1/*
2 * [The "BSD licence"]
3 * Copyright (c) 2005-2008 Terence Parr
4 * All rights reserved.
5 *
6 * Conversion to C#:
7 * Copyright (c) 2008-2009 Sam Harwell, Pixel Mine, Inc.
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote products
19 *    derived from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33// TODO: build indexes for wizard
34//#define BUILD_INDEXES
35
36namespace Antlr.Runtime.Tree
37{
38    using System.Collections.Generic;
39
40    using IList = System.Collections.IList;
41#if BUILD_INDEXES
42    using IDictionary = System.Collections.IDictionary;
43#endif
44
45    /** <summary>
46     *  Build and navigate trees with this object.  Must know about the names
47     *  of tokens so you have to pass in a map or array of token names (from which
48     *  this class can build the map).  I.e., Token DECL means nothing unless the
49     *  class can translate it to a token type.
50     *  </summary>
51     *
52     *  <remarks>
53     *  In order to create nodes and navigate, this class needs a TreeAdaptor.
54     *
55     *  This class can build a token type -> node index for repeated use or for
56     *  iterating over the various nodes with a particular type.
57     *
58     *  This class works in conjunction with the TreeAdaptor rather than moving
59     *  all this functionality into the adaptor.  An adaptor helps build and
60     *  navigate trees using methods.  This class helps you do it with string
61     *  patterns like "(A B C)".  You can create a tree from that pattern or
62     *  match subtrees against it.
63     *  </remarks>
64     */
65    public class TreeWizard
66    {
67        protected ITreeAdaptor adaptor;
68        protected IDictionary<string, int> tokenNameToTypeMap;
69
70        public interface IContextVisitor
71        {
72            // TODO: should this be called visit or something else?
73            void Visit( object t, object parent, int childIndex, IDictionary<string, object> labels );
74        }
75
76        public abstract class Visitor : IContextVisitor
77        {
78            public virtual void Visit( object t, object parent, int childIndex, IDictionary<string, object> labels )
79            {
80                Visit( t );
81            }
82            public abstract void Visit( object t );
83        }
84
85        class ActionVisitor : Visitor
86        {
87            System.Action<object> _action;
88
89            public ActionVisitor( System.Action<object> action )
90            {
91                _action = action;
92            }
93
94            public override void Visit( object t )
95            {
96                _action( t );
97            }
98        }
99
100        /** <summary>
101         *  When using %label:TOKENNAME in a tree for parse(), we must
102         *  track the label.
103         *  </summary>
104         */
105        public class TreePattern : CommonTree
106        {
107            public string label;
108            public bool hasTextArg;
109            public TreePattern( IToken payload ) :
110                base( payload )
111            {
112            }
113            public override string ToString()
114            {
115                if ( label != null )
116                {
117                    return "%" + label + ":"; //+ base.ToString();
118                }
119                else
120                {
121                    return base.ToString();
122                }
123            }
124        }
125
126        public class WildcardTreePattern : TreePattern
127        {
128            public WildcardTreePattern( IToken payload ) :
129                base( payload )
130            {
131            }
132        }
133
134        /** <summary>This adaptor creates TreePattern objects for use during scan()</summary> */
135        public class TreePatternTreeAdaptor : CommonTreeAdaptor
136        {
137            public override object Create( IToken payload )
138            {
139                return new TreePattern( payload );
140            }
141        }
142
143#if BUILD_INDEXES
144        // TODO: build indexes for the wizard
145
146        /** <summary>
147         *  During fillBuffer(), we can make a reverse index from a set
148         *  of token types of interest to the list of indexes into the
149         *  node stream.  This lets us convert a node pointer to a
150         *  stream index semi-efficiently for a list of interesting
151         *  nodes such as function definition nodes (you'll want to seek
152         *  to their bodies for an interpreter).  Also useful for doing
153         *  dynamic searches; i.e., go find me all PLUS nodes.
