1/* intprops.h -- properties of integer types
2
3   Copyright (C) 2001-2005, 2009-2012 Free Software Foundation, Inc.
4
5   This program is free software: you can redistribute it and/or modify
6   it under the terms of the GNU General Public License as published by
7   the Free Software Foundation; either version 3 of the License, or
8   (at your option) any later version.
9
10   This program is distributed in the hope that it will be useful,
11   but WITHOUT ANY WARRANTY; without even the implied warranty of
12   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13   GNU General Public License for more details.
14
15   You should have received a copy of the GNU General Public License
16   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
17
18/* Written by Paul Eggert.  */
19
20#ifndef _GL_INTPROPS_H
21#define _GL_INTPROPS_H
22
23#include <limits.h>
24
25/* Return an integer value, converted to the same type as the integer
26   expression E after integer type promotion.  V is the unconverted value.  */
27#define _GL_INT_CONVERT(e, v) (0 * (e) + (v))
28
29/* Act like _GL_INT_CONVERT (E, -V) but work around a bug in IRIX 6.5 cc; see
30   <http://lists.gnu.org/archive/html/bug-gnulib/2011-05/msg00406.html>.  */
31#define _GL_INT_NEGATE_CONVERT(e, v) (0 * (e) - (v))
32
33/* The extra casts in the following macros work around compiler bugs,
34   e.g., in Cray C 5.0.3.0.  */
35
36/* True if the arithmetic type T is an integer type.  bool counts as
37   an integer.  */
38#define TYPE_IS_INTEGER(t) ((t) 1.5 == 1)
39
40/* True if negative values of the signed integer type T use two's
41   complement, ones' complement, or signed magnitude representation,
42   respectively.  Much GNU code assumes two's complement, but some
43   people like to be portable to all possible C hosts.  */
44#define TYPE_TWOS_COMPLEMENT(t) ((t) ~ (t) 0 == (t) -1)
45#define TYPE_ONES_COMPLEMENT(t) ((t) ~ (t) 0 == 0)
46#define TYPE_SIGNED_MAGNITUDE(t) ((t) ~ (t) 0 < (t) -1)
47
48/* True if the signed integer expression E uses two's complement.  */
49#define _GL_INT_TWOS_COMPLEMENT(e) (~ _GL_INT_CONVERT (e, 0) == -1)
50
51/* True if the arithmetic type T is signed.  */
52#define TYPE_SIGNED(t) (! ((t) 0 < (t) -1))
53
54/* Return 1 if the integer expression E, after integer promotion, has
55   a signed type.  */
56#define _GL_INT_SIGNED(e) (_GL_INT_NEGATE_CONVERT (e, 1) < 0)
57
58
59/* Minimum and maximum values for integer types and expressions.  These
60   macros have undefined behavior if T is signed and has padding bits.
