qcOutChannel[(2)],
741f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            PE_DATA *peData,
742f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            const INT nChannels)
743f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org{
744f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org   INT ch;
745f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
746f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org   peData->pe = peData->offset;
747f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org   peData->constPart = 0;
748f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org   peData->nActiveLines = 0;
749f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org   for(ch=0; ch<nChannels; ch++) {
750f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      PE_CHANNEL_DATA *peChanData = &peData->peChannelData[ch];
751f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      FDKaacEnc_calcSfbPe(&peData->peChannelData[ch],
752f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                qcOutChannel[ch]->sfbWeightedEnergyLdData,
753f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                qcOutChannel[ch]->sfbThresholdLdData,
754f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                psyOutChannel[ch]->sfbCnt,
755f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                psyOutChannel[ch]->sfbPerGroup,
756f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                psyOutChannel[ch]->maxSfbPerGroup,
757f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                psyOutChannel[ch]->isBook,
758f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                psyOutChannel[ch]->isScale);
759f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
760f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      peData->pe += peChanData->pe;
761f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      peData->constPart += peChanData->constPart;
762f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org      peData->nActiveLines += peChanData->nActiveLines;
763f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org   }
764f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org}
765f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
766f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgvoid FDKaacEnc_peCalculation(PE_DATA *peData,
767f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                             PSY_OUT_CHANNEL* psyOutChannel[(2)],
768f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                             QC_OUT_CHANNEL* qcOutChannel[(2)],
769f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                             struct TOOLSINFO *toolsInfo,
770f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                             ATS_ELEMENT* adjThrStateElement,
771f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                             const INT nChannels)
772f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org{
773f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  /* constants that will not change during successive pe calculations */
774f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  FDKaacEnc_preparePe(peData, psyOutChannel, qcOutChannel, nChannels, adjThrStateElement->peOffset);
775f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
776f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  /* calculate weighting factor for threshold adjustment */
777f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  FDKaacEnc_calcWeighting(peData, psyOutChannel, qcOutChannel, toolsInfo, adjThrStateElement, nChannels, 1);
778f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org{
779f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    /* no weighting of threholds and energies for mlout */
780f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    /* weight energies and thresholds */
781f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    int ch;
782f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    for (ch=0; ch<nChannels; ch++) {
783f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
784f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        int sfb, sfbGrp;
785f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        QC_OUT_CHANNEL* pQcOutCh = qcOutChannel[ch];
786f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
787f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        for (sfbGrp = 0;sfbGrp < psyOutChannel[ch]->sfbCnt; sfbGrp+=psyOutChannel[ch]->sfbPerGroup) {
788f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org          for (sfb=0; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
789f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            pQcOutCh->sfbWeightedEnergyLdData[sfb+sfbGrp] = pQcOutCh->sfbEnergyLdData[sfb+sfbGrp] - pQcOutCh->sfbEnFacLd[sfb+sfbGrp];
790f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            pQcOutCh->sfbThresholdLdData[sfb+sfbGrp]     -= pQcOutCh->sfbEnFacLd[sfb+sfbGrp];
791f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org          }
792f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        }
793f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    }
794f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org}
795f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
796f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  /* pe without reduction */
797f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org  FDKaacEnc_calcPe(psyOutChannel, qcOutChannel, peData, nChannels);
798f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org}
799f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
800f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
801f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
802f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org/*****************************************************************************
803f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgfunctionname: FDKaacEnc_FDKaacEnc_calcPeNoAH
804f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgdescription:  sum the pe data only for bands where avoid hole is inactive
805f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org*****************************************************************************/
806f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.orgstatic void FDKaacEnc_FDKaacEnc_calcPeNoAH(INT *pe,
807f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                       INT *constPart,
808f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                       INT    *nActiveLines,
809f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                       PE_DATA *peData,
810f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                       UCHAR ahFlag[(2)][MAX_GROUPED_SFB],
811f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                       PSY_OUT_CHANNEL* psyOutChannel[(2)],
812f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                       const INT nChannels)
813f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org{
814f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    INT ch, sfb,sfbGrp;
815f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org
816f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    INT pe_tmp = peData->offset;
817f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    INT constPart_tmp = 0;
818f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    INT nActiveLines_tmp = 0;
819f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    for(ch=0; ch<nChannels; ch++) {
820f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        PE_CHANNEL_DATA *peChanData = &peData->peChannelData[ch];
821f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        for(sfbGrp = 0;sfbGrp < psyOutChannel[ch]->sfbCnt;sfbGrp+= psyOutChannel[ch]->sfbPerGroup){
822f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            for (sfb=0; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
823f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                if(ahFlag[ch][sfbGrp+sfb] < AH_ACTIVE) {
824f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                    pe_tmp += peChanData->sfbPe[sfbGrp+sfb];
825f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                    constPart_tmp += peChanData->sfbConstPart[sfbGrp+sfb];
826f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                    nActiveLines_tmp += peChanData->sfbNActiveLines[sfbGrp+sfb];
827f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org                }
828f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org            }
829f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org        }
830f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    }
831f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    /* correct scaled pe and constPart values */
832f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    *pe = pe_tmp >> PE_CONSTPART_SHIFT;
833f2ba7591b1407a7ee9209f842c50696914dc2dedkbr@chromium.org    *constPart = constPart_tmp >> PE_CONSTPART_SHIFT;
834
835	*nActiveLines = nActiveLines_tmp;
836}
837
838
839/*****************************************************************************
840functionname: FDKaacEnc_reduceThresholdsCBR
841description:  apply reduction formula
842*****************************************************************************/
843static const FIXP_DBL limitThrReducedLdData = (FIXP_DBL)0x00008000; /*FL2FXCONST_DBL(FDKpow(2.0,-LD_DATA_SCALING/4.0));*/
844
845static void FDKaacEnc_reduceThresholdsCBR(QC_OUT_CHANNEL*  qcOutChannel[(2)],
846                                PSY_OUT_CHANNEL* psyOutChannel[(2)],
847                                UCHAR ahFlag[(2)][MAX_GROUPED_SFB],
848                                FIXP_DBL thrExp[(2)][MAX_GROUPED_SFB],
849                                const INT nChannels,
850                                const FIXP_DBL redVal,
851                                const SCHAR redValScaling)
852{
853   INT ch, sfb, sfbGrp;
854   FIXP_DBL sfbEnLdData, sfbThrLdData, sfbThrReducedLdData;
855   FIXP_DBL sfbThrExp;
856
857    for(ch=0; ch<nChannels; ch++) {
858      QC_OUT_CHANNEL *qcOutChan = qcOutChannel[ch];
859      for(sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt; sfbGrp+= psyOutChannel[ch]->sfbPerGroup){
860        for (sfb=0; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
861         sfbEnLdData  = qcOutChan->sfbWeightedEnergyLdData[sfbGrp+sfb];
862         sfbThrLdData = qcOutChan->sfbThresholdLdData[sfbGrp+sfb];
863         sfbThrExp    = thrExp[ch][sfbGrp+sfb];
864         if ((sfbEnLdData > sfbThrLdData) && (ahFlag[ch][sfbGrp+sfb] != AH_ACTIVE)) {
865
866            /* threshold reduction formula:
867             float tmp = thrExp[ch][sfb]+redVal;
868             tmp *= tmp;
869             sfbThrReduced = tmp*tmp;
870            */
871            int minScale = fixMin(CountLeadingBits(sfbThrExp), CountLeadingBits(redVal) - (DFRACT_BITS-1-redValScaling) )-1;
872
873            /* 4*log( sfbThrExp + redVal ) */
874            sfbThrReducedLdData = CalcLdData(fAbs(scaleValue(sfbThrExp, minScale) + scaleValue(redVal,(DFRACT_BITS-1-redValScaling)+minScale)))
875                                             - (FIXP_DBL)(minScale<<(DFRACT_BITS-1-LD_DATA_SHIFT));
876            sfbThrReducedLdData <<= 2;
877
878            /* avoid holes */
879            if ( ((sfbThrReducedLdData - sfbEnLdData) > qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] )
880                    && (ahFlag[ch][sfbGrp+sfb] != NO_AH) )
881            {
882              if (qcOutChan->sfbMinSnrLdData[sfbGrp+sfb]  > (FL2FXCONST_DBL(-1.0f) - sfbEnLdData) ){