154         *  </summary>
155         */
156        protected IDictionary<int, IList<int>> tokenTypeToStreamIndexesMap;
157
158        /** <summary>
159         *  If tokenTypesToReverseIndex set to INDEX_ALL then indexing
160         *  occurs for all token types.
161         *  </summary>
162         */
163        public static readonly HashSet<int> INDEX_ALL = new HashSet<int>();
164
165        /** <summary>
166         *  A set of token types user would like to index for faster lookup.
167         *  If this is INDEX_ALL, then all token types are tracked.  If null,
168         *  then none are indexed.
169         *  </summary>
170         */
171        protected HashSet<int> tokenTypesToReverseIndex = null;
172#endif
173
174        public TreeWizard( ITreeAdaptor adaptor )
175        {
176            this.adaptor = adaptor;
177        }
178
179        public TreeWizard( ITreeAdaptor adaptor, IDictionary<string, int> tokenNameToTypeMap )
180        {
181            this.adaptor = adaptor;
182            this.tokenNameToTypeMap = tokenNameToTypeMap;
183        }
184
185        public TreeWizard( ITreeAdaptor adaptor, string[] tokenNames )
186        {
187            this.adaptor = adaptor;
188            this.tokenNameToTypeMap = ComputeTokenTypes( tokenNames );
189        }
190
191        public TreeWizard( string[] tokenNames )
192            : this( new CommonTreeAdaptor(), tokenNames )
193        {
194        }
195
196        /** <summary>
197         *  Compute a Map&lt;String, Integer&gt; that is an inverted index of
198         *  tokenNames (which maps int token types to names).
199         *  </summary>
200         */
201        public virtual IDictionary<string, int> ComputeTokenTypes( string[] tokenNames )
202        {
203            IDictionary<string, int> m = new Dictionary<string, int>();
204            if ( tokenNames == null )
205            {
206                return m;
207            }
208            for ( int ttype = TokenTypes.Min; ttype < tokenNames.Length; ttype++ )
209            {
210                string name = tokenNames[ttype];
211                m[name] = ttype;
212            }
213            return m;
214        }
215
216        /** <summary>Using the map of token names to token types, return the type.</summary> */
217        public virtual int GetTokenType( string tokenName )
218        {
219            if ( tokenNameToTypeMap == null )
220            {
221                return TokenTypes.Invalid;
222            }
223
224            int value;
225            if ( tokenNameToTypeMap.TryGetValue( tokenName, out value ) )
226                return value;
227
228            return TokenTypes.Invalid;
229        }
230
231        /** <summary>
232         *  Walk the entire tree and make a node name to nodes mapping.
233         *  For now, use recursion but later nonrecursive version may be
234         *  more efficient.  Returns Map&lt;Integer, List&gt; where the List is
235         *  of your AST node type.  The Integer is the token type of the node.
236         *  </summary>
237         *
238         *  <remarks>
239         *  TODO: save this index so that find and visit are faster
240         *  </remarks>
241         */
242        public IDictionary<int, IList> Index( object t )
243        {
244            IDictionary<int, IList> m = new Dictionary<int, IList>();
245            IndexCore( t, m );
246            return m;
247        }
248
249        /** <summary>Do the work for index</summary> */
250        protected virtual void IndexCore( object t, IDictionary<int, IList> m )
251        {
252            if ( t == null )
253            {
254                return;
255            }
256            int ttype = adaptor.GetType( t );
257            IList elements;
258            if ( !m.TryGetValue( ttype, out elements ) || elements == null )
259            {
260                elements = new List<object>();
261                m[ttype] = elements;
262            }
263            elements.Add( t );
264            int n = adaptor.GetChildCount( t );
265            for ( int i = 0; i < n; i++ )
266            {
267                object child = adaptor.GetChild( t, i );
268                IndexCore( child, m );
269            }
270        }
271
272        class FindTreeWizardVisitor : TreeWizard.Visitor
273        {
274            IList _nodes;
275            public FindTreeWizardVisitor( IList nodes )
276            {
277                _nodes = nodes;
278            }
279            public override void Visit( object t )
280            {
281                _nodes.Add( t );
282            }
283        }
