1/*
2 * Copyright 2011 Daniel Drown
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 *
16 * translate.c - CLAT functions / partial implementation of rfc6145
17 */
18#include <string.h>
19#include <sys/uio.h>
20
21#include "icmp.h"
22#include "translate.h"
23#include "checksum.h"
24#include "clatd.h"
25#include "config.h"
26#include "logging.h"
27#include "debug.h"
28
29/* function: packet_checksum
30 * calculates the checksum over all the packet components starting from pos
31 * checksum - checksum of packet components before pos
32 * packet   - packet to calculate the checksum of
33 * pos      - position to start counting from
34 * returns  - the completed 16-bit checksum, ready to write into a checksum header field
35 */
36uint16_t packet_checksum(uint32_t checksum, clat_packet packet, clat_packet_index pos) {
37  int i;
38  for (i = pos; i < CLAT_POS_MAX; i++) {
39    if (packet[i].iov_len > 0) {
40      checksum = ip_checksum_add(checksum, packet[i].iov_base, packet[i].iov_len);
41    }
42  }
43  return ip_checksum_finish(checksum);
44}
45
46/* function: packet_length
47 * returns the total length of all the packet components after pos
48 * packet - packet to calculate the length of
49 * pos    - position to start counting after
50 * returns: the total length of the packet components after pos
51 */
52uint16_t packet_length(clat_packet packet, clat_packet_index pos) {
53  size_t len = 0;
54  int i;
55  for (i = pos + 1; i < CLAT_POS_MAX; i++) {
56    len += packet[i].iov_len;
57  }
58  return len;
59}
60
61/* function: is_in_plat_subnet
62 * returns true iff the given IPv6 address is in the plat subnet.
63 * addr - IPv6 address
64 */
65int is_in_plat_subnet(const struct in6_addr *addr6) {
66  // Assumes a /96 plat subnet.
67  return (addr6 != NULL) && (memcmp(addr6, &Global_Clatd_Config.plat_subnet, 12) == 0);
68}
69
70/* function: ipv6_addr_to_ipv4_addr
71 * return the corresponding ipv4 address for the given ipv6 address
72 * addr6 - ipv6 address
73 * returns: the IPv4 address
74 */
75uint32_t ipv6_addr_to_ipv4_addr(const struct in6_addr *addr6) {
76  if (is_in_plat_subnet(addr6)) {
77    // Assumes a /96 plat subnet.
78    return addr6->s6_addr32[3];
79  } else if (IN6_ARE_ADDR_EQUAL(addr6, &Global_Clatd_Config.ipv6_local_subnet)) {
80    // Special-case our own address.
81    return Global_Clatd_Config.ipv4_local_subnet.s_addr;
82  } else {
83    // Third party packet. Let the caller deal with it.
84    return INADDR_NONE;
85  }
86}
87
88/* function: ipv4_addr_to_ipv6_addr
89 * return the corresponding ipv6 address for the given ipv4 address
90 * addr4 - ipv4 address
91 */
92struct in6_addr ipv4_addr_to_ipv6_addr(uint32_t addr4) {
93  struct in6_addr addr6;
94  // Both addresses are in network byte order (addr4 comes from a network packet, and the config
95  // file entry is read using inet_ntop).
96  if (addr4 == Global_Clatd_Config.ipv4_local_subnet.s_addr) {
97    return Global_Clatd_Config.ipv6_local_subnet;
98  } else {
99    // Assumes a /96 plat subnet.