883                   sfbThrReducedLdData = fixMax((qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] + sfbEnLdData), sfbThrLdData);
884              }
885              else sfbThrReducedLdData = sfbThrLdData;
886              ahFlag[ch][sfbGrp+sfb] = AH_ACTIVE;
887            }
888
889            /* minimum of 29 dB Ratio for Thresholds */
890            if ((sfbEnLdData+(FIXP_DBL)MAXVAL_DBL) > FL2FXCONST_DBL(9.6336206/LD_DATA_SCALING)){
891                sfbThrReducedLdData = fixMax(sfbThrReducedLdData, (sfbEnLdData - FL2FXCONST_DBL(9.6336206/LD_DATA_SCALING)));
892            }
893
894            qcOutChan->sfbThresholdLdData[sfbGrp+sfb] = sfbThrReducedLdData;
895         }
896        }
897      }
898   }
899}
900
901/* similar to prepareSfbPe1() */
902static FIXP_DBL FDKaacEnc_calcChaosMeasure(PSY_OUT_CHANNEL *psyOutChannel,
903                                 const FIXP_DBL  *sfbFormFactorLdData)
904{
905  #define SCALE_FORM_FAC     (4)    /* (SCALE_FORM_FAC+FORM_FAC_SHIFT) >= ld(FRAME_LENGTH)*/
906  #define SCALE_NRGS         (8)
907  #define SCALE_NLINES      (16)
908  #define SCALE_NRGS_SQRT4   (2)    /* 0.25 * SCALE_NRGS */
909  #define SCALE_NLINES_P34  (12)    /* 0.75 * SCALE_NLINES */
910
911  INT   sfbGrp, sfb;
912  FIXP_DBL chaosMeasure;
913  INT frameNLines = 0;
914  FIXP_DBL frameFormFactor = FL2FXCONST_DBL(0.f);
915  FIXP_DBL frameEnergy = FL2FXCONST_DBL(0.f);
916
917  for (sfbGrp=0; sfbGrp<psyOutChannel->sfbCnt; sfbGrp+=psyOutChannel->sfbPerGroup) {
918    for (sfb=0; sfb<psyOutChannel->maxSfbPerGroup; sfb++){
919      if (psyOutChannel->sfbEnergyLdData[sfbGrp+sfb] > psyOutChannel->sfbThresholdLdData[sfbGrp+sfb]) {
920        frameFormFactor += (CalcInvLdData(sfbFormFactorLdData[sfbGrp+sfb])>>SCALE_FORM_FAC);
921        frameNLines     += (psyOutChannel->sfbOffsets[sfbGrp+sfb+1] - psyOutChannel->sfbOffsets[sfbGrp+sfb]);
922        frameEnergy     += (psyOutChannel->sfbEnergy[sfbGrp+sfb]>>SCALE_NRGS);
923      }
924    }
925  }
926
927  if(frameNLines > 0){
928
929    /*  frameNActiveLines = frameFormFactor*2^FORM_FAC_SHIFT * ((frameEnergy *2^SCALE_NRGS)/frameNLines)^-0.25
930        chaosMeasure      = frameNActiveLines / frameNLines */
931    chaosMeasure =
932           CalcInvLdData( (((CalcLdData(frameFormFactor)>>1) -
933                            (CalcLdData(frameEnergy)>>(2+1))) -
934                           (fMultDiv2(FL2FXCONST_DBL(0.75f),CalcLdData((FIXP_DBL)frameNLines<<(DFRACT_BITS-1-SCALE_NLINES))) -
935                            (((FIXP_DBL)(SCALE_FORM_FAC-SCALE_NRGS_SQRT4+FORM_FAC_SHIFT-(SCALE_NLINES_P34))<<(DFRACT_BITS-1-LD_DATA_SHIFT))>>1))
936                          )<<1 );
937  } else {
938
939    /* assuming total chaos, if no sfb is above thresholds */
940    chaosMeasure = FL2FXCONST_DBL(1.f);
941  }
942
943  return chaosMeasure;
944}
945
946/* apply reduction formula for VBR-mode */
947static void FDKaacEnc_reduceThresholdsVBR(QC_OUT_CHANNEL* qcOutChannel[(2)],
948                                PSY_OUT_CHANNEL* psyOutChannel[(2)],
949                                UCHAR ahFlag[(2)][MAX_GROUPED_SFB],
950                                FIXP_DBL thrExp[(2)][MAX_GROUPED_SFB],
951                                const INT nChannels,
952                                const FIXP_DBL  vbrQualFactor,
953                                FIXP_DBL* chaosMeasureOld)
954{
955  INT ch, sfbGrp, sfb;
956  FIXP_DBL chGroupEnergy[TRANS_FAC][2];/*energy for each group and channel*/
957  FIXP_DBL chChaosMeasure[2];
958  FIXP_DBL frameEnergy = FL2FXCONST_DBL(1e-10f);
959  FIXP_DBL chaosMeasure = FL2FXCONST_DBL(0.f);
960  FIXP_DBL sfbEnLdData, sfbThrLdData, sfbThrExp;
961  FIXP_DBL sfbThrReducedLdData;
962  FIXP_DBL chaosMeasureAvg;
963  INT groupCnt; /* loop counter */
964  FIXP_DBL redVal[TRANS_FAC]; /* reduction values; in short-block case one redVal for each group */
965  QC_OUT_CHANNEL  *qcOutChan  = NULL;
966  PSY_OUT_CHANNEL  *psyOutChan  = NULL;
967
968#define SCALE_GROUP_ENERGY   (8)
969
970#define CONST_CHAOS_MEAS_AVG_FAC_0  (FL2FXCONST_DBL(0.25f))
971#define CONST_CHAOS_MEAS_AVG_FAC_1  (FL2FXCONST_DBL(1.f-0.25f))
972
973#define MIN_LDTHRESH                (FL2FXCONST_DBL(-0.515625f))
974
975
976  for(ch=0; ch<nChannels; ch++){
977    qcOutChan  = qcOutChannel[ch];
978    psyOutChan  = psyOutChannel[ch];
979
980    /* adding up energy for each channel and each group separately */
981    FIXP_DBL chEnergy = FL2FXCONST_DBL(0.f);
982    groupCnt=0;
983
984    for (sfbGrp=0; sfbGrp<psyOutChan->sfbCnt; sfbGrp+=psyOutChan->sfbPerGroup, groupCnt++) {
985      chGroupEnergy[groupCnt][ch] = FL2FXCONST_DBL(0.f);
986      for (sfb=0; sfb<psyOutChan->maxSfbPerGroup; sfb++){
987        chGroupEnergy[groupCnt][ch] += (psyOutChan->sfbEnergy[sfbGrp+sfb]>>SCALE_GROUP_ENERGY);
988      }
989      chEnergy += chGroupEnergy[groupCnt][ch];
990    }
991    frameEnergy += chEnergy;
992
993    /* chaosMeasure */
994    if (psyOutChannel[0]->lastWindowSequence == SHORT_WINDOW) {
995      chChaosMeasure[ch] = FL2FXCONST_DBL(0.5f); /* assume a constant chaos measure of 0.5f for short blocks */
996    } else {
997      chChaosMeasure[ch] = FDKaacEnc_calcChaosMeasure(psyOutChannel[ch], qcOutChannel[ch]->sfbFormFactorLdData);
998    }
999    chaosMeasure += fMult(chChaosMeasure[ch], chEnergy);
1000  }
1001
1002  if(frameEnergy > chaosMeasure) {
1003    INT scale = CntLeadingZeros(frameEnergy) - 1;
1004    FIXP_DBL num   = chaosMeasure<<scale;
1005    FIXP_DBL denum = frameEnergy<<scale;
1006    chaosMeasure   = schur_div(num,denum,16);
1007  }
1008  else {
1009    chaosMeasure = FL2FXCONST_DBL(1.f);
1010  }
1011
1012  chaosMeasureAvg = fMult(CONST_CHAOS_MEAS_AVG_FAC_0, chaosMeasure) +
1013                    fMult(CONST_CHAOS_MEAS_AVG_FAC_1, *chaosMeasureOld);      /* averaging chaos measure */
1014  *chaosMeasureOld = chaosMeasure = (fixMin(chaosMeasure, chaosMeasureAvg));  /* use min-value, safe for next frame */
1015
1016  /* characteristic curve
1017     chaosMeasure = 0.2f + 0.7f/0.3f * (chaosMeasure - 0.2f);
1018     chaosMeasure = fixMin(1.0f, fixMax(0.1f, chaosMeasure));
1019     constants scaled by 4.f
1020  */
1021  chaosMeasure = ((FL2FXCONST_DBL(0.2f)>>2) + fMult(FL2FXCONST_DBL(0.7f/(4.f*0.3f)), (chaosMeasure - FL2FXCONST_DBL(0.2f))));
1022  chaosMeasure = (fixMin((FIXP_DBL)(FL2FXCONST_DBL(1.0f)>>2), fixMax((FIXP_DBL)(FL2FXCONST_DBL(0.1f)>>2), chaosMeasure)))<<2;
1023
1024  /* calculation of reduction value */
1025  if (psyOutChannel[0]->lastWindowSequence == SHORT_WINDOW){ /* short-blocks */
1026    FDK_ASSERT(TRANS_FAC==8);
1027    #define   WIN_TYPE_SCALE   (3)
1028
1029    INT sfbGrp, groupCnt=0;
1030    for (sfbGrp=0; sfbGrp<psyOutChan->sfbCnt; sfbGrp+=psyOutChan->sfbPerGroup,groupCnt++) {
1031
1032      FIXP_DBL groupEnergy = FL2FXCONST_DBL(0.f);
1033
1034      for(ch=0;ch<nChannels;ch++){
1035        groupEnergy += chGroupEnergy[groupCnt][ch];   /* adding up the channels groupEnergy */
1036      }
1037
1038      FDK_ASSERT(psyOutChannel[0]->groupLen[groupCnt]<=INV_INT_TAB_SIZE);
1039      groupEnergy = fMult(groupEnergy,invInt[psyOutChannel[0]->groupLen[groupCnt]]);  /* correction of group energy */
1040      groupEnergy = fixMin(groupEnergy, frameEnergy>>WIN_TYPE_SCALE);                 /* do not allow an higher redVal as calculated framewise */
1041
1042      groupEnergy>>=2; /* 2*WIN_TYPE_SCALE = 6 => 6+2 = 8 ==> 8/4 = int number */
1043
1044      redVal[groupCnt] = fMult(fMult(vbrQualFactor,chaosMeasure),
1045                               CalcInvLdData(CalcLdData(groupEnergy)>>2) )
1046                         << (int)( ( 2 + (2*WIN_TYPE_SCALE) + SCALE_GROUP_ENERGY )>>2 ) ;
1047
1048    }
1049  } else { /* long-block */
1050
1051    redVal[0] = fMult( fMult(vbrQualFactor,chaosMeasure),
1052                       CalcInvLdData(CalcLdData(frameEnergy)>>2) )
1053                << (int)( SCALE_GROUP_ENERGY>>2 ) ;
1054  }
1055
1056  for(ch=0; ch<nChannels; ch++) {
1057    qcOutChan  = qcOutChannel[ch];
1058    psyOutChan  = psyOutChannel[ch];
1059
1060    for (sfbGrp=0; sfbGrp<psyOutChan->sfbCnt; sfbGrp+=psyOutChan->sfbPerGroup) {
1061      for (sfb=0; sfb<psyOutChan->maxSfbPerGroup; sfb++){
1062
1063        sfbEnLdData  = (qcOutChan->sfbWeightedEnergyLdData[sfbGrp+sfb]);
1064        sfbThrLdData = (qcOutChan->sfbThresholdLdData[sfbGrp+sfb]);
1065        sfbThrExp    = thrExp[ch][sfbGrp+sfb];
1066
1067        if ( (sfbThrLdData>=MIN_LDTHRESH) && (sfbEnLdData > sfbThrLdData) && (ahFlag[ch][sfbGrp+sfb] != AH_ACTIVE)) {
1068
1069          /* Short-Window */
1070          if (psyOutChannel[ch]->lastWindowSequence == SHORT_WINDOW) {
1071            const int groupNumber = (int) sfb/psyOutChan->sfbPerGroup;
1072
1073            FDK_ASSERT(INV_SQRT4_TAB_SIZE>psyOutChan->groupLen[groupNumber]);
1074
1075            sfbThrExp = fMult(sfbThrExp, fMult( FL2FXCONST_DBL(2.82f/4.f), invSqrt4[psyOutChan->groupLen[groupNumber]]))<<2 ;
1076
1077            if ( sfbThrExp <= (limitThrReducedLdData-redVal[groupNumber]) ) {
1078                sfbThrReducedLdData = FL2FXCONST_DBL(-1.0f);
1079            }
1080            else {
1081                if ((FIXP_DBL)redVal[groupNumber] >= FL2FXCONST_DBL(1.0f)-sfbThrExp)
1082                    sfbThrReducedLdData = FL2FXCONST_DBL(0.0f);
1083                else {
1084                    /* threshold reduction formula */
1085                    sfbThrReducedLdData = CalcLdData(sfbThrExp + redVal[groupNumber]);
1086                    sfbThrReducedLdData <<= 2;
1087                }
1088            }
1089            sfbThrReducedLdData += ( CalcLdInt(psyOutChan->groupLen[groupNumber]) -
1090                                     ((FIXP_DBL)6<<(DFRACT_BITS-1-LD_DATA_SHIFT)) );
1091          }
1092
1093          /* Long-Window */
1094          else {
1095            if ((FIXP_DBL)redVal[0] >= FL2FXCONST_DBL(1.0f)-sfbThrExp) {
1096              sfbThrReducedLdData = FL2FXCONST_DBL(0.0f);
1097            }
1098            else {
1099              /* threshold reduction formula */
1100              sfbThrReducedLdData = CalcLdData(sfbThrExp + redVal[0]);
1101              sfbThrReducedLdData <<= 2;
1102            }
1103          }
1104
1105          /* avoid holes */
1106          if ( ((sfbThrReducedLdData - sfbEnLdData) > qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] )
1107                  && (ahFlag[ch][sfbGrp+sfb] != NO_AH) )
1108          {
1109            if (qcOutChan->sfbMinSnrLdData[sfbGrp+sfb]  > (FL2FXCONST_DBL(-1.0f) - sfbEnLdData) ){
1110                 sfbThrReducedLdData = fixMax((qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] + sfbEnLdData), sfbThrLdData);
1111            }
1112            else sfbThrReducedLdData = sfbThrLdData;
1113            ahFlag[ch][sfbGrp+sfb] = AH_ACTIVE;
1114          }
1115
1116          if (sfbThrReducedLdData<FL2FXCONST_DBL(-0.5f))
1117               sfbThrReducedLdData = FL2FXCONST_DBL(-1.f);
1118
1119          /* minimum of 29 dB Ratio for Thresholds */
1120          if ((sfbEnLdData+FL2FXCONST_DBL(1.0f)) > FL2FXCONST_DBL(9.6336206/LD_DATA_SCALING)){
1121            sfbThrReducedLdData = fixMax(sfbThrReducedLdData, sfbEnLdData - FL2FXCONST_DBL(9.6336206/LD_DATA_SCALING));
1122          }
1123
1124          sfbThrReducedLdData = fixMax(MIN_LDTHRESH,sfbThrReducedLdData);
1125
1126          qcOutChan->sfbThresholdLdData[sfbGrp+sfb] = sfbThrReducedLdData;
1127        }
1128      }
1129    }
1130  }
1131}
1132
1133/*****************************************************************************
1134functionname: FDKaacEnc_correctThresh
1135description:  if pe difference deltaPe between desired pe and real pe is small enough,
1136the difference can be distributed among the scale factor bands.