284        class FindTreeWizardContextVisitor : TreeWizard.IContextVisitor
285        {
286            TreeWizard _outer;
287            TreePattern _tpattern;
288            IList _subtrees;
289            public FindTreeWizardContextVisitor( TreeWizard outer, TreePattern tpattern, IList subtrees )
290            {
291                _outer = outer;
292                _tpattern = tpattern;
293                _subtrees = subtrees;
294            }
295
296            public void Visit( object t, object parent, int childIndex, IDictionary<string, object> labels )
297            {
298                if ( _outer.ParseCore( t, _tpattern, null ) )
299                {
300                    _subtrees.Add( t );
301                }
302            }
303        }
304
305        /** <summary>Return a List of tree nodes with token type ttype</summary> */
306        public virtual IList Find( object t, int ttype )
307        {
308            IList nodes = new List<object>();
309            Visit( t, ttype, new FindTreeWizardVisitor( nodes ) );
310            return nodes;
311        }
312
313        /** <summary>Return a List of subtrees matching pattern.</summary> */
314        public virtual IList Find( object t, string pattern )
315        {
316            IList subtrees = new List<object>();
317            // Create a TreePattern from the pattern
318            TreePatternLexer tokenizer = new TreePatternLexer( pattern );
319            TreePatternParser parser =
320                new TreePatternParser( tokenizer, this, new TreePatternTreeAdaptor() );
321            TreePattern tpattern = (TreePattern)parser.Pattern();
322            // don't allow invalid patterns
323            if ( tpattern == null ||
324                 tpattern.IsNil ||
325                 tpattern.GetType() == typeof( WildcardTreePattern ) )
326            {
327                return null;
328            }
329            int rootTokenType = tpattern.Type;
330            Visit( t, rootTokenType, new FindTreeWizardContextVisitor( this, tpattern, subtrees ) );
331            return subtrees;
332        }
333
334        public virtual object FindFirst( object t, int ttype )
335        {
336            return null;
337        }
338
339        public virtual object FindFirst( object t, string pattern )
340        {
341            return null;
342        }
343
344        /** <summary>
345         *  Visit every ttype node in t, invoking the visitor.  This is a quicker
346         *  version of the general visit(t, pattern) method.  The labels arg
347         *  of the visitor action method is never set (it's null) since using
348         *  a token type rather than a pattern doesn't let us set a label.
349         *  </summary>
350         */
351        public void Visit( object t, int ttype, IContextVisitor visitor )
352        {
353            VisitCore( t, null, 0, ttype, visitor );
354        }
355
356        public void Visit( object t, int ttype, System.Action<object> action )
357        {
358            Visit( t, ttype, new ActionVisitor( action ) );
359        }
360
361        /** <summary>Do the recursive work for visit</summary> */
362        protected virtual void VisitCore( object t, object parent, int childIndex, int ttype, IContextVisitor visitor )
363        {
364            if ( t == null )
365            {
366                return;
367            }
368            if ( adaptor.GetType( t ) == ttype )
369            {
370                visitor.Visit( t, parent, childIndex, null );
371            }
372            int n = adaptor.GetChildCount( t );
373            for ( int i = 0; i < n; i++ )
374            {
375                object child = adaptor.GetChild( t, i );
376                VisitCore( child, t, i, ttype, visitor );
377            }
378        }
379
380        class VisitTreeWizardContextVisitor : TreeWizard.IContextVisitor
381        {
382            TreeWizard _outer;
383            IContextVisitor _visitor;
384            IDictionary<string, object> _labels;
385            TreePattern _tpattern;
386
387            public VisitTreeWizardContextVisitor( TreeWizard outer, IContextVisitor visitor, IDictionary<string, object> labels, TreePattern tpattern )
388            {
389                _outer = outer;
390                _visitor = visitor;
391                _labels = labels;
392                _tpattern = tpattern;
393            }
394
395            public void Visit( object t, object parent, int childIndex, IDictionary<string, object> unusedlabels )
396            {
397                // the unusedlabels arg is null as visit on token type doesn't set.