100    addr6 = Global_Clatd_Config.plat_subnet;
101    addr6.s6_addr32[3] = addr4;
102    return addr6;
103  }
104}
105
106/* function: fill_tun_header
107 * fill in the header for the tun fd
108 * tun_header - tunnel header, already allocated
109 * proto      - ethernet protocol id: ETH_P_IP(ipv4) or ETH_P_IPV6(ipv6)
110 */
111void fill_tun_header(struct tun_pi *tun_header, uint16_t proto) {
112  tun_header->flags = 0;
113  tun_header->proto = htons(proto);
114}
115
116/* function: fill_ip_header
117 * generate an ipv4 header from an ipv6 header
118 * ip_targ     - (ipv4) target packet header, source: original ipv4 addr, dest: local subnet addr
119 * payload_len - length of other data inside packet
120 * protocol    - protocol number (tcp, udp, etc)
121 * old_header  - (ipv6) source packet header, source: nat64 prefix, dest: local subnet prefix
122 */
123void fill_ip_header(struct iphdr *ip, uint16_t payload_len, uint8_t protocol,
124                    const struct ip6_hdr *old_header) {
125  int ttl_guess;
126  memset(ip, 0, sizeof(struct iphdr));
127
128  ip->ihl = 5;
129  ip->version = 4;
130  ip->tos = 0;
131  ip->tot_len = htons(sizeof(struct iphdr) + payload_len);
132  ip->id = 0;
133  ip->frag_off = htons(IP_DF);
134  ip->ttl = old_header->ip6_hlim;
135  ip->protocol = protocol;
136  ip->check = 0;
137
138  ip->saddr = ipv6_addr_to_ipv4_addr(&old_header->ip6_src);
139  ip->daddr = ipv6_addr_to_ipv4_addr(&old_header->ip6_dst);
140
141  // Third-party ICMPv6 message. This may have been originated by an native IPv6 address.
142  // In that case, the source IPv6 address can't be translated and we need to make up an IPv4
143  // source address. For now, use 255.0.0.<ttl>, which at least looks useful in traceroute.
144  if ((uint32_t) ip->saddr == INADDR_NONE) {
145    ttl_guess = icmp_guess_ttl(old_header->ip6_hlim);
146    ip->saddr = htonl((0xff << 24) + ttl_guess);
147  }
148}
149
150/* function: fill_ip6_header
151 * generate an ipv6 header from an ipv4 header
152 * ip6         - (ipv6) target packet header, source: local subnet prefix, dest: nat64 prefix
153 * payload_len - length of other data inside packet
154 * protocol    - protocol number (tcp, udp, etc)
155 * old_header  - (ipv4) source packet header, source: local subnet addr, dest: internet's ipv4 addr
156 */
157void fill_ip6_header(struct ip6_hdr *ip6, uint16_t payload_len, uint8_t protocol,
158                     const struct iphdr *old_header) {
159  memset(ip6, 0, sizeof(struct ip6_hdr));
160
161  ip6->ip6_vfc = 6 << 4;
162  ip6->ip6_plen = htons(payload_len);
163  ip6->ip6_nxt = protocol;
164  ip6->ip6_hlim = old_header->ttl;
165
166  ip6->ip6_src = ipv4_addr_to_ipv6_addr(old_header->saddr);
167  ip6->ip6_dst = ipv4_addr_to_ipv6_addr(old_header->daddr);
168}
169
170/* function: maybe_fill_frag_header
171 * fills a fragmentation header
172 * generate an ipv6 fragment header from an ipv4 header
173 * frag_hdr    - target (ipv6) fragmentation header
174 * ip6_targ    - target (ipv6) header
175 * old_header  - (ipv4) source packet header
176 * returns: the length of the fragmentation header if present, or zero if not present
177 */
178size_t maybe_fill_frag_header(struct ip6_frag *frag_hdr, struct ip6_hdr *ip6_targ,
179                              const struct iphdr *old_header) {
180  uint16_t frag_flags = ntohs(old_header->frag_off);
181  uint16_t frag_off = frag_flags & IP_OFFMASK;
182  if (frag_off == 0 && (frag_flags & IP_MF) == 0) {
183    // Not a fragment.
184    return 0;
185  }
186
187  frag_hdr->ip6f_nxt = ip6_targ->ip6_nxt;
188  frag_hdr->ip6f_reserved = 0;
189  // In IPv4, the offset is the bottom 13 bits; in IPv6 it's the top 13 bits.