61   If this is a problem for you, please let us know how to fix it for
62   your host.  */
63
64/* The maximum and minimum values for the integer type T.  */
65#define TYPE_MINIMUM(t)                                                 \
66  ((t) (! TYPE_SIGNED (t)                                               \
67        ? (t) 0                                                         \
68        : TYPE_SIGNED_MAGNITUDE (t)                                     \
69        ? ~ (t) 0                                                       \
70        : ~ TYPE_MAXIMUM (t)))
71#define TYPE_MAXIMUM(t)                                                 \
72  ((t) (! TYPE_SIGNED (t)                                               \
73        ? (t) -1                                                        \
74        : ((((t) 1 << (sizeof (t) * CHAR_BIT - 2)) - 1) * 2 + 1)))
75
76/* The maximum and minimum values for the type of the expression E,
77   after integer promotion.  E should not have side effects.  */
78#define _GL_INT_MINIMUM(e)                                              \
79  (_GL_INT_SIGNED (e)                                                   \
80   ? - _GL_INT_TWOS_COMPLEMENT (e) - _GL_SIGNED_INT_MAXIMUM (e)         \
81   : _GL_INT_CONVERT (e, 0))
82#define _GL_INT_MAXIMUM(e)                                              \
83  (_GL_INT_SIGNED (e)                                                   \
84   ? _GL_SIGNED_INT_MAXIMUM (e)                                         \
85   : _GL_INT_NEGATE_CONVERT (e, 1))
86#define _GL_SIGNED_INT_MAXIMUM(e)                                       \
87  (((_GL_INT_CONVERT (e, 1) << (sizeof ((e) + 0) * CHAR_BIT - 2)) - 1) * 2 + 1)
88
89
90/* Return 1 if the __typeof__ keyword works.  This could be done by
91   'configure', but for now it's easier to do it by hand.  */
92#if 2 <= __GNUC__ || 0x5110 <= __SUNPRO_C
93# define _GL_HAVE___TYPEOF__ 1
94#else
95# define _GL_HAVE___TYPEOF__ 0
96#endif
97
98/* Return 1 if the integer type or expression T might be signed.  Return 0
99   if it is definitely unsigned.  This macro does not evaluate its argument,
100   and expands to an integer constant expression.  */
101#if _GL_HAVE___TYPEOF__
102# define _GL_SIGNED_TYPE_OR_EXPR(t) TYPE_SIGNED (__typeof__ (t))
103#else
104# define _GL_SIGNED_TYPE_OR_EXPR(t) 1
105#endif
106
107/* Bound on length of the string representing an unsigned integer
108   value representable in B bits.  log10 (2.0) < 146/485.  The
109   smallest value of B where this bound is not tight is 2621.  */
110#define INT_BITS_STRLEN_BOUND(b) (((b) * 146 + 484) / 485)
111
112/* Bound on length of the string representing an integer type or expression T.
113   Subtract 1 for the sign bit if T is signed, and then add 1 more for
114   a minus sign if needed.
115
116   Because _GL_SIGNED_TYPE_OR_EXPR sometimes returns 0 when its argument is
117   signed, this macro may overestimate the true bound by one byte when
118   applied to unsigned types of size 2, 4, 16, ... bytes.  */
119#define INT_STRLEN_BOUND(t)                                     \
120  (INT_BITS_STRLEN_BOUND (sizeof (t) * CHAR_BIT                 \
121                          - _GL_SIGNED_TYPE_OR_EXPR (t))        \
122   + _GL_SIGNED_TYPE_OR_EXPR (t))
123
124/* Bound on buffer size needed to represent an integer type or expression T,
125   including the terminating null.  */
126#define INT_BUFSIZE_BOUND(t) (INT_STRLEN_BOUND (t) + 1)
127
128
129/* Range overflow checks.
130
131   The INT_<op>_RANGE_OVERFLOW macros return 1 if the corresponding C
132   operators might not yield numerically correct answers due to
133   arithmetic overflow.  They do not rely on undefined or
134   implementation-defined behavior.  Their implementations are simple
135   and straightforward, but they are a bit harder to use than the
136   INT_<op>_OVERFLOW macros described below.
137
138   Example usage:
139
140     long int i = ...;
141     long int j = ...;
142     if (INT_MULTIPLY_RANGE_OVERFLOW (i, j, LONG_MIN, LONG_MAX))
143       printf ("multiply would overflow");
144     else
145       printf ("product is %ld", i * j);
146
147   Restrictions on *_RANGE_OVERFLOW macros:
148
149   These macros do not check for all possible numerical problems or
150   undefined or unspecified behavior: they do not check for division
151   by zero, for bad shift counts, or for shifting negative numbers.
152
153   These macros may evaluate their arguments zero or multiple times,
154   so the arguments should not have side effects.  The arithmetic
155   arguments (including the MIN and MAX arguments) must be of the same
156   integer type after the usual arithmetic conversions, and the type
157   must have minimum value MIN and maximum MAX.  Unsigned types should
158   use a zero MIN of the proper type.