398                _labels.Clear();
399                if ( _outer.ParseCore( t, _tpattern, _labels ) )
400                {
401                    _visitor.Visit( t, parent, childIndex, _labels );
402                }
403            }
404        }
405
406        /** <summary>
407         *  For all subtrees that match the pattern, execute the visit action.
408         *  The implementation uses the root node of the pattern in combination
409         *  with visit(t, ttype, visitor) so nil-rooted patterns are not allowed.
410         *  Patterns with wildcard roots are also not allowed.
411         *  </summary>
412         */
413        public void Visit( object t, string pattern, IContextVisitor visitor )
414        {
415            // Create a TreePattern from the pattern
416            TreePatternLexer tokenizer = new TreePatternLexer( pattern );
417            TreePatternParser parser =
418                new TreePatternParser( tokenizer, this, new TreePatternTreeAdaptor() );
419            TreePattern tpattern = (TreePattern)parser.Pattern();
420            // don't allow invalid patterns
421            if ( tpattern == null ||
422                 tpattern.IsNil ||
423                 tpattern.GetType() == typeof( WildcardTreePattern ) )
424            {
425                return;
426            }
427            IDictionary<string, object> labels = new Dictionary<string, object>(); // reused for each _parse
428            int rootTokenType = tpattern.Type;
429            Visit( t, rootTokenType, new VisitTreeWizardContextVisitor( this, visitor, labels, tpattern ) );
430        }
431
432        /** <summary>
433         *  Given a pattern like (ASSIGN %lhs:ID %rhs:.) with optional labels
434         *  on the various nodes and '.' (dot) as the node/subtree wildcard,
435         *  return true if the pattern matches and fill the labels Map with
436         *  the labels pointing at the appropriate nodes.  Return false if
437         *  the pattern is malformed or the tree does not match.
438         *  </summary>
439         *
440         *  <remarks>
441         *  If a node specifies a text arg in pattern, then that must match
442         *  for that node in t.
443         *
444         *  TODO: what's a better way to indicate bad pattern? Exceptions are a hassle
445         *  </remarks>
446         */
447        public bool Parse( object t, string pattern, IDictionary<string, object> labels )
448        {
449            TreePatternLexer tokenizer = new TreePatternLexer( pattern );
450            TreePatternParser parser =
451                new TreePatternParser( tokenizer, this, new TreePatternTreeAdaptor() );
452            TreePattern tpattern = (TreePattern)parser.Pattern();
453            /*
454            System.out.println("t="+((Tree)t).toStringTree());
455            System.out.println("scant="+tpattern.toStringTree());
456            */
457            bool matched = ParseCore( t, tpattern, labels );
458            return matched;
459        }
460
461        public bool Parse( object t, string pattern )
462        {
463            return Parse( t, pattern, null );
464        }
465
466        /** <summary>
467         *  Do the work for parse. Check to see if the t2 pattern fits the
468         *  structure and token types in t1.  Check text if the pattern has
469         *  text arguments on nodes.  Fill labels map with pointers to nodes
470         *  in tree matched against nodes in pattern with labels.
471         *  </summary>
472         */
473        protected virtual bool ParseCore( object t1, TreePattern tpattern, IDictionary<string, object> labels )
474        {
475            // make sure both are non-null
476            if ( t1 == null || tpattern == null )
477            {
478                return false;
479            }
480            // check roots (wildcard matches anything)
481            if ( tpattern.GetType() != typeof( WildcardTreePattern ) )
482            {
483                if ( adaptor.GetType( t1 ) != tpattern.Type )
484                {
485                    return false;
486                }
487                // if pattern has text, check node text
488                if ( tpattern.hasTextArg && !adaptor.GetText( t1 ).Equals( tpattern.Text ) )
489                {
490                    return false;
491                }
492            }
493            if ( tpattern.label != null && labels != null )
494            {
495                // map label in pattern to node in t1
496                labels[tpattern.label] = t1;
497            }
498            // check children
499            int n1 = adaptor.GetChildCount( t1 );
500            int n2 = tpattern.ChildCount;
501            if ( n1 != n2 )
502            {
503                return false;
504            }
505            for ( int i = 0; i < n1; i++ )
506            {
507                object child1 = adaptor.GetChild( t1, i );
508                TreePattern child2 = (TreePattern)tpattern.GetChild( i );
509                if ( !ParseCore( child1, child2, labels ) )
510                {
511                    return false;
512                }
513            }
514            return true;
515        }
516
517        /** <summary>
518         *  Create a tree or node from the indicated tree pattern that closely
519         *  follows ANTLR tree grammar tree element syntax:
520         *
521         *      (root child1 ... child2).