190  frag_hdr->ip6f_offlg = htons(frag_off << 3);
191  if (frag_flags & IP_MF) {
192    frag_hdr->ip6f_offlg |= IP6F_MORE_FRAG;
193  }
194  frag_hdr->ip6f_ident = htonl(ntohs(old_header->id));
195  ip6_targ->ip6_nxt = IPPROTO_FRAGMENT;
196
197  return sizeof(*frag_hdr);
198}
199
200/* function: parse_frag_header
201 * return the length of the fragmentation header if present, or zero if not present
202 * generate an ipv6 fragment header from an ipv4 header
203 * frag_hdr    - (ipv6) fragmentation header
204 * ip_targ     - target (ipv4) header
205 * returns: the next header value
206 */
207uint8_t parse_frag_header(const struct ip6_frag *frag_hdr, struct iphdr *ip_targ) {
208  uint16_t frag_off = (ntohs(frag_hdr->ip6f_offlg & IP6F_OFF_MASK) >> 3);
209  if (frag_hdr->ip6f_offlg & IP6F_MORE_FRAG) {
210    frag_off |= IP_MF;
211  }
212  ip_targ->frag_off = htons(frag_off);
213  ip_targ->id = htons(ntohl(frag_hdr->ip6f_ident) & 0xffff);
214  ip_targ->protocol = frag_hdr->ip6f_nxt;
215  return frag_hdr->ip6f_nxt;
216}
217
218/* function: icmp_to_icmp6
219 * translate ipv4 icmp to ipv6 icmp
220 * out          - output packet
221 * icmp         - source packet icmp header
222 * checksum     - pseudo-header checksum
223 * payload      - icmp payload
224 * payload_size - size of payload
225 * returns: the highest position in the output clat_packet that's filled in
226 */
227int icmp_to_icmp6(clat_packet out, clat_packet_index pos, const struct icmphdr *icmp,
228                  uint32_t checksum, const uint8_t *payload, size_t payload_size) {
229  struct icmp6_hdr *icmp6_targ = out[pos].iov_base;
230  uint8_t icmp6_type;
231  int clat_packet_len;
232
233  memset(icmp6_targ, 0, sizeof(struct icmp6_hdr));
234
235  icmp6_type = icmp_to_icmp6_type(icmp->type, icmp->code);
236  icmp6_targ->icmp6_type = icmp6_type;
237  icmp6_targ->icmp6_code = icmp_to_icmp6_code(icmp->type, icmp->code);
238
239  out[pos].iov_len = sizeof(struct icmp6_hdr);
240
241  if (pos == CLAT_POS_TRANSPORTHDR &&
242      is_icmp_error(icmp->type) &&
243      icmp6_type != ICMP6_PARAM_PROB) {
244    // An ICMP error we understand, one level deep.
245    // Translate the nested packet (the one that caused the error).
246    clat_packet_len = ipv4_packet(out, pos + 1, payload, payload_size);
247
248    // The pseudo-header checksum was calculated on the transport length of the original IPv4
249    // packet that we were asked to translate. This transport length is 20 bytes smaller than it
250    // needs to be, because the ICMP error contains an IPv4 header, which we will be translating to
251    // an IPv6 header, which is 20 bytes longer. Fix it up here.
252    // We only need to do this for ICMP->ICMPv6, not ICMPv6->ICMP, because ICMP does not use the
253    // pseudo-header when calculating its checksum (as the IPv4 header has its own checksum).
254    checksum = checksum + htons(20);
255  } else if (icmp6_type == ICMP6_ECHO_REQUEST || icmp6_type == ICMP6_ECHO_REPLY) {
256    // Ping packet.
257    icmp6_targ->icmp6_id = icmp->un.echo.id;
258    icmp6_targ->icmp6_seq = icmp->un.echo.sequence;
259    out[CLAT_POS_PAYLOAD].iov_base = (uint8_t *) payload;
260    out[CLAT_POS_PAYLOAD].iov_len = payload_size;
261    clat_packet_len = CLAT_POS_PAYLOAD + 1;
262  } else {
263    // Unknown type/code. The type/code conversion functions have already logged an error.
264    return 0;
265  }
266
267  icmp6_targ->icmp6_cksum = 0;  // Checksum field must be 0 when calculating checksum.