1137New thresholds can be derived from this pe-difference
1138*****************************************************************************/
1139static void FDKaacEnc_correctThresh(CHANNEL_MAPPING* cm,
1140                          QC_OUT_ELEMENT*  qcElement[(8)],
1141                          PSY_OUT_ELEMENT* psyOutElement[(8)],
1142                          UCHAR            ahFlag[(8)][(2)][MAX_GROUPED_SFB],
1143                          FIXP_DBL         thrExp[(8)][(2)][MAX_GROUPED_SFB],
1144                          const            FIXP_DBL redVal[(8)],
1145                          const            SCHAR redValScaling[(8)],
1146                          const            INT deltaPe,
1147                          const            INT processElements,
1148                          const            INT elementOffset)
1149{
1150   INT ch, sfb, sfbGrp;
1151   QC_OUT_CHANNEL *qcOutChan;
1152   PSY_OUT_CHANNEL *psyOutChan;
1153   PE_CHANNEL_DATA *peChanData;
1154   FIXP_DBL thrFactorLdData;
1155   FIXP_DBL sfbEnLdData, sfbThrLdData, sfbThrReducedLdData;
1156   FIXP_DBL *sfbPeFactorsLdData[(8)][(2)];
1157   FIXP_DBL sfbNActiveLinesLdData[(8)][(2)][MAX_GROUPED_SFB];
1158   INT      normFactorInt;
1159   FIXP_DBL normFactorLdData;
1160
1161   INT nElements = elementOffset+processElements;
1162   INT elementId;
1163
1164   /* scratch is empty; use temporal memory from quantSpec in QC_OUT_CHANNEL */
1165   for(elementId=elementOffset;elementId<nElements;elementId++) {
1166     for(ch=0; ch<cm->elInfo[elementId].nChannelsInEl; ch++) {
1167       SHORT* ptr = qcElement[elementId]->qcOutChannel[ch]->quantSpec;
1168       sfbPeFactorsLdData[elementId][ch] = (FIXP_DBL*)ptr;
1169     }
1170   }
1171
1172   /* for each sfb calc relative factors for pe changes */
1173   normFactorInt = 0;
1174
1175   for(elementId=elementOffset;elementId<nElements;elementId++) {
1176     if (cm->elInfo[elementId].elType != ID_DSE) {
1177
1178       for(ch=0; ch<cm->elInfo[elementId].nChannelsInEl; ch++) {
1179
1180          qcOutChan = qcElement[elementId]->qcOutChannel[ch];
1181          psyOutChan = psyOutElement[elementId]->psyOutChannel[ch];
1182          peChanData = &qcElement[elementId]->peData.peChannelData[ch];
1183
1184          for(sfbGrp = 0; sfbGrp < psyOutChan->sfbCnt; sfbGrp+= psyOutChan->sfbPerGroup){
1185            for (sfb=0; sfb<psyOutChan->maxSfbPerGroup; sfb++) {
1186
1187             if ( peChanData->sfbNActiveLines[sfbGrp+sfb] == 0 ) {
1188                sfbNActiveLinesLdData[elementId][ch][sfbGrp+sfb] = FL2FXCONST_DBL(-1.0f);
1189             }
1190             else {
1191                /* Both CalcLdInt and CalcLdData can be used!
1192                 * No offset has to be subtracted, because sfbNActiveLinesLdData
1193                 * is shorted while thrFactor calculation */
1194                sfbNActiveLinesLdData[elementId][ch][sfbGrp+sfb] = CalcLdInt(peChanData->sfbNActiveLines[sfbGrp+sfb]);
1195             }
1196             if ( ((ahFlag[elementId][ch][sfbGrp+sfb] < AH_ACTIVE) || (deltaPe > 0)) &&
1197                   peChanData->sfbNActiveLines[sfbGrp+sfb] != 0 )
1198             {
1199                if (thrExp[elementId][ch][sfbGrp+sfb] > -redVal[elementId]) {
1200
1201                   /* sfbPeFactors[ch][sfbGrp+sfb] = peChanData->sfbNActiveLines[sfbGrp+sfb] /
1202                                     (thrExp[elementId][ch][sfbGrp+sfb] + redVal[elementId]); */
1203
1204                   int minScale = fixMin(CountLeadingBits(thrExp[elementId][ch][sfbGrp+sfb]), CountLeadingBits(redVal[elementId]) - (DFRACT_BITS-1-redValScaling[elementId]) ) - 1;
1205
1206                   /* sumld = ld64( sfbThrExp + redVal ) */
1207                   FIXP_DBL sumLd = CalcLdData(scaleValue(thrExp[elementId][ch][sfbGrp+sfb], minScale) + scaleValue(redVal[elementId], (DFRACT_BITS-1-redValScaling[elementId])+minScale))
1208                                               - (FIXP_DBL)(minScale<<(DFRACT_BITS-1-LD_DATA_SHIFT));
1209
1210                   if (sumLd < FL2FXCONST_DBL(0.f)) {
1211                      sfbPeFactorsLdData[elementId][ch][sfbGrp+sfb] = sfbNActiveLinesLdData[elementId][ch][sfbGrp+sfb] - sumLd;
1212                   }
1213                   else {
1214                     if ( sfbNActiveLinesLdData[elementId][ch][sfbGrp+sfb] > (FL2FXCONST_DBL(-1.f) + sumLd) ) {
1215                       sfbPeFactorsLdData[elementId][ch][sfbGrp+sfb] = sfbNActiveLinesLdData[elementId][ch][sfbGrp+sfb] - sumLd;
1216                     }
1217                     else {
1218                      sfbPeFactorsLdData[elementId][ch][sfbGrp+sfb] = sfbNActiveLinesLdData[elementId][ch][sfbGrp+sfb];
1219                     }
1220                   }
1221
1222                   normFactorInt += (INT)CalcInvLdData(sfbPeFactorsLdData[elementId][ch][sfbGrp+sfb]);
1223                }
1224                else sfbPeFactorsLdData[elementId][ch][sfbGrp+sfb] = FL2FXCONST_DBL(1.0f);
1225             }
1226             else sfbPeFactorsLdData[elementId][ch][sfbGrp+sfb] = FL2FXCONST_DBL(-1.0f);
1227            }
1228          }
1229       }
1230     }
1231   }
1232
1233   /* normFactorLdData = ld64(deltaPe/normFactorInt) */
1234   normFactorLdData = CalcLdData((FIXP_DBL)((deltaPe<0) ? (-deltaPe) : (deltaPe))) - CalcLdData((FIXP_DBL)normFactorInt);
1235
1236   /* distribute the pe difference to the scalefactors
1237      and calculate the according thresholds */
1238   for(elementId=elementOffset;elementId<nElements;elementId++) {
1239     if (cm->elInfo[elementId].elType != ID_DSE) {
1240
1241       for(ch=0; ch<cm->elInfo[elementId].nChannelsInEl; ch++) {
1242          qcOutChan = qcElement[elementId]->qcOutChannel[ch];
1243          psyOutChan = psyOutElement[elementId]->psyOutChannel[ch];
1244          peChanData = &qcElement[elementId]->peData.peChannelData[ch];
1245
1246          for(sfbGrp = 0;sfbGrp < psyOutChan->sfbCnt;sfbGrp+= psyOutChan->sfbPerGroup){
1247            for (sfb=0; sfb<psyOutChan->maxSfbPerGroup; sfb++) {
1248
1249              if (peChanData->sfbNActiveLines[sfbGrp+sfb] > 0) {
1250
1251                 /* pe difference for this sfb */
1252                 if ( (sfbPeFactorsLdData[elementId][ch][sfbGrp+sfb]==FL2FXCONST_DBL(-1.0f)) ||
1253                      (deltaPe==0) )
1254                 {
1255                   thrFactorLdData = FL2FXCONST_DBL(0.f);
1256                 }
1257                 else {
1258                   /* new threshold */
1259                   FIXP_DBL tmp = CalcInvLdData(sfbPeFactorsLdData[elementId][ch][sfbGrp+sfb] + normFactorLdData - sfbNActiveLinesLdData[elementId][ch][sfbGrp+sfb] - FL2FXCONST_DBL((float)LD_DATA_SHIFT/LD_DATA_SCALING));
1260
1261                   /* limit thrFactor to 60dB */
1262                   tmp = (deltaPe<0) ? tmp : (-tmp);
1263                   thrFactorLdData = FDKmin(tmp, FL2FXCONST_DBL(20.f/LD_DATA_SCALING));
1264                 }
1265
1266                 /* new threshold */
1267                 sfbThrLdData = qcOutChan->sfbThresholdLdData[sfbGrp+sfb];
1268                 sfbEnLdData  = qcOutChan->sfbWeightedEnergyLdData[sfbGrp+sfb];
1269
1270                 if (thrFactorLdData < FL2FXCONST_DBL(0.f)) {
1271                   if( sfbThrLdData > (FL2FXCONST_DBL(-1.f)-thrFactorLdData) ) {
1272                     sfbThrReducedLdData = sfbThrLdData + thrFactorLdData;
1273                   }
1274                   else {
1275                     sfbThrReducedLdData = FL2FXCONST_DBL(-1.f);
1276                   }
1277                 }
1278                 else{
1279                    sfbThrReducedLdData = sfbThrLdData + thrFactorLdData;
1280                 }
1281
1282                 /* avoid hole */
1283                 if ( (sfbThrReducedLdData - sfbEnLdData > qcOutChan->sfbMinSnrLdData[sfbGrp+sfb]) &&
1284                      (ahFlag[elementId][ch][sfbGrp+sfb] == AH_INACTIVE) )
1285                 {
1286                    /* sfbThrReduced = max(psyOutChan[ch]->sfbMinSnr[i] * sfbEn, sfbThr); */
1287                    if ( sfbEnLdData > (sfbThrLdData-qcOutChan->sfbMinSnrLdData[sfbGrp+sfb]) ) {
1288                        sfbThrReducedLdData = qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] + sfbEnLdData;
1289                    }
1290                    else {
1291                        sfbThrReducedLdData = sfbThrLdData;
1292                    }
1293                    ahFlag[elementId][ch][sfbGrp+sfb] = AH_ACTIVE;
1294                 }
1295
1296                 qcOutChan->sfbThresholdLdData[sfbGrp+sfb] = sfbThrReducedLdData;
1297              }
1298            }
1299          }
1300       }
1301     }
1302   }
1303}
1304
1305/*****************************************************************************
1306    functionname: FDKaacEnc_reduceMinSnr
1307    description:  if the desired pe can not be reached, reduce pe by
1308                  reducing minSnr
1309*****************************************************************************/
1310void FDKaacEnc_reduceMinSnr(CHANNEL_MAPPING* cm,
1311                            QC_OUT_ELEMENT*  qcElement[(8)],
1312                            PSY_OUT_ELEMENT* psyOutElement[(8)],
1313                            UCHAR            ahFlag[(8)][(2)][MAX_GROUPED_SFB],
1314                            const            INT desiredPe,
1315                            INT*             redPeGlobal,
1316                            const            INT processElements,
1317                            const            INT elementOffset)
1318
1319{
1320   INT elementId;
1321   INT nElements = elementOffset+processElements;
1322
1323   INT newGlobalPe = *redPeGlobal;
1324
1325   for(elementId=elementOffset;elementId<nElements;elementId++) {
1326     if (cm->elInfo[elementId].elType != ID_DSE) {
1327       INT ch;
1328       INT maxSfbPerGroup[2];
1329       INT sfbCnt[2];
1330       INT sfbPerGroup[2];
1331
1332       for(ch=0; ch<cm->elInfo[elementId].nChannelsInEl; ch++) {
1333         maxSfbPerGroup[ch] = psyOutElement[elementId]->psyOutChannel[ch]->maxSfbPerGroup-1;
1334         sfbCnt[ch]         = psyOutElement[elementId]->psyOutChannel[ch]->sfbCnt;
1335         sfbPerGroup[ch]    = psyOutElement[elementId]->psyOutChannel[ch]->sfbPerGroup;
1336       }
1337
1338       PE_DATA *peData = &qcElement[elementId]->peData;
1339
1340       do
1341       {
1342         for(ch=0; ch<cm->elInfo[elementId].nChannelsInEl; ch++) {
1343
1344            INT sfb, sfbGrp;
1345            QC_OUT_CHANNEL  *qcOutChan = qcElement[elementId]->qcOutChannel[ch];
1346            INT noReduction = 1;
1347
1348            if (maxSfbPerGroup[ch]>=0) {  /* sfb in next channel */
1349              INT deltaPe = 0;
1350              sfb = maxSfbPerGroup[ch]--;
1351              noReduction = 0;
1352
1353              for (sfbGrp = 0; sfbGrp < sfbCnt[ch]; sfbGrp += sfbPerGroup[ch]) {
1354
1355                if (ahFlag[elementId][ch][sfbGrp+sfb] != NO_AH &&
1356                    qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] < SnrLdFac)
1357                {
1358                  /* increase threshold to new minSnr of 1dB */