522         *  </summary>
523         *
524         *  <remarks>
525         *  You can also just pass in a node: ID
526         *
527         *  Any node can have a text argument: ID[foo]
528         *  (notice there are no quotes around foo--it's clear it's a string).
529         *
530         *  nil is a special name meaning "give me a nil node".  Useful for
531         *  making lists: (nil A B C) is a list of A B C.
532         *  </remarks>
533         */
534        public virtual object Create( string pattern )
535        {
536            TreePatternLexer tokenizer = new TreePatternLexer( pattern );
537            TreePatternParser parser = new TreePatternParser( tokenizer, this, adaptor );
538            object t = parser.Pattern();
539            return t;
540        }
541
542        /** <summary>
543         *  Compare t1 and t2; return true if token types/text, structure match exactly.
544         *  The trees are examined in their entirety so that (A B) does not match
545         *  (A B C) nor (A (B C)).
546         *  </summary>
547         *
548         *  <remarks>
549         *  TODO: allow them to pass in a comparator
550         *  TODO: have a version that is nonstatic so it can use instance adaptor
551         *
552         *  I cannot rely on the tree node's equals() implementation as I make
553         *  no constraints at all on the node types nor interface etc...
554         *  </remarks>
555         */
556        public static bool Equals( object t1, object t2, ITreeAdaptor adaptor )
557        {
558            return EqualsCore( t1, t2, adaptor );
559        }
560
561        /** <summary>
562         *  Compare type, structure, and text of two trees, assuming adaptor in
563         *  this instance of a TreeWizard.
564         *  </summary>
565         */
566        public new bool Equals( object t1, object t2 )
567        {
568            return EqualsCore( t1, t2, adaptor );
569        }
570
571        protected static bool EqualsCore( object t1, object t2, ITreeAdaptor adaptor )
572        {
573            // make sure both are non-null
574            if ( t1 == null || t2 == null )
575            {
576                return false;
577            }
578            // check roots
579            if ( adaptor.GetType( t1 ) != adaptor.GetType( t2 ) )
580            {
581                return false;
582            }
583            if ( !adaptor.GetText( t1 ).Equals( adaptor.GetText( t2 ) ) )
584            {
585                return false;
586            }
587            // check children
588            int n1 = adaptor.GetChildCount( t1 );
589            int n2 = adaptor.GetChildCount( t2 );
590            if ( n1 != n2 )
591            {
592                return false;
593            }
594            for ( int i = 0; i < n1; i++ )
595            {
596                object child1 = adaptor.GetChild( t1, i );
597                object child2 = adaptor.GetChild( t2, i );
598                if ( !EqualsCore( child1, child2, adaptor ) )
599                {
600                    return false;
601                }
602            }
603            return true;
604        }
605
606#if BUILD_INDEXES
607        // TODO: next stuff taken from CommonTreeNodeStream
608
609        /** <summary>
610         *  Given a node, add this to the reverse index tokenTypeToStreamIndexesMap.
611         *  You can override this method to alter how indexing occurs.  The
612         *  default is to create a
613         *
614         *    Map&lt;Integer token type,ArrayList&lt;Integer stream index&gt;&gt;
615         *  </summary>
616         *
617         *  <remarks>
618         *  This data structure allows you to find all nodes with type INT in order.