268  icmp6_targ->icmp6_cksum = packet_checksum(checksum, out, pos);
269
270  return clat_packet_len;
271}
272
273/* function: icmp6_to_icmp
274 * translate ipv6 icmp to ipv4 icmp
275 * out          - output packet
276 * icmp6        - source packet icmp6 header
277 * payload      - icmp6 payload
278 * payload_size - size of payload
279 * returns: the highest position in the output clat_packet that's filled in
280 */
281int icmp6_to_icmp(clat_packet out, clat_packet_index pos, const struct icmp6_hdr *icmp6,
282                  const uint8_t *payload, size_t payload_size) {
283  struct icmphdr *icmp_targ = out[pos].iov_base;
284  uint8_t icmp_type;
285  int clat_packet_len;
286
287  memset(icmp_targ, 0, sizeof(struct icmphdr));
288
289  icmp_type = icmp6_to_icmp_type(icmp6->icmp6_type, icmp6->icmp6_code);
290  icmp_targ->type = icmp_type;
291  icmp_targ->code = icmp6_to_icmp_code(icmp6->icmp6_type, icmp6->icmp6_code);
292
293  out[pos].iov_len = sizeof(struct icmphdr);
294
295  if (pos == CLAT_POS_TRANSPORTHDR &&
296      is_icmp6_error(icmp6->icmp6_type) &&
297      icmp_type != ICMP_PARAMETERPROB) {
298    // An ICMPv6 error we understand, one level deep.
299    // Translate the nested packet (the one that caused the error).
300    clat_packet_len = ipv6_packet(out, pos + 1, payload, payload_size);
301  } else if (icmp_type == ICMP_ECHO || icmp_type == ICMP_ECHOREPLY) {
302    // Ping packet.
303    icmp_targ->un.echo.id = icmp6->icmp6_id;
304    icmp_targ->un.echo.sequence = icmp6->icmp6_seq;
305    out[CLAT_POS_PAYLOAD].iov_base = (uint8_t *) payload;
306    out[CLAT_POS_PAYLOAD].iov_len = payload_size;
307    clat_packet_len = CLAT_POS_PAYLOAD + 1;
308  } else {
309      // Unknown type/code. The type/code conversion functions have already logged an error.
310    return 0;
311  }
312
313  icmp_targ->checksum = 0;  // Checksum field must be 0 when calculating checksum.
314  icmp_targ->checksum = packet_checksum(0, out, pos);
315
316  return clat_packet_len;
317}
318
319/* function: generic_packet
320 * takes a generic IP packet and sets it up for translation
321 * out      - output packet
322 * pos      - position in the output packet of the transport header
323 * payload  - pointer to IP payload
324 * len      - size of ip payload
325 * returns: the highest position in the output clat_packet that's filled in
326 */
327int generic_packet(clat_packet out, clat_packet_index pos, const uint8_t *payload, size_t len) {
328  out[pos].iov_len = 0;
329  out[CLAT_POS_PAYLOAD].iov_base = (uint8_t *) payload;
330  out[CLAT_POS_PAYLOAD].iov_len = len;
331
332  return CLAT_POS_PAYLOAD + 1;
333}
334
335/* function: udp_packet
336 * takes a udp packet and sets it up for translation
337 * out      - output packet
338 * udp      - pointer to udp header in packet
339 * old_sum  - pseudo-header checksum of old header
340 * new_sum  - pseudo-header checksum of new header
341 * len      - size of ip payload
342 */
343int udp_packet(clat_packet out, clat_packet_index pos, const struct udphdr *udp,
344               uint32_t old_sum, uint32_t new_sum, size_t len) {
345  const uint8_t *payload;
346  size_t payload_size;
347
348  if(len < sizeof(struct udphdr)) {
349    logmsg_dbg(ANDROID_LOG_ERROR,"udp_packet/(too small)");
350    return 0;
351  }
352
353  payload = (const uint8_t *) (udp + 1);
354  payload_size = len - sizeof(struct udphdr);
355
356  return udp_translate(out, pos, udp, old_sum, new_sum, payload, payload_size);
357}
358
359/* function: tcp_packet
360 * takes a tcp packet and sets it up for translation
361 * out      - output packet
362 * tcp      - pointer to tcp header in packet
363 * checksum - pseudo-header checksum
364 * len      - size of ip payload