1359                  qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] = SnrLdFac;
1360
1361                  /* sfbThrReduced = max(psyOutChan[ch]->sfbMinSnr[i] * sfbEn, sfbThr); */
1362                  if ( qcOutChan->sfbWeightedEnergyLdData[sfbGrp+sfb] >= qcOutChan->sfbThresholdLdData[sfbGrp+sfb] - qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] ) {
1363
1364                     qcOutChan->sfbThresholdLdData[sfbGrp+sfb] = qcOutChan->sfbWeightedEnergyLdData[sfbGrp+sfb] + qcOutChan->sfbMinSnrLdData[sfbGrp+sfb];
1365
1366                     /* calc new pe */
1367                     /* C2 + C3*ld(1/0.8) = 1.5 */
1368                     deltaPe -= (peData->peChannelData[ch].sfbPe[sfbGrp+sfb]>>PE_CONSTPART_SHIFT);
1369
1370                     /* sfbPe = 1.5 * sfbNLines */
1371                     peData->peChannelData[ch].sfbPe[sfbGrp+sfb] = (3*peData->peChannelData[ch].sfbNLines[sfbGrp+sfb]) << (PE_CONSTPART_SHIFT-1);
1372                     deltaPe += (peData->peChannelData[ch].sfbPe[sfbGrp+sfb]>>PE_CONSTPART_SHIFT);
1373                   }
1374                }
1375
1376              } /* sfbGrp loop */
1377
1378              peData->pe += deltaPe;
1379              peData->peChannelData[ch].pe += deltaPe;
1380              newGlobalPe += deltaPe;
1381
1382              /* stop if enough has been saved */
1383              if (peData->pe <= desiredPe) {
1384                goto bail;
1385              }
1386
1387            } /* sfb > 0 */
1388
1389            if ( (ch==(cm->elInfo[elementId].nChannelsInEl-1)) && noReduction ) {
1390              goto bail;
1391            }
1392
1393         } /* ch loop */
1394
1395       } while ( peData->pe > desiredPe);
1396
1397     } /* != ID_DSE */
1398   } /* element loop */
1399
1400
1401bail:
1402   /* update global PE */
1403   *redPeGlobal = newGlobalPe;
1404}
1405
1406
1407/*****************************************************************************
1408    functionname: FDKaacEnc_allowMoreHoles
1409    description:  if the desired pe can not be reached, some more scalefactor
1410                  bands have to be quantized to zero
1411*****************************************************************************/
1412static void FDKaacEnc_allowMoreHoles(CHANNEL_MAPPING* cm,
1413                           QC_OUT_ELEMENT*  qcElement[(8)],
1414                           PSY_OUT_ELEMENT* psyOutElement[(8)],
1415                           ATS_ELEMENT*     AdjThrStateElement[(8)],
1416                           UCHAR            ahFlag[(8)][(2)][MAX_GROUPED_SFB],
1417                           const INT        desiredPe,
1418                           const INT        currentPe,
1419                           const int        processElements,
1420                           const int        elementOffset)
1421{
1422  INT elementId;
1423  INT nElements = elementOffset+processElements;
1424  INT actPe = currentPe;
1425
1426  if (actPe <= desiredPe) {
1427    return; /* nothing to do */
1428  }
1429
1430  for (elementId = elementOffset;elementId<nElements;elementId++) {
1431    if (cm->elInfo[elementId].elType != ID_DSE) {
1432
1433      INT ch, sfb, sfbGrp;
1434
1435      PE_DATA *peData = &qcElement[elementId]->peData;
1436      const INT nChannels = cm->elInfo[elementId].nChannelsInEl;
1437
1438      QC_OUT_CHANNEL*  qcOutChannel[(2)] = {NULL};
1439      PSY_OUT_CHANNEL* psyOutChannel[(2)] = {NULL};
1440
1441      for (ch=0; ch<nChannels; ch++) {
1442
1443        /* init pointers */
1444        qcOutChannel[ch] = qcElement[elementId]->qcOutChannel[ch];
1445        psyOutChannel[ch] = psyOutElement[elementId]->psyOutChannel[ch];
1446
1447        for(sfbGrp=0; sfbGrp < psyOutChannel[ch]->sfbCnt; sfbGrp+= psyOutChannel[ch]->sfbPerGroup) {
1448          for (sfb=psyOutChannel[ch]->maxSfbPerGroup; sfb<psyOutChannel[ch]->sfbPerGroup; sfb++) {
1449            peData->peChannelData[ch].sfbPe[sfbGrp+sfb] = 0;
1450          }
1451        }
1452      }
1453
1454      /* for MS allow hole in the channel with less energy */
1455      if ( nChannels==2 && psyOutChannel[0]->lastWindowSequence==psyOutChannel[1]->lastWindowSequence ) {
1456
1457        for (sfb=0; sfb<psyOutChannel[0]->maxSfbPerGroup; sfb++) {
1458          for(sfbGrp=0; sfbGrp < psyOutChannel[0]->sfbCnt; sfbGrp+=psyOutChannel[0]->sfbPerGroup) {
1459            if (psyOutElement[elementId]->toolsInfo.msMask[sfbGrp+sfb]) {
1460              FIXP_DBL EnergyLd_L = qcOutChannel[0]->sfbWeightedEnergyLdData[sfbGrp+sfb];
1461              FIXP_DBL EnergyLd_R = qcOutChannel[1]->sfbWeightedEnergyLdData[sfbGrp+sfb];
1462
1463              /* allow hole in side channel ? */
1464              if ( (ahFlag[elementId][1][sfbGrp+sfb] != NO_AH) &&
1465                   (((FL2FXCONST_DBL(-0.02065512648f)>>1) + (qcOutChannel[0]->sfbMinSnrLdData[sfbGrp+sfb]>>1))
1466                        > ((EnergyLd_R>>1) - (EnergyLd_L>>1))) )
1467              {
1468                  ahFlag[elementId][1][sfbGrp+sfb] = NO_AH;
1469                  qcOutChannel[1]->sfbThresholdLdData[sfbGrp+sfb] = FL2FXCONST_DBL(0.015625f) + EnergyLd_R;
1470                  actPe -= peData->peChannelData[1].sfbPe[sfbGrp+sfb]>>PE_CONSTPART_SHIFT;
1471              }
1472              /* allow hole in mid channel ? */
1473              else if ( (ahFlag[elementId][0][sfbGrp+sfb] != NO_AH) &&
1474                        (((FL2FXCONST_DBL(-0.02065512648f)>>1) + (qcOutChannel[1]->sfbMinSnrLdData[sfbGrp+sfb]>>1))
1475                             > ((EnergyLd_L>>1) - (EnergyLd_R>>1))) )
1476              {
1477                  ahFlag[elementId][0][sfbGrp+sfb] = NO_AH;
1478                  qcOutChannel[0]->sfbThresholdLdData[sfbGrp+sfb] = FL2FXCONST_DBL(0.015625f) + EnergyLd_L;
1479                  actPe -= peData->peChannelData[0].sfbPe[sfbGrp+sfb]>>PE_CONSTPART_SHIFT;
1480              } /* if (ahFlag) */
1481            } /* if MS */
1482          } /* sfbGrp */
1483          if (actPe <= desiredPe) {
1484            return; /* stop if enough has been saved */
1485          }
1486        } /* sfb */
1487      } /* MS possible ? */
1488
1489      /* more holes necessary? subsequently erase bands
1490         starting with low energies */
1491      INT startSfb[2];
1492      FIXP_DBL avgEnLD64,minEnLD64;
1493      INT ahCnt;
1494      FIXP_DBL ahCntLD64;
1495      INT enIdx;
1496      FIXP_DBL enLD64[4];
1497      FIXP_DBL avgEn;
1498
1499      /* do not go below startSfb */
1500      for (ch=0; ch<nChannels; ch++) {
1501        if (psyOutChannel[ch]->lastWindowSequence != SHORT_WINDOW)
1502          startSfb[ch] = AdjThrStateElement[elementId]->ahParam.startSfbL;
1503        else
1504          startSfb[ch] = AdjThrStateElement[elementId]->ahParam.startSfbS;
1505      }
1506
1507      /* calc avg and min energies of bands that avoid holes */
1508      avgEn = FL2FXCONST_DBL(0.0f);
1509      minEnLD64 = FL2FXCONST_DBL(0.0f);
1510      ahCnt = 0;
1511
1512      for (ch=0; ch<nChannels; ch++) {
1513
1514        sfbGrp=0;
1515        sfb=startSfb[ch];
1516
1517        do {
1518          for (; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
1519            if ((ahFlag[elementId][ch][sfbGrp+sfb]!=NO_AH) &&
1520                (qcOutChannel[ch]->sfbWeightedEnergyLdData[sfbGrp+sfb] > qcOutChannel[ch]->sfbThresholdLdData[sfbGrp+sfb])){
1521              minEnLD64 = fixMin(minEnLD64,qcOutChannel[ch]->sfbEnergyLdData[sfbGrp+sfb]);
1522              avgEn += qcOutChannel[ch]->sfbEnergy[sfbGrp+sfb] >> 6;
1523              ahCnt++;
1524            }
1525          }
1526
1527          sfbGrp += psyOutChannel[ch]->sfbPerGroup;
1528          sfb=0;
1529
1530        } while (sfbGrp < psyOutChannel[ch]->sfbCnt);
1531      }
1532
1533      if ( (avgEn == FL2FXCONST_DBL(0.0f)) || (ahCnt == 0) ) {
1534        avgEnLD64 = FL2FXCONST_DBL(0.0f);
1535      }
1536      else {
1537        avgEnLD64 = CalcLdData(avgEn);
1538        ahCntLD64 = CalcLdInt(ahCnt);
1539        avgEnLD64 = avgEnLD64 + FL2FXCONST_DBL(0.09375f) - ahCntLD64; /* compensate shift with 6 */
1540      }
1541
1542      /* calc some energy borders between minEn and avgEn */
1543      /* for (enIdx=0; enIdx<4; enIdx++) */
1544        /* en[enIdx] = minEn * (float)FDKpow(avgEn/(minEn+FLT_MIN), (2*enIdx+1)/7.0f); */
1545      enLD64[0] = minEnLD64 + fMult((avgEnLD64-minEnLD64),FL2FXCONST_DBL(0.14285714285f));
1546      enLD64[1] = minEnLD64 + fMult((avgEnLD64-minEnLD64),FL2FXCONST_DBL(0.42857142857f));
1547      enLD64[2] = minEnLD64 + fMult((avgEnLD64-minEnLD64),FL2FXCONST_DBL(0.71428571428f));
1548      enLD64[3] = minEnLD64 + (avgEnLD64-minEnLD64);
1549
1550      for (enIdx=0; enIdx<4; enIdx++) {
1551        INT noReduction = 1;
1552
1553        INT maxSfbPerGroup[2];
1554        INT sfbCnt[2];
1555        INT sfbPerGroup[2];
1556
1557        for(ch=0; ch<cm->elInfo[elementId].nChannelsInEl; ch++) {
1558          maxSfbPerGroup[ch] = psyOutElement[elementId]->psyOutChannel[ch]->maxSfbPerGroup-1;
1559          sfbCnt[ch]         = psyOutElement[elementId]->psyOutChannel[ch]->sfbCnt;
1560          sfbPerGroup[ch]    = psyOutElement[elementId]->psyOutChannel[ch]->sfbPerGroup;
1561        }
1562
1563        do {
1564
1565          noReduction = 1;
1566
1567          for(ch=0; ch<cm->elInfo[elementId].nChannelsInEl; ch++) {
1568
1569            INT sfb, sfbGrp;
1570
1571            /* start with lowest energy border at highest sfb */
1572            if (maxSfbPerGroup[ch]>=startSfb[ch]) {  /* sfb in next channel */
1573              sfb = maxSfbPerGroup[ch]--;
1574              noReduction = 0;
1575
1576              for (sfbGrp = 0; sfbGrp < sfbCnt[ch]; sfbGrp += sfbPerGroup[ch]) {
1577                /* sfb energy below border ? */
1578                if (ahFlag[elementId][ch][sfbGrp+sfb] != NO_AH && qcOutChannel[ch]->sfbEnergyLdData[sfbGrp+sfb] < enLD64[enIdx]) {
1579                  /* allow hole */
1580                  ahFlag[elementId][ch][sfbGrp+sfb] = NO_AH;
1581                  qcOutChannel[ch]->sfbThresholdLdData[sfbGrp+sfb] = FL2FXCONST_DBL(0.015625f) + qcOutChannel[ch]->sfbWeightedEnergyLdData[sfbGrp+sfb];
1582                  actPe -= peData->peChannelData[ch].sfbPe[sfbGrp+sfb]>>PE_CONSTPART_SHIFT;
1583                }
1584              } /* sfbGrp  */
1585
1586              if (actPe <= desiredPe) {
1587                return; /* stop if enough has been saved */
1588              }
1589            } /* sfb > 0 */
1590          } /* ch loop */
1591
1592        } while( (noReduction == 0) && (actPe > desiredPe) );
1593
1594        if (actPe <= desiredPe) {
1595          return; /* stop if enough has been saved */
1596        }
1597
1598      } /* enIdx loop */
1599
1600    } /* EOF DSE-suppression */
1601  } /* EOF for all elements... */
1602
1603}
1604
1605/* reset avoid hole flags from AH_ACTIVE to AH_INACTIVE  */
1606static void FDKaacEnc_resetAHFlags( UCHAR ahFlag[(2)][MAX_GROUPED_SFB],
1607                          const int nChannels,
1608                          PSY_OUT_CHANNEL  *psyOutChannel[(2)])
1609{
1610  int ch, sfb, sfbGrp;
1611
1612  for(ch=0; ch<nChannels; ch++) {