619         *
620         *  If you really need to find a node of type, say, FUNC quickly then perhaps
621         *
622         *    Map&lt;Integertoken type,Map&lt;Object tree node,Integer stream index&gt;&gt;
623         *
624         *  would be better for you.  The interior maps map a tree node to
625         *  the index so you don't have to search linearly for a specific node.
626         *
627         *  If you change this method, you will likely need to change
628         *  getNodeIndex(), which extracts information.
629         *  </remarks>
630         */
631        protected void fillReverseIndex( object node, int streamIndex )
632        {
633            //System.out.println("revIndex "+node+"@"+streamIndex);
634            if ( tokenTypesToReverseIndex == null )
635            {
636                return; // no indexing if this is empty (nothing of interest)
637            }
638            if ( tokenTypeToStreamIndexesMap == null )
639            {
640                tokenTypeToStreamIndexesMap = new Dictionary<int, IList<int>>(); // first indexing op
641            }
642            int tokenType = adaptor.getType( node );
643            if ( !( tokenTypesToReverseIndex == INDEX_ALL ||
644                   tokenTypesToReverseIndex.Contains( tokenType ) ) )
645            {
646                return; // tokenType not of interest
647            }
648            IList<int> indexes;
649
650            if ( !tokenTypeToStreamIndexesMap.TryGetValue( tokenType, out indexes ) || indexes == null )
651            {
652                indexes = new List<int>(); // no list yet for this token type
653                indexes.Add( streamIndex ); // not there yet, add
654                tokenTypeToStreamIndexesMap[tokenType] = indexes;
655            }
656            else
657            {
658                if ( !indexes.Contains( streamIndex ) )
659                {
660                    indexes.Add( streamIndex ); // not there yet, add
661                }
662            }
663        }
664
665        /** <summary>
666         *  Track the indicated token type in the reverse index.  Call this
667         *  repeatedly for each type or use variant with Set argument to
668         *  set all at once.
669         *  </summary>
670         *
671         *  <param name="tokenType" />
672         */
673        public void reverseIndex( int tokenType )
674        {
675            if ( tokenTypesToReverseIndex == null )
676            {
677                tokenTypesToReverseIndex = new HashSet<int>();
678            }
679            else if ( tokenTypesToReverseIndex == INDEX_ALL )
680            {
681                return;
682            }
683            tokenTypesToReverseIndex.add( tokenType );
684        }
685
686        /** <summary>
687         *  Track the indicated token types in the reverse index. Set
688         *  to INDEX_ALL to track all token types.
689         *  </summary>
690         */
691        public void reverseIndex( HashSet<int> tokenTypes )
692        {
693            tokenTypesToReverseIndex = tokenTypes;
694        }
695
696        /** <summary>
697         *  Given a node pointer, return its index into the node stream.
698         *  This is not its Token stream index.  If there is no reverse map
699         *  from node to stream index or the map does not contain entries
700         *  for node's token type, a linear search of entire stream is used.
701         *  </summary>
702         *
703         *  <remarks>
704         *  Return -1 if exact node pointer not in stream.
705         *  </remarks>
706         */
707        public int getNodeIndex( object node )
708        {
709            //System.out.println("get "+node);
710            if ( tokenTypeToStreamIndexesMap == null )
711            {
712                return getNodeIndexLinearly( node );
713            }
714            int tokenType = adaptor.getType( node );
715            IList<int> indexes;
716            if ( !tokenTypeToStreamIndexesMap.TryGetValue( tokenType, out indexes ) || indexes == null )
717            {
718                //System.out.println("found linearly; stream index = "+getNodeIndexLinearly(node));
719                return getNodeIndexLinearly( node );
720            }
721            for ( int i = 0; i < indexes.size(); i++ )
722            {
723                int streamIndex = indexes[i];
724                object n = get( streamIndex );
725                if ( n == node )
726                {
727                    //System.out.println("found in index; stream index = "+streamIndexI);
728                    return streamIndex; // found it!
729                }
730            }
731            return -1;
732        }
733#endif
734
735    }
736}
737