365 * returns: the highest position in the output clat_packet that's filled in
366 */
367int tcp_packet(clat_packet out, clat_packet_index pos, const struct tcphdr *tcp,
368               uint32_t old_sum, uint32_t new_sum, size_t len) {
369  const uint8_t *payload;
370  size_t payload_size, header_size;
371
372  if(len < sizeof(struct tcphdr)) {
373    logmsg_dbg(ANDROID_LOG_ERROR,"tcp_packet/(too small)");
374    return 0;
375  }
376
377  if(tcp->doff < 5) {
378    logmsg_dbg(ANDROID_LOG_ERROR,"tcp_packet/tcp header length set to less than 5: %x", tcp->doff);
379    return 0;
380  }
381
382  if((size_t) tcp->doff*4 > len) {
383    logmsg_dbg(ANDROID_LOG_ERROR,"tcp_packet/tcp header length set too large: %x", tcp->doff);
384    return 0;
385  }
386
387  header_size = tcp->doff * 4;
388  payload = ((const uint8_t *) tcp) + header_size;
389  payload_size = len - header_size;
390
391  return tcp_translate(out, pos, tcp, header_size, old_sum, new_sum, payload, payload_size);
392}
393
394/* function: udp_translate
395 * common between ipv4/ipv6 - setup checksum and send udp packet
396 * out          - output packet
397 * udp          - udp header
398 * old_sum      - pseudo-header checksum of old header
399 * new_sum      - pseudo-header checksum of new header
400 * payload      - tcp payload
401 * payload_size - size of payload
402 * returns: the highest position in the output clat_packet that's filled in
403 */
404int udp_translate(clat_packet out, clat_packet_index pos, const struct udphdr *udp,
405                  uint32_t old_sum, uint32_t new_sum, const uint8_t *payload, size_t payload_size) {
406  struct udphdr *udp_targ = out[pos].iov_base;
407
408  memcpy(udp_targ, udp, sizeof(struct udphdr));
409
410  out[pos].iov_len = sizeof(struct udphdr);
411  out[CLAT_POS_PAYLOAD].iov_base = (uint8_t *) payload;
412  out[CLAT_POS_PAYLOAD].iov_len = payload_size;
413
414  if (udp_targ->check) {
415    udp_targ->check = ip_checksum_adjust(udp->check, old_sum, new_sum);
416  } else {
417    // Zero checksums are special. RFC 768 says, "An all zero transmitted checksum value means that
418    // the transmitter generated no checksum (for debugging or for higher level protocols that
419    // don't care)." However, in IPv6 zero UDP checksums were only permitted by RFC 6935 (2013). So
420    // for safety we recompute it.
421    udp_targ->check = 0;  // Checksum field must be 0 when calculating checksum.
422    udp_targ->check = packet_checksum(new_sum, out, pos);
423  }
424
425  // RFC 768: "If the computed checksum is zero, it is transmitted as all ones (the equivalent
426  // in one's complement arithmetic)."
427  if (!udp_targ->check) {
428    udp_targ->check = 0xffff;
429  }
430
431  return CLAT_POS_PAYLOAD + 1;
432}
433
434/* function: tcp_translate
435 * common between ipv4/ipv6 - setup checksum and send tcp packet
436 * out          - output packet
437 * tcp          - tcp header
438 * header_size  - size of tcp header including options
439 * checksum     - partial checksum covering ipv4/ipv6 header
440 * payload      - tcp payload
441 * payload_size - size of payload
442 * returns: the highest position in the output clat_packet that's filled in
443 */
444int tcp_translate(clat_packet out, clat_packet_index pos, const struct tcphdr *tcp,
445                  size_t header_size, uint32_t old_sum, uint32_t new_sum,
446                  const uint8_t *payload, size_t payload_size) {
447  struct tcphdr *tcp_targ = out[pos].iov_base;
448  out[pos].iov_len = header_size;
449
450  if (header_size > MAX_TCP_HDR) {
451    // A TCP header cannot be more than MAX_TCP_HDR bytes long because it's a 4-bit field that
452    // counts in 4-byte words. So this can never happen unless there is a bug in the caller.