1613    for (sfbGrp=0; sfbGrp < psyOutChannel[ch]->sfbCnt; sfbGrp+=psyOutChannel[ch]->sfbPerGroup) {
1614      for (sfb=0; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
1615        if ( ahFlag[ch][sfbGrp+sfb] == AH_ACTIVE) {
1616          ahFlag[ch][sfbGrp+sfb] = AH_INACTIVE;
1617        }
1618      }
1619    }
1620  }
1621}
1622
1623
1624static FIXP_DBL CalcRedValPower(FIXP_DBL num,
1625                                FIXP_DBL denum,
1626                                INT*     scaling )
1627{
1628    FIXP_DBL value = FL2FXCONST_DBL(0.f);
1629
1630    if (num>=FL2FXCONST_DBL(0.f)) {
1631      value = fDivNorm( num, denum, scaling);
1632    }
1633    else {
1634      value = -fDivNorm( -num, denum, scaling);
1635    }
1636    value = f2Pow(value, *scaling, scaling);
1637    *scaling = DFRACT_BITS-1-*scaling;
1638
1639    return value;
1640}
1641
1642
1643/*****************************************************************************
1644functionname: FDKaacEnc_adaptThresholdsToPe
1645description:  two guesses for the reduction value and one final correction of the thresholds
1646*****************************************************************************/
1647static void FDKaacEnc_adaptThresholdsToPe(CHANNEL_MAPPING*  cm,
1648                                ATS_ELEMENT*      AdjThrStateElement[(8)],
1649                                QC_OUT_ELEMENT*   qcElement[(8)],
1650                                PSY_OUT_ELEMENT*  psyOutElement[(8)],
1651                                const INT         desiredPe,
1652                                const INT         processElements,
1653                                const INT         elementOffset)
1654{
1655   FIXP_DBL redValue[(8)];
1656   SCHAR    redValScaling[(8)];
1657   UCHAR    pAhFlag[(8)][(2)][MAX_GROUPED_SFB];
1658   FIXP_DBL pThrExp[(8)][(2)][MAX_GROUPED_SFB];
1659   int iter;
1660
1661   INT constPartGlobal, noRedPeGlobal, nActiveLinesGlobal, redPeGlobal;
1662   constPartGlobal = noRedPeGlobal = nActiveLinesGlobal = redPeGlobal = 0;
1663
1664   int elementId;
1665
1666   int nElements = elementOffset+processElements;
1667   if(nElements > cm->nElements) {
1668     nElements = cm->nElements;
1669   }
1670
1671   /* ------------------------------------------------------- */
1672   /* Part I: Initialize data structures and variables... */
1673   /* ------------------------------------------------------- */
1674   for (elementId = elementOffset;elementId<nElements;elementId++) {
1675     if (cm->elInfo[elementId].elType != ID_DSE) {
1676
1677       INT nChannels = cm->elInfo[elementId].nChannelsInEl;
1678       PE_DATA *peData    = &qcElement[elementId]->peData;
1679
1680       /* thresholds to the power of redExp */
1681       FDKaacEnc_calcThreshExp(pThrExp[elementId], qcElement[elementId]->qcOutChannel, psyOutElement[elementId]->psyOutChannel, nChannels);
1682
1683       /* lower the minSnr requirements for low energies compared to the average
1684          energy in this frame */
1685       FDKaacEnc_adaptMinSnr(qcElement[elementId]->qcOutChannel, psyOutElement[elementId]->psyOutChannel, &AdjThrStateElement[elementId]->minSnrAdaptParam, nChannels);
1686
1687       /* init ahFlag (0: no ah necessary, 1: ah possible, 2: ah active */
1688       FDKaacEnc_initAvoidHoleFlag(qcElement[elementId]->qcOutChannel, psyOutElement[elementId]->psyOutChannel, pAhFlag[elementId], &psyOutElement[elementId]->toolsInfo, nChannels, peData, &AdjThrStateElement[elementId]->ahParam);
1689
1690       /* sum up */
1691       constPartGlobal    += peData->constPart;
1692       noRedPeGlobal      += peData->pe;
1693       nActiveLinesGlobal += fixMax((INT)peData->nActiveLines, 1);
1694
1695     } /* EOF DSE-suppression */
1696   } /* EOF for all elements... */
1697
1698   /* ----------------------------------------------------------------------- */
1699   /* Part II: Calculate bit consumption of initial bit constraints setup */
1700   /* ----------------------------------------------------------------------- */
1701   for (elementId = elementOffset;elementId<nElements;elementId++) {
1702     if (cm->elInfo[elementId].elType != ID_DSE) {
1703       /*
1704       redVal = ( 2 ^ ( (constPartGlobal-desiredPe) / (invRedExp*nActiveLinesGlobal) )
1705                - 2 ^ ( (constPartGlobal-noRedPeGlobal) / (invRedExp*nActiveLinesGlobal) ) )
1706       */
1707
1708
1709       INT nChannels = cm->elInfo[elementId].nChannelsInEl;
1710       PE_DATA *peData    = &qcElement[elementId]->peData;
1711
1712       /* first guess of reduction value */
1713       int scale0=0, scale1=0;
1714       FIXP_DBL tmp0 = CalcRedValPower( constPartGlobal-desiredPe, 4*nActiveLinesGlobal, &scale0 );
1715       FIXP_DBL tmp1 = CalcRedValPower( constPartGlobal-noRedPeGlobal, 4*nActiveLinesGlobal, &scale1 );
1716
1717       int scalMin = FDKmin(scale0, scale1)-1;
1718
1719       redValue[elementId]  = scaleValue(tmp0,(scalMin-scale0)) - scaleValue(tmp1,(scalMin-scale1));
1720       redValScaling[elementId] = scalMin;
1721
1722       /* reduce thresholds */
1723       FDKaacEnc_reduceThresholdsCBR(qcElement[elementId]->qcOutChannel, psyOutElement[elementId]->psyOutChannel, pAhFlag[elementId], pThrExp[elementId], nChannels, redValue[elementId], redValScaling[elementId]);
1724
1725       /* pe after first guess */
1726       FDKaacEnc_calcPe(psyOutElement[elementId]->psyOutChannel, qcElement[elementId]->qcOutChannel, peData, nChannels);
1727
1728       redPeGlobal += peData->pe;
1729     } /* EOF DSE-suppression */
1730   } /* EOF for all elements... */
1731
1732   /* -------------------------------------------------- */
1733   /* Part III: Iterate until bit constraints are met */
1734   /* -------------------------------------------------- */
1735   iter = 0;
1736   while ((fixp_abs(redPeGlobal - desiredPe) > fMultI(FL2FXCONST_DBL(0.05f),desiredPe)) && (iter < 1)) {
1737
1738     INT desiredPeNoAHGlobal;
1739     INT redPeNoAHGlobal = 0;
1740     INT constPartNoAHGlobal = 0;
1741     INT nActiveLinesNoAHGlobal = 0;
1742
1743     for (elementId = elementOffset;elementId<nElements;elementId++) {
1744       if (cm->elInfo[elementId].elType != ID_DSE) {
1745
1746         INT redPeNoAH, constPartNoAH, nActiveLinesNoAH;
1747         INT nChannels = cm->elInfo[elementId].nChannelsInEl;
1748         PE_DATA *peData    = &qcElement[elementId]->peData;
1749
1750         /* pe for bands where avoid hole is inactive */
1751         FDKaacEnc_FDKaacEnc_calcPeNoAH(&redPeNoAH, &constPartNoAH, &nActiveLinesNoAH,
1752                    peData, pAhFlag[elementId], psyOutElement[elementId]->psyOutChannel, nChannels);
1753
1754         redPeNoAHGlobal += redPeNoAH;
1755         constPartNoAHGlobal += constPartNoAH;
1756         nActiveLinesNoAHGlobal += nActiveLinesNoAH;
1757       } /* EOF DSE-suppression */
1758     } /* EOF for all elements... */
1759
1760     /* Calculate new redVal ... */
1761     if(desiredPe < redPeGlobal) {
1762
1763       /* new desired pe without bands where avoid hole is active */
1764       desiredPeNoAHGlobal = desiredPe - (redPeGlobal - redPeNoAHGlobal);
1765
1766       /* limit desiredPeNoAH to positive values, as the PE can not become negative */
1767       desiredPeNoAHGlobal = FDKmax(0,desiredPeNoAHGlobal);
1768
1769       /* second guess (only if there are bands left where avoid hole is inactive)*/
1770       if (nActiveLinesNoAHGlobal > 0) {
1771         for (elementId = elementOffset;elementId<nElements;elementId++) {
1772           if (cm->elInfo[elementId].elType != ID_DSE) {
1773             /*
1774             redVal += ( 2 ^ ( (constPartNoAHGlobal-desiredPeNoAHGlobal) / (invRedExp*nActiveLinesNoAHGlobal) )
1775                       - 2 ^ ( (constPartNoAHGlobal-redPeNoAHGlobal) / (invRedExp*nActiveLinesNoAHGlobal) ) )
1776             */
1777             int scale0 = 0;
1778             int scale1 = 0;
1779
1780             FIXP_DBL tmp0 = CalcRedValPower( constPartNoAHGlobal-desiredPeNoAHGlobal, 4*nActiveLinesNoAHGlobal, &scale0 );
1781             FIXP_DBL tmp1 = CalcRedValPower( constPartNoAHGlobal-redPeNoAHGlobal, 4*nActiveLinesNoAHGlobal, &scale1 );
1782
1783             int scalMin = FDKmin(scale0, scale1)-1;
1784
1785             tmp0 = scaleValue(tmp0,(scalMin-scale0)) - scaleValue(tmp1,(scalMin-scale1));
1786             scale0 = scalMin;
1787
1788             /* old reduction value */
1789             tmp1 = redValue[elementId];
1790             scale1 = redValScaling[elementId];
1791
1792             scalMin = fixMin(scale0,scale1)-1;
1793
1794             /* sum up old and new reduction value */
1795             redValue[elementId] = scaleValue(tmp0,(scalMin-scale0)) + scaleValue(tmp1,(scalMin-scale1));
1796             redValScaling[elementId] = scalMin;
1797
1798           } /* EOF DSE-suppression */
1799         } /* EOF for all elements... */
1800       } /* nActiveLinesNoAHGlobal > 0 */
1801     }
1802     else {
1803        /* desiredPe >= redPeGlobal */
1804        for (elementId = elementOffset;elementId<nElements;elementId++) {
1805          if (cm->elInfo[elementId].elType != ID_DSE) {
1806
1807            INT redVal_scale = 0;
1808            FIXP_DBL tmp = fDivNorm((FIXP_DBL)redPeGlobal, (FIXP_DBL)desiredPe, &redVal_scale);
1809
1810            /* redVal *= redPeGlobal/desiredPe; */
1811            redValue[elementId] = fMult(redValue[elementId], tmp);
1812            redValScaling[elementId] -= redVal_scale;
1813
1814            FDKaacEnc_resetAHFlags(pAhFlag[elementId], cm->elInfo[elementId].nChannelsInEl, psyOutElement[elementId]->psyOutChannel);
1815          } /* EOF DSE-suppression */
1816        } /* EOF for all elements... */
1817     }
1818
1819     redPeGlobal = 0;
1820     /* Calculate new redVal's PE... */
1821     for (elementId = elementOffset;elementId<nElements;elementId++) {
1822       if (cm->elInfo[elementId].elType != ID_DSE) {
1823
1824         INT nChannels = cm->elInfo[elementId].nChannelsInEl;
1825         PE_DATA *peData    = &qcElement[elementId]->peData;
1826
1827         /* reduce thresholds */
1828         FDKaacEnc_reduceThresholdsCBR(qcElement[elementId]->qcOutChannel, psyOutElement[elementId]->psyOutChannel, pAhFlag[elementId], pThrExp[elementId], nChannels, redValue[elementId], redValScaling[elementId]);
1829
1830         /* pe after second guess */
1831         FDKaacEnc_calcPe(psyOutElement[elementId]->psyOutChannel, qcElement[elementId]->qcOutChannel, peData, nChannels);
1832         redPeGlobal += peData->pe;
1833
1834       } /* EOF DSE-suppression */
1835     } /* EOF for all elements... */
1836
1837     iter++;
1838   } /* EOF while */
1839
1840
1841   /* ------------------------------------------------------- */
1842   /* Part IV: if still required, further reduce constraints  */
1843   /* ------------------------------------------------------- */
1844   /*                  1.0*        1.15*       1.20*
1845    *               desiredPe   desiredPe   desiredPe
1846    *                   |           |           |
1847    * ...XXXXXXXXXXXXXXXXXXXXXXXXXXX|           |
1848    *                   |           |           |XXXXXXXXXXX...