159
160   These macros are tuned for constant MIN and MAX.  For commutative
161   operations such as A + B, they are also tuned for constant B.  */
162
163/* Return 1 if A + B would overflow in [MIN,MAX] arithmetic.
164   See above for restrictions.  */
165#define INT_ADD_RANGE_OVERFLOW(a, b, min, max)          \
166  ((b) < 0                                              \
167   ? (a) < (min) - (b)                                  \
168   : (max) - (b) < (a))
169
170/* Return 1 if A - B would overflow in [MIN,MAX] arithmetic.
171   See above for restrictions.  */
172#define INT_SUBTRACT_RANGE_OVERFLOW(a, b, min, max)     \
173  ((b) < 0                                              \
174   ? (max) + (b) < (a)                                  \
175   : (a) < (min) + (b))
176
177/* Return 1 if - A would overflow in [MIN,MAX] arithmetic.
178   See above for restrictions.  */
179#define INT_NEGATE_RANGE_OVERFLOW(a, min, max)          \
180  ((min) < 0                                            \
181   ? (a) < - (max)                                      \
182   : 0 < (a))
183
184/* Return 1 if A * B would overflow in [MIN,MAX] arithmetic.
185   See above for restrictions.  Avoid && and || as they tickle
186   bugs in Sun C 5.11 2010/08/13 and other compilers; see
187   <http://lists.gnu.org/archive/html/bug-gnulib/2011-05/msg00401.html>.  */
188#define INT_MULTIPLY_RANGE_OVERFLOW(a, b, min, max)     \
189  ((b) < 0                                              \
190   ? ((a) < 0                                           \
191      ? (a) < (max) / (b)                               \
192      : (b) == -1                                       \
193      ? 0                                               \
194      : (min) / (b) < (a))                              \
195   : (b) == 0                                           \
196   ? 0                                                  \
197   : ((a) < 0                                           \
198      ? (a) < (min) / (b)                               \
199      : (max) / (b) < (a)))
200
201/* Return 1 if A / B would overflow in [MIN,MAX] arithmetic.
202   See above for restrictions.  Do not check for division by zero.  */
203#define INT_DIVIDE_RANGE_OVERFLOW(a, b, min, max)       \
204  ((min) < 0 && (b) == -1 && (a) < - (max))
205
206/* Return 1 if A % B would overflow in [MIN,MAX] arithmetic.
207   See above for restrictions.  Do not check for division by zero.
208   Mathematically, % should never overflow, but on x86-like hosts
209   INT_MIN % -1 traps, and the C standard permits this, so treat this
210   as an overflow too.  */
211#define INT_REMAINDER_RANGE_OVERFLOW(a, b, min, max)    \
212  INT_DIVIDE_RANGE_OVERFLOW (a, b, min, max)
213
214/* Return 1 if A << B would overflow in [MIN,MAX] arithmetic.
215   See above for restrictions.  Here, MIN and MAX are for A only, and B need
216   not be of the same type as the other arguments.  The C standard says that
217   behavior is undefined for shifts unless 0 <= B < wordwidth, and that when
218   A is negative then A << B has undefined behavior and A >> B has
219   implementation-defined behavior, but do not check these other
220   restrictions.  */
221#define INT_LEFT_SHIFT_RANGE_OVERFLOW(a, b, min, max)   \
222  ((a) < 0                                              \
223   ? (a) < (min) >> (b)                                 \
224   : (max) >> (b) < (a))
225
226
227/* The _GL*_OVERFLOW macros have the same restrictions as the
228   *_RANGE_OVERFLOW macros, except that they do not assume that operands
229   (e.g., A and B) have the same type as MIN and MAX.  Instead, they assume
230   that the result (e.g., A + B) has that type.  */
231#define _GL_ADD_OVERFLOW(a, b, min