453    logmsg(ANDROID_LOG_ERROR, "tcp_translate: header too long %d > %d, truncating",
454           header_size, MAX_TCP_HDR);
455    header_size = MAX_TCP_HDR;
456  }
457
458  memcpy(tcp_targ, tcp, header_size);
459
460  out[CLAT_POS_PAYLOAD].iov_base = (uint8_t *) payload;
461  out[CLAT_POS_PAYLOAD].iov_len = payload_size;
462
463  tcp_targ->check = ip_checksum_adjust(tcp->check, old_sum, new_sum);
464
465  return CLAT_POS_PAYLOAD + 1;
466}
467
468void send_tun(int fd, clat_packet out, int iov_len) {
469  writev(fd, out, iov_len);
470}
471
472// Weak symbol so we can override it in the unit test.
473void send_rawv6(int fd, clat_packet out, int iov_len) __attribute__((weak));
474
475void send_rawv6(int fd, clat_packet out, int iov_len) {
476  // A send on a raw socket requires a destination address to be specified even if the socket's
477  // protocol is IPPROTO_RAW. This is the address that will be used in routing lookups; the
478  // destination address in the packet header only affects what appears on the wire, not where the
479  // packet is sent to.
480  static struct sockaddr_in6 sin6 = { AF_INET6, 0, 0, { { { 0, 0, 0, 0 } } }, 0 };
481  static struct msghdr msg = {
482    .msg_name = &sin6,
483    .msg_namelen = sizeof(sin6),
484  };
485
486  msg.msg_iov = out,
487  msg.msg_iovlen = iov_len,
488  sin6.sin6_addr = ((struct ip6_hdr *) out[CLAT_POS_IPHDR].iov_base)->ip6_dst;
489  sendmsg(fd, &msg, 0);
490}
491
492/* function: translate_packet
493 * takes a packet, translates it, and writes it to fd
494 * fd         - fd to write translated packet to
495 * to_ipv6    - true if translating to ipv6, false if translating to ipv4
496 * packet     - packet
497 * packetsize - size of packet
498 */
499void translate_packet(int fd, int to_ipv6, const uint8_t *packet, size_t packetsize) {
500  int iov_len = 0;
501
502  // Allocate buffers for all packet headers.
503  struct tun_pi tun_targ;
504  char iphdr[sizeof(struct ip6_hdr)];
505  char fraghdr[sizeof(struct ip6_frag)];
506  char transporthdr[MAX_TCP_HDR];
507  char icmp_iphdr[sizeof(struct ip6_hdr)];
508  char icmp_fraghdr[sizeof(struct ip6_frag)];
509  char icmp_transporthdr[MAX_TCP_HDR];
510
511  // iovec of the packets we'll send. This gets passed down to the translation functions.
512  clat_packet out = {
513    { &tun_targ, 0 },                 // Tunnel header.
514    { iphdr, 0 },                     // IP header.
515    { fraghdr, 0 },                   // Fragment header.
516    { transporthdr, 0 },              // Transport layer header.
517    { icmp_iphdr, 0 },                // ICMP error inner IP header.
518    { icmp_fraghdr, 0 },              // ICMP error fragmentation header.
519    { icmp_transporthdr, 0 },         // ICMP error transport layer header.
520    { NULL, 0 },                      // Payload. No buffer, it's a pointer to the original payload.
521  };
522
523  if (to_ipv6) {
524    iov_len = ipv4_packet(out, CLAT_POS_IPHDR, packet, packetsize);
525    if (iov_len > 0) {
526      send_rawv6(fd, out, iov_len);
527    }
528  } else {
529    iov_len = ipv6_packet(out, CLAT_POS_IPHDR, packet, packetsize);
530    if (iov_len > 0) {
531      fill_tun_header(&tun_targ, ETH_P_IP);
532      out[CLAT_POS_TUNHDR].iov_len = sizeof(tun_targ);
533      send_tun(fd, out, iov_len);
534    }
535  }
536}
537