1849    *                   |           |XXXXXXXXXXX|
1850    *            --- A ---          | --- B --- | --- C ---
1851    *
1852    * (X): redPeGlobal
1853    * (A): FDKaacEnc_correctThresh()
1854    * (B): FDKaacEnc_allowMoreHoles()
1855    * (C): FDKaacEnc_reduceMinSnr()
1856   */
1857
1858   /* correct thresholds to get closer to the desired pe */
1859   if ( redPeGlobal > desiredPe ) {
1860     FDKaacEnc_correctThresh(cm, qcElement, psyOutElement, pAhFlag, pThrExp, redValue, redValScaling,
1861                   desiredPe - redPeGlobal, processElements, elementOffset);
1862
1863     /* update PE */
1864     redPeGlobal = 0;
1865     for(elementId=elementOffset;elementId<nElements;elementId++) {
1866       if (cm->elInfo[elementId].elType != ID_DSE) {
1867
1868         INT nChannels = cm->elInfo[elementId].nChannelsInEl;
1869         PE_DATA *peData    = &qcElement[elementId]->peData;
1870
1871         /* pe after correctThresh */
1872         FDKaacEnc_calcPe(psyOutElement[elementId]->psyOutChannel, qcElement[elementId]->qcOutChannel, peData, nChannels);
1873         redPeGlobal += peData->pe;
1874
1875       } /* EOF DSE-suppression */
1876     } /* EOF for all elements... */
1877   }
1878
1879   if ( redPeGlobal > desiredPe ) {
1880     /* reduce pe by reducing minSnr requirements */
1881     FDKaacEnc_reduceMinSnr(cm, qcElement, psyOutElement, pAhFlag,
1882                            (fMultI(FL2FXCONST_DBL(0.15f),desiredPe) + desiredPe),
1883                            &redPeGlobal, processElements, elementOffset);
1884
1885     /* reduce pe by allowing additional spectral holes */
1886     FDKaacEnc_allowMoreHoles(cm, qcElement, psyOutElement, AdjThrStateElement, pAhFlag,
1887                    desiredPe, redPeGlobal, processElements, elementOffset);
1888   }
1889
1890}
1891
1892/* similar to FDKaacEnc_adaptThresholdsToPe(), for  VBR-mode */
1893void FDKaacEnc_AdaptThresholdsVBR(QC_OUT_CHANNEL* qcOutChannel[(2)],
1894                               PSY_OUT_CHANNEL* psyOutChannel[(2)],
1895                               ATS_ELEMENT* AdjThrStateElement,
1896                               struct TOOLSINFO *toolsInfo,
1897                               PE_DATA *peData,
1898                               const INT nChannels)
1899{
1900   UCHAR    (*pAhFlag)[MAX_GROUPED_SFB];
1901   FIXP_DBL (*pThrExp)[MAX_GROUPED_SFB];
1902
1903   /* allocate scratch memory */
1904   C_ALLOC_SCRATCH_START(_pAhFlag, UCHAR, (2)*MAX_GROUPED_SFB)
1905   C_ALLOC_SCRATCH_START(_pThrExp, FIXP_DBL, (2)*MAX_GROUPED_SFB)
1906   pAhFlag = (UCHAR(*)[MAX_GROUPED_SFB])_pAhFlag;
1907   pThrExp = (FIXP_DBL(*)[MAX_GROUPED_SFB])_pThrExp;
1908
1909   /* thresholds to the power of redExp */
1910   FDKaacEnc_calcThreshExp(pThrExp, qcOutChannel, psyOutChannel, nChannels);
1911
1912   /* lower the minSnr requirements for low energies compared to the average
1913      energy in this frame */
1914   FDKaacEnc_adaptMinSnr(qcOutChannel, psyOutChannel, &AdjThrStateElement->minSnrAdaptParam, nChannels);
1915
1916   /* init ahFlag (0: no ah necessary, 1: ah possible, 2: ah active */
1917   FDKaacEnc_initAvoidHoleFlag(qcOutChannel, psyOutChannel, pAhFlag, toolsInfo,
1918                     nChannels, peData, &AdjThrStateElement->ahParam);
1919
1920   /* reduce thresholds */
1921   FDKaacEnc_reduceThresholdsVBR(qcOutChannel, psyOutChannel, pAhFlag, pThrExp, nChannels,
1922                       AdjThrStateElement->vbrQualFactor,
1923                       &AdjThrStateElement->chaosMeasureOld);
1924
1925   /* free scratch memory */
1926   C_ALLOC_SCRATCH_END(_pThrExp, FIXP_DBL, (2)*MAX_GROUPED_SFB)
1927   C_ALLOC_SCRATCH_END(_pAhFlag, UCHAR, (2)*MAX_GROUPED_SFB)
1928}
1929
1930
1931/*****************************************************************************
1932
1933  functionname: FDKaacEnc_calcBitSave
1934  description:  Calculates percentage of bit save, see figure below
1935  returns:
1936  input:        parameters and bitres-fullness
1937  output:       percentage of bit save
1938
1939*****************************************************************************/
1940/*
1941        bitsave
1942                    maxBitSave(%)|   clipLow
1943                                 |---\
1944                                 |    \
1945                                 |     \
1946                                 |      \
1947                                 |       \
1948                                 |--------\--------------> bitres
1949                                 |         \
1950                    minBitSave(%)|          \------------
1951                                          clipHigh      maxBitres
1952*/
1953static FIXP_DBL FDKaacEnc_calcBitSave(FIXP_DBL fillLevel,
1954    const FIXP_DBL clipLow,
1955    const FIXP_DBL clipHigh,
1956    const FIXP_DBL minBitSave,
1957    const FIXP_DBL maxBitSave,
1958    const FIXP_DBL bitsave_slope)
1959{
1960    FIXP_DBL bitsave;
1961
1962    fillLevel = fixMax(fillLevel, clipLow);
1963    fillLevel = fixMin(fillLevel, clipHigh);
1964
1965    bitsave = maxBitSave - fMult((fillLevel-clipLow), bitsave_slope);
1966
1967    return (bitsave);
1968}
1969
1970/*****************************************************************************
1971
1972  functionname: FDKaacEnc_calcBitSpend
1973  description:  Calculates percentage of bit spend, see figure below
1974  returns:
1975  input:        parameters and bitres-fullness
1976  output:       percentage of bit spend
1977
1978*****************************************************************************/
1979/*
1980                              bitspend      clipHigh
1981                   maxBitSpend(%)|          /-----------maxBitres
1982                                 |         /
1983                                 |        /
1984                                 |       /
1985                                 |      /
1986                                 |     /
1987                                 |----/-----------------> bitres
1988                                 |   /
1989                   minBitSpend(%)|--/
1990                                   clipLow
1991*/
1992static FIXP_DBL FDKaacEnc_calcBitSpend(FIXP_DBL fillLevel,
1993    const FIXP_DBL clipLow,
1994    const FIXP_DBL clipHigh,
1995    const FIXP_DBL minBitSpend,
1996    const FIXP_DBL maxBitSpend,
1997    const FIXP_DBL bitspend_slope)
1998{
1999    FIXP_DBL bitspend;
2000
2001    fillLevel = fixMax(fillLevel, clipLow);
2002    fillLevel = fixMin(fillLevel, clipHigh);
2003
2004    bitspend = minBitSpend + fMult(fillLevel-clipLow, bitspend_slope);
2005
2006    return (bitspend);
2007}
2008
2009
2010/*****************************************************************************
2011
2012  functionname: FDKaacEnc_adjustPeMinMax()
2013  description:  adjusts peMin and peMax parameters over time
2014  returns:
2015  input:        current pe, peMin, peMax, bitres size
2016  output:       adjusted peMin/peMax
2017
2018*****************************************************************************/
2019static void FDKaacEnc_adjustPeMinMax(const INT currPe,
2020    INT      *peMin,
2021    INT      *peMax)
2022{
2023  FIXP_DBL minFacHi = FL2FXCONST_DBL(0.3f), maxFacHi = (FIXP_DBL)MAXVAL_DBL, minFacLo = FL2FXCONST_DBL(0.14f), maxFacLo = FL2FXCONST_DBL(0.07f);
2024    INT diff;
2025
2026    INT minDiff_fix = fMultI(FL2FXCONST_DBL(0.1666666667f), currPe);
2027
2028    if (currPe > *peMax)
2029    {
2030        diff = (currPe-*peMax) ;
2031        *peMin += fMultI(minFacHi,diff);
2032        *peMax += fMultI(maxFacHi,diff);
2033    }
2034    else if (currPe < *peMin)
2035    {
2036        diff = (*peMin-currPe) ;
2037        *peMin -= fMultI(minFacLo,diff);
2038        *peMax -= fMultI(maxFacLo,diff);
2039    }
2040    else
2041    {
2042        *peMin += fMultI(minFacHi, (currPe - *peMin));
2043        *peMax -= fMultI(maxFacLo, (*peMax - currPe));
2044    }
2045
2046    if ((*peMax - *peMin) < minDiff_fix)
2047    {
2048        INT peMax_fix = *peMax, peMin_fix = *peMin;
2049        FIXP_DBL partLo_fix, partHi_fix;
2050
2051        partLo_fix = (FIXP_DBL)fixMax(0, currPe - peMin_fix);
2052        partHi_fix = (FIXP_DBL)fixMax(0, peMax_fix - currPe);
2053
2054        peMax_fix = (INT)(currPe + fMultI(fDivNorm(partHi_fix, (partLo_fix+partHi_fix)), minDiff_fix));
2055        peMin_fix = (INT)(currPe - fMultI(fDivNorm(partLo_fix, (partLo_fix+partHi_fix)), minDiff_fix));
2056        peMin_fix = fixMax(0, peMin_fix);
2057
2058        *peMax = peMax_fix;
2059        *peMin = peMin_fix;
2060    }
2061}
2062
2063
2064
2065/*****************************************************************************
2066
2067  functionname: BitresCalcBitFac
2068  description:  calculates factor of spending bits for one frame
2069  1.0 : take all frame dynpart bits
2070  >1.0 : take all frame dynpart bits + bitres
2071  <1.0 : put bits in bitreservoir
2072  returns:      BitFac
2073  input:        bitres-fullness, pe, blockType, parameter-settings
2074  output:
2075
2076*****************************************************************************/
2077/*
2078                     bitfac(%)            pemax
2079                   bitspend(%)   |          /-----------maxBitres
2080                                 |         /
2081                                 |        /
2082                                 |       /
2083                                 |      /
2084                                 |     /
2085                                 |----/-----------------> pe
2086                                 |   /
2087                   bitsave(%)    |--/
2088                                    pemin
2089*/
2090
2091static FIXP_DBL FDKaacEnc_bitresCalcBitFac(const INT       bitresBits,
2092    const INT        maxBitresBits,
2093    const INT        pe,
2094    const INT        lastWindowSequence,
2095    const INT        avgBits,
2096    const FIXP_DBL   maxBitFac,
2097    ADJ_THR_STATE   *AdjThr,
2098    ATS_ELEMENT     *adjThrChan)
2099{
2100    BRES_PARAM *bresParam;
2101    INT pex;
2102
2103    INT qmin, qbr, qbres, qmbr;
2104    FIXP_DBL bitSave, bitSpend;
2105
2106    FIXP_DBL bitresFac_fix, tmp_cst, tmp_fix;
2107    FIXP_DBL pe_pers, bits_ratio, maxBrVal;
2108    FIXP_DBL bitsave_slope, bitspend_slope, maxBitFac_tmp;
2109    FIXP_DBL fillLevel_fix = (FIXP_DBL)0x7fffffff;
2110    FIXP_DBL UNITY = (FIXP_DBL)0x7fffffff;
2111    FIXP_DBL POINT7 = (FIXP_DBL)0x5999999A;
2112
2113    if (maxBitresBits > bitresBits) {
2114      fillLevel_fix = fDivNorm(bitresBits, maxBitresBits);
2115    }
2116
2117    if (lastWindowSequence != SHORT_WINDOW)
2118    {
2119        bresParam = &(AdjThr->bresParamLong);
2120        bitsave_slope = (FIXP_DBL)0x3BBBBBBC;
2121        bitspend_slope = (FIXP_DBL)0x55555555;
2122    }
2123    else
2124    {
2125        bresParam = &(AdjThr->bresParamShort);
2126        bitsave_slope = (FIXP_DBL)0x2E8BA2E9;
2127        bitspend_slope = (FIXP_DBL)0x7fffffff;
2128    }
2129
2130    pex = fixMax(pe, adjThrChan->peMin);
2131    pex = fixMin(pex, adjThrChan->peMax);
2132
2133    bitSave = FDKaacEnc_calcBitSave(fillLevel_fix,
2134        bresParam->clipSaveLow, bresParam->clipSaveHigh,
2135        bresParam->minBitSave, bresParam->maxBitSave, bitsave_slope);
2136
2137    bitSpend = FDKaacEnc_calcBitSpend(fillLevel_fix,
2138        bresParam->clipSpendLow, bresParam->clipSpendHigh,
2139        bresParam->minBitSpend, bresParam->maxBitSpend, bitspend_slope);
2140
2141    pe_pers = fDivNorm(pex - adjThrChan->peMin, adjThrChan->peMax - adjThrChan->peMin);
2142    tmp_fix = fMult(((FIXP_DBL)bitSpend + (FIXP_DBL)bitSave), pe_pers);
2143    bitresFac_fix = (UNITY>>1) - ((FIXP_DBL)bitSave>>1) + (tmp_fix>>1); qbres = (DFRACT_BITS-2);
2144
2145    /* (float)bitresBits/(float)avgBits */
2146    bits_ratio = fDivNorm(bitresBits, avgBits, &qbr);
2147    qbr = DFRACT_BITS-1-qbr;
2148
2149    /* Add 0.7 in q31 to bits_ratio in qbr */
2150    /* 0.7f + (float)bitresBits/(float)avgBits */
2151    qmin = fixMin(qbr, (DFRACT_BITS-1));
2152    bits_ratio = bits_ratio >> (qbr - qmin);
2153    tmp_cst = POINT7 >> ((DFRACT_BITS-1) - qmin);
2154    maxBrVal = (bits_ratio>>1) + (tmp_cst>>1); qmbr = qmin - 1;
2155
2156    /* bitresFac_fix = fixMin(bitresFac_fix, 0.7 + bitresBits/avgBits); */
2157    bitresFac_fix = bitresFac_fix >> (qbres - qmbr); qbres = qmbr;
2158    bitresFac_fix = fixMin(bitresFac_fix, maxBrVal);
2159
2160    /* Compare with maxBitFac */
2161    qmin = fixMin(Q_BITFAC, qbres);
2162    bitresFac_fix = bitresFac_fix >> (qbres - qmin);
2163    maxBitFac_tmp = maxBitFac >> (Q_BITFAC - qmin);
2164    if(maxBitFac_tmp < bitresFac_fix)
2165    {
2166        bitresFac_fix = maxBitFac;
2167    }
2168    else
2169    {
2170        if(qmin < Q_BITFAC)
2171        {
2172            bitresFac_fix = bitresFac_fix << (Q_BITFAC-qmin);
2173        }
2174        else
2175        {
2176            bitresFac_fix = bitresFac_fix >> (qmin-Q_BITFAC);
2177        }
2178    }
2179
2180    FDKaacEnc_adjustPeMinMax(pe, &adjThrChan->peMin, &adjThrChan->peMax);
2181
2182    return bitresFac_fix;
2183}
2184
2185
2186/*****************************************************************************
2187functionname: FDKaacEnc_AdjThrNew
2188description:  allocate ADJ_THR_STATE
2189*****************************************************************************/
2190INT FDKaacEnc_AdjThrNew(ADJ_THR_STATE** phAdjThr,
2191                        INT             nElements)
2192{
2193    INT err = 0;
2194    INT i;
2195    ADJ_THR_STATE* hAdjThr = GetRam_aacEnc_AdjustThreshold();
2196    if (hAdjThr==NULL) {
2197        err = 1;
2198        goto bail;
2199    }
2200
2201    for (i=0; i<nElements; i++) {
2202        hAdjThr->adjThrStateElem[i] =  GetRam_aacEnc_AdjThrStateElement(i);
2203        if (hAdjThr->adjThrStateElem[i]==NULL) {
2204          err = 1;
2205          goto bail;
2206        }
2207    }
2208
2209bail:
2210    *phAdjThr = hAdjThr;
2211    return err;
2212}
2213
2214
2215/*****************************************************************************
2216functionname: FDKaacEnc_AdjThrInit
2217description:  initialize ADJ_THR_STATE
2218*****************************************************************************/
2219void FDKaacEnc_AdjThrInit(
2220        ADJ_THR_STATE   *hAdjThr,
2221        const INT       meanPe,
2222        ELEMENT_BITS    *elBits[(8)],
2223        INT             invQuant,
2224        INT             nElements,
2225        INT             nChannelsEff,
2226        INT             sampleRate,
2227        INT             advancedBitsToPe,
2228        FIXP_DBL        vbrQualFactor
2229        )
2230{
2231  INT i;
2232
2233  FIXP_DBL POINT8 = FL2FXCONST_DBL(0.8f);
2234  FIXP_DBL POINT6 = FL2FXCONST_DBL(0.6f);
2235
2236  /* common for all elements: */
2237  /* parameters for bitres control */
2238  hAdjThr->bresParamLong.clipSaveLow   = (FIXP_DBL)0x1999999a; /* FL2FXCONST_DBL(0.2f); */
2239  hAdjThr->bresParamLong.clipSaveHigh  = (FIXP_DBL)0x7999999a; /* FL2FXCONST_DBL(0.95f); */
2240  hAdjThr->bresParamLong.minBitSave    = (FIXP_DBL)0xf999999a; /* FL2FXCONST_DBL(-0.05f); */
2241  hAdjThr->bresParamLong.maxBitSave    = (FIXP_DBL)0x26666666; /* FL2FXCONST_DBL(0.3f); */
2242  hAdjThr->bresParamLong.clipSpendLow  = (FIXP_DBL)0x1999999a; /* FL2FXCONST_DBL(0.2f); */
2243  hAdjThr->bresParamLong.clipSpendHigh = (FIXP_DBL)0x7999999a; /* FL2FXCONST_DBL(0.95f); */
2244  hAdjThr->bresParamLong.minBitSpend   = (FIXP_DBL)0xf3333333; /* FL2FXCONST_DBL(-0.10f); */
2245  hAdjThr->bresParamLong.maxBitSpend   = (FIXP_DBL)0x33333333; /* FL2FXCONST_DBL(0.4f); */
2246
2247  hAdjThr->bresParamShort.clipSaveLow   = (FIXP_DBL)0x199999a0; /* FL2FXCONST_DBL(0.2f); */
2248  hAdjThr->bresParamShort.clipSaveHigh  = (FIXP_DBL)0x5fffffff; /* FL2FXCONST_DBL(0.75f); */
2249  hAdjThr->bresParamShort.minBitSave    = (FIXP_DBL)0x00000000; /* FL2FXCONST_DBL(0.0f); */
2250  hAdjThr->bresParamShort.maxBitSave    = (FIXP_DBL)0x199999a0; /* FL2FXCONST_DBL(0.2f); */
2251  hAdjThr->bresParamShort.clipSpendLow  = (FIXP_DBL)0x199999a0; /* FL2FXCONST_DBL(0.2f); */
2252  hAdjThr->bresParamShort.clipSpendHigh = (FIXP_DBL)0x5fffffff; /* FL2FXCONST_DBL(0.75f); */
2253  hAdjThr->bresParamShort.minBitSpend   = (FIXP_DBL)0xf9999998; /* FL2FXCONST_DBL(-0.05f); */
2254  hAdjThr->bresParamShort.maxBitSpend   = (FIXP_DBL)0x40000000; /* FL2FXCONST_DBL(0.5f); */
2255
2256  /* specific for each element: */
2257  for (i=0; i<nElements; i++) {
2258    ATS_ELEMENT* atsElem = hAdjThr->adjThrStateElem[i];
2259    MINSNR_ADAPT_PARAM *msaParam = &atsElem->minSnrAdaptParam;
2260    INT chBitrate = elBits[i]->chBitrateEl;
2261
2262    /* parameters for bitres control */
2263    atsElem->peMin = fMultI(POINT8, meanPe) >> 1;
2264    atsElem->peMax = fMultI(POINT6, meanPe);
2265
2266    /* for use in FDKaacEnc_reduceThresholdsVBR */
2267    atsElem->chaosMeasureOld = FL2FXCONST_DBL(0.3f);
2268
2269    /* additional pe offset to correct pe2bits for low bitrates */
2270    atsElem->peOffset = 0;
2271
2272    /* vbr initialisation */
2273    atsElem->vbrQualFactor = vbrQualFactor;
2274    if (chBitrate < 32000)
2275    {
2276      atsElem->peOffset = fixMax(50, 100-fMultI((FIXP_DBL)0x666667, chBitrate));
2277    }
2278
2279    /* avoid hole parameters */
2280    if (chBitrate > 20000) {
2281      atsElem->ahParam.modifyMinSnr = TRUE;
2282      atsElem->ahParam.startSfbL = 15;
2283      atsElem->ahParam.startSfbS = 3;
2284    }
2285    else {
2286      atsElem->ahParam.modifyMinSnr = FALSE;
2287      atsElem->ahParam.startSfbL = 0;
2288      atsElem->ahParam.startSfbS = 0;
2289    }
2290
2291    /* minSnr adaptation */
2292    msaParam->maxRed = FL2FXCONST_DBL(0.00390625f); /* 0.25f/64.0f */
2293    /* start adaptation of minSnr for avgEn/sfbEn > startRatio */
2294    msaParam->startRatio = FL2FXCONST_DBL(0.05190512648f); /* ld64(10.0f) */
2295    /* maximum minSnr reduction to minSnr^maxRed is reached for
2296       avgEn/sfbEn >= maxRatio */
2297    /* msaParam->maxRatio = 1000.0f; */
2298    /*msaParam->redRatioFac = ((float)1.0f - msaParam->maxRed) / ((float)10.0f*log10(msaParam->startRatio/msaParam->maxRatio)/log10(2.0f)*(float)0.3010299956f);*/
2299    msaParam->redRatioFac = FL2FXCONST_DBL(-0.375f); /* -0.0375f * 10.0f */
2300    /*msaParam->redOffs = (float)1.0f - msaParam->redRatioFac * (float)10.0f * log10(msaParam->startRatio)/log10(2.0f) * (float)0.3010299956f;*/
2301    msaParam->redOffs = FL2FXCONST_DBL(0.021484375); /* 1.375f/64.0f */
2302
2303    /* init pe correction */
2304    atsElem->peCorrectionFactor_m = FL2FXCONST_DBL(0.5f); /* 1.0 */
2305    atsElem->peCorrectionFactor_e = 1;
2306
2307    atsElem->dynBitsLast = -1;
2308    atsElem->peLast = 0;
2309
2310    /* init bits to pe factor */
2311
2312    /* init bits2PeFactor */
2313    FDKaacEnc_InitBits2PeFactor(
2314              &atsElem->bits2PeFactor_m,
2315              &atsElem->bits2PeFactor_e,
2316              chBitrate,       /* bitrate/channel*/
2317              nChannelsEff,    /* number of channels */
2318              sampleRate,
2319              advancedBitsToPe,
2320              invQuant
2321              );
2322
2323  } /* for nElements */
2324
2325}
2326
2327
2328/*****************************************************************************
2329    functionname: FDKaacEnc_FDKaacEnc_calcPeCorrection
2330    description:  calc desired pe
2331*****************************************************************************/
2332static void FDKaacEnc_FDKaacEnc_calcPeCorrection(
2333        FIXP_DBL *const           correctionFac_m,
2334        INT *const                correctionFac_e,
2335        const INT                 peAct,
2336        const INT                 peLast,
2337        const INT                 bitsLast,
2338        const FIXP_DBL            bits2PeFactor_m,
2339        const INT                 bits2PeFactor_e
2340        )
2341{
2342  if ( (bitsLast > 0) && (peAct < 1.5f*peLast) && (peAct > 0.7f*peLast) &&
2343       (FDKaacEnc_bits2pe2(bitsLast, fMult(FL2FXCONST_DBL(1.2f/2.f), bits2PeFactor_m), bits2PeFactor_e+1) > peLast) &&
2344       (FDKaacEnc_bits2pe2(bitsLast, fMult(FL2FXCONST_DBL(0.65f),    bits2PeFactor_m), bits2PeFactor_e  ) < peLast) )
2345  {
2346    FIXP_DBL corrFac = *correctionFac_m;
2347
2348    int scaling = 0;
2349    FIXP_DBL denum = (FIXP_DBL)FDKaacEnc_bits2pe2(bitsLast, bits2PeFactor_m, bits2PeFactor_e);
2350    FIXP_DBL newFac = fDivNorm((FIXP_DBL)peLast, denum, &scaling);
2351
2352    /* dead zone, newFac and corrFac are scaled by 0.5 */
2353    if ((FIXP_DBL)peLast <= denum) { /* ratio <= 1.f */
2354      newFac = fixMax(scaleValue(fixMin( fMult(FL2FXCONST_DBL(1.1f/2.f), newFac), scaleValue(FL2FXCONST_DBL(  1.f/2.f), -scaling)), scaling), FL2FXCONST_DBL(0.85f/2.f) );
2355    }
2356    else { /* ratio < 1.f */
2357     newFac = fixMax( fixMin( scaleValue(fMult(FL2FXCONST_DBL(0.9f/2.f), newFac), scaling), FL2FXCONST_DBL(1.15f/2.f) ), FL2FXCONST_DBL(   1.f/2.f) );
2358    }
2359
2360    if (   ((newFac > FL2FXCONST_DBL(1.f/2.f)) && (corrFac < FL2FXCONST_DBL(1.f/2.f)))
2361        || ((newFac < FL2FXCONST_DBL(1.f/2.f)) && (corrFac > FL2FXCONST_DBL(1.f/2.f))))
2362    {
2363      corrFac = FL2FXCONST_DBL(1.f/2.f);
2364    }
2365
2366    /* faster adaptation towards 1.0, slower in the other direction */
2367    if ( (corrFac < FL2FXCONST_DBL(1.f/2.f) && newFac < corrFac)
2368      || (corrFac > FL2FXCONST_DBL(1.f/2.f) && newFac > corrFac) )
2369    {
2370      corrFac = fMult(FL2FXCONST_DBL(0.85f), corrFac) + fMult(FL2FXCONST_DBL(0.15f), newFac);
2371    }
2372    else {
2373      corrFac = fMult(FL2FXCONST_DBL(0.7f), corrFac) + fMult(FL2FXCONST_DBL(0.3f), newFac);
2374    }
2375
2376    corrFac = fixMax( fixMin( corrFac, FL2FXCONST_DBL(1.15f/2.f) ), FL2FXCONST_DBL(0.85/2.f) );
2377
2378    *correctionFac_m = corrFac;
2379    *correctionFac_e = 1;
2380  }
2381  else {
2382    *correctionFac_m = FL2FXCONST_DBL(1.f/2.f);
2383    *correctionFac_e = 1;
2384  }
2385}
2386
2387
2388static void FDKaacEnc_calcPeCorrectionLowBitRes(
2389        FIXP_DBL *const           correctionFac_m,
2390        INT *const                correctionFac_e,
2391        const INT                 peLast,
2392        const INT                 bitsLast,
2393        const INT                 bitresLevel,
2394        const INT                 nChannels,
2395        const FIXP_DBL            bits2PeFactor_m,
2396        const INT                 bits2PeFactor_e
2397        )
2398{
2399  /* tuning params */
2400  const FIXP_DBL amp     = FL2FXCONST_DBL(0.005);
2401  const FIXP_DBL maxDiff = FL2FXCONST_DBL(0.25f);
2402
2403  if (bitsLast > 0) {
2404
2405    /* Estimate deviation of granted and used dynamic bits in previous frame, in PE units */
2406    const int bitsBalLast = peLast - FDKaacEnc_bits2pe2(
2407          bitsLast,
2408          bits2PeFactor_m,
2409          bits2PeFactor_e);
2410
2411    /* reserve n bits per channel */
2412    int headroom = (bitresLevel>=50*nChannels) ? 0 : (100*nChannels);
2413
2414    /* in PE units */
2415    headroom = FDKaacEnc_bits2pe2(
2416          headroom,
2417          bits2PeFactor_m,
2418          bits2PeFactor_e);
2419
2420    /*
2421     * diff = amp * ((bitsBalLast - headroom) / (bitresLevel + headroom)
2422     * diff = max ( min ( diff, maxDiff, -maxDiff)) / 2
2423     */
2424    FIXP_DBL denominator = (FIXP_DBL)FDKaacEnc_bits2pe2(bitresLevel, bits2PeFactor_m, bits2PeFactor_e) + (FIXP_DBL)headroom;
2425
2426    int scaling = 0;
2427    FIXP_DBL diff = (bitsBalLast>=headroom)
2428         ?  fMult(amp, fDivNorm( (FIXP_DBL)(bitsBalLast - headroom), denominator, &scaling))
2429         : -fMult(amp, fDivNorm(-(FIXP_DBL)(bitsBalLast - headroom), denominator, &scaling)) ;
2430
2431    scaling -= 1; /* divide by 2 */
2432
2433    diff = (scaling<=0) ? FDKmax( FDKmin (diff>>(-scaling), maxDiff>>1), -maxDiff>>1)
2434                        : FDKmax( FDKmin (diff, maxDiff>>(1+scaling)), -maxDiff>>(1+scaling)) << scaling;
2435
2436    /*
2437     * corrFac += diff
2438     * corrFac = max ( min ( corrFac/2.f, 1.f/2.f, 0.75f/2.f ) )
2439     */
2440    *correctionFac_m = FDKmax(FDKmin((*correctionFac_m)+diff, FL2FXCONST_DBL(1.0f/2.f)), FL2FXCONST_DBL(0.75f/2.f)) ;
2441    *correctionFac_e = 1;
2442  }
2443  else {
2444    *correctionFac_m = FL2FXCONST_DBL(0.75/2.f);
2445    *correctionFac_e = 1;
2446  }
2447}
2448
2449void FDKaacEnc_DistributeBits(ADJ_THR_STATE *adjThrState,
2450    ATS_ELEMENT       *AdjThrStateElement,
2451    PSY_OUT_CHANNEL   *psyOutChannel[(2)],
2452    PE_DATA           *peData,
2453    INT               *grantedPe,
2454    INT               *grantedPeCorr,
2455    const INT         nChannels,
2456    const INT         commonWindow,
2457    const INT         grantedDynBits,
2458    const INT         bitresBits,
2459    const INT         maxBitresBits,
2460    const FIXP_DBL    maxBitFac,
2461    const INT         bitDistributionMode)
2462{
2463  FIXP_DBL bitFactor;
2464  INT noRedPe = peData->pe;
2465
2466  /* prefer short windows for calculation of bitFactor */
2467  INT curWindowSequence = LONG_WINDOW;
2468  if (nChannels==2) {
2469    if ((psyOutChannel[0]->lastWindowSequence == SHORT_WINDOW) ||
2470        (psyOutChannel[1]->lastWindowSequence == SHORT_WINDOW)) {
2471        curWindowSequence = SHORT_WINDOW;
2472    }
2473  }
2474  else {
2475    curWindowSequence = psyOutChannel[0]->lastWindowSequence;
2476  }
2477
2478  if (grantedDynBits >= 1) {
2479    if (bitDistributionMode!=0) {
2480      *grantedPe = FDKaacEnc_bits2pe2(grantedDynBits, AdjThrStateElement->bits2PeFactor_m, AdjThrStateElement->bits2PeFactor_e);
2481    }
2482    else
2483    {
2484    /* factor dependend on current fill level and pe */
2485    bitFactor = FDKaacEnc_bitresCalcBitFac(bitresBits, maxBitresBits, noRedPe,
2486                                 curWindowSequence, grantedDynBits, maxBitFac,
2487                                 adjThrState,
2488                                 AdjThrStateElement
2489                                 );
2490
2491    /* desired pe for actual frame */
2492    /* Worst case max of grantedDynBits is = 1024 * 5.27 * 2 */
2493    *grantedPe = FDKaacEnc_bits2pe2(grantedDynBits,
2494                     fMult(bitFactor, AdjThrStateElement->bits2PeFactor_m), AdjThrStateElement->bits2PeFactor_e+(DFRACT_BITS-1-Q_BITFAC)
2495                     );
2496    }
2497  }
2498  else {
2499    *grantedPe = 0; /* prevent divsion by 0 */
2500  }
2501
2502  /* correction of pe value */
2503  switch (bitDistributionMode) {
2504  case 2:
2505  case 1:
2506    FDKaacEnc_calcPeCorrectionLowBitRes(
2507           &AdjThrStateElement->peCorrectionFactor_m,
2508           &AdjThrStateElement->peCorrectionFactor_e,
2509            AdjThrStateElement->peLast,
2510            AdjThrStateElement->dynBitsLast,
2511            bitresBits,
2512            nChannels,
2513            AdjThrStateElement->bits2PeFactor_m,
2514            AdjThrStateElement->bits2PeFactor_e
2515        );
2516    break;
2517  case 0:
2518  default:
2519      FDKaacEnc_FDKaacEnc_calcPeCorrection(
2520           &AdjThrStateElement->peCorrectionFactor_m,
2521           &AdjThrStateElement->peCorrectionFactor_e,
2522            fixMin(*grantedPe, noRedPe),
2523            AdjThrStateElement->peLast,
2524            AdjThrStateElement->dynBitsLast,
2525            AdjThrStateElement->bits2PeFactor_m,
2526            AdjThrStateElement->bits2PeFactor_e
2527            );
2528    break;
2529  }
2530
2531  *grantedPeCorr = (INT)(fMult((FIXP_DBL)(*grantedPe<<Q_AVGBITS), AdjThrStateElement->peCorrectionFactor_m) >> (Q_AVGBITS-AdjThrStateElement->peCorrectionFactor_e));
2532
2533  /* update last pe */
2534  AdjThrStateElement->peLast = *grantedPe;
2535  AdjThrStateElement->dynBitsLast = -1;
2536
2537}
2538
2539/*****************************************************************************
2540functionname: FDKaacEnc_AdjustThresholds
2541description:  adjust thresholds
2542*****************************************************************************/
2543void FDKaacEnc_AdjustThresholds(ATS_ELEMENT*        AdjThrStateElement[(8)],
2544                                QC_OUT_ELEMENT*     qcElement[(8)],
2545                                QC_OUT*             qcOut,
2546                                PSY_OUT_ELEMENT*    psyOutElement[(8)],
2547                                INT                 CBRbitrateMode,
2548                                CHANNEL_MAPPING*    cm)
2549{
2550    int i;
2551    if (CBRbitrateMode)
2552    {
2553        /* In case, no bits must be shifted between different elements, */
2554        /* an element-wise execution of the pe-dependent threshold- */
2555        /* adaption becomes necessary... */
2556            for (i=0; i<cm->nElements; i++)
2557            {
2558                ELEMENT_INFO elInfo = cm->elInfo[i];
2559
2560                if ((elInfo.elType == ID_SCE) || (elInfo.elType == ID_CPE) ||
2561                    (elInfo.elType == ID_LFE))
2562                {
2563                    /* qcElement[i]->grantedPe = 2000; */  /* Use this only for debugging */
2564                    //if (totalGrantedPeCorr < totalNoRedPe) {
2565                    if (qcElement[i]->grantedPe < qcElement[i]->peData.pe)
2566                    {
2567                        /* calc threshold necessary for desired pe */
2568                        FDKaacEnc_adaptThresholdsToPe(cm,
2569                                            AdjThrStateElement,
2570                                            qcElement,
2571                                            psyOutElement,
2572                                            qcElement[i]->grantedPeCorr,
2573                                            1,         /* Process only 1 element */
2574                                            i);        /* Process exactly THIS element */
2575
2576                    }
2577
2578                }  /*  -end- if(ID_SCE || ID_CPE || ID_LFE) */
2579
2580            }  /* -end- element loop */
2581    }
2582    else {
2583        for (i=0; i<cm->nElements; i++)
2584        {
2585            ELEMENT_INFO elInfo = cm->elInfo[i];
2586
2587            if ((elInfo.elType == ID_SCE) || (elInfo.elType == ID_CPE) ||
2588                (elInfo.elType == ID_LFE))
2589            {
2590                  /* for VBR-mode */
2591                  FDKaacEnc_AdaptThresholdsVBR(qcElement[i]->qcOutChannel,
2592                                            psyOutElement[i]->psyOutChannel,
2593                                            AdjThrStateElement[i],
2594                                            &psyOutElement[i]->toolsInfo,
2595                                            &qcElement[i]->peData,
2596                                            cm->elInfo[i].nChannelsInEl);
2597            }  /*  -end- if(ID_SCE || ID_CPE || ID_LFE) */
2598
2599        }  /* -end- element loop */
2600
2601    }
2602    for (i=0; i<cm->nElements; i++) {
2603        int ch,sfb,sfbGrp;
2604        /* no weighting of threholds and energies for mlout */
2605        /* weight energies and thresholds */
2606        for (ch=0; ch<cm->elInfo[i].nChannelsInEl; ch++) {
2607            QC_OUT_CHANNEL* pQcOutCh = qcElement[i]->qcOutChannel[ch];
2608            for (sfbGrp = 0;sfbGrp < psyOutElement[i]->psyOutChannel[ch]->sfbCnt; sfbGrp+=psyOutElement[i]->psyOutChannel[ch]->sfbPerGroup) {
2609                for (sfb=0; sfb<psyOutElement[i]->psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
2610                    pQcOutCh->sfbThresholdLdData[sfb+sfbGrp] += pQcOutCh->sfbEnFacLd[sfb+sfbGrp];
2611                }
2612            }
2613        }
2614    }
2615}
2616
2617void FDKaacEnc_AdjThrClose(ADJ_THR_STATE** phAdjThr)
2618{
2619    INT i;
2620    ADJ_THR_STATE* hAdjThr = *phAdjThr;
2621
2622    if (hAdjThr!=NULL) {
2623      for (i=0; i<(8); i++) {
2624        if (hAdjThr->adjThrStateElem[i]!=NULL) {
2625          FreeRam_aacEnc_AdjThrStateElement(&hAdjThr->adjThrStateElem[i]);
2626        }
2627      }
2628      FreeRam_aacEnc_AdjustThreshold(phAdjThr);
2629    }
2630}
2631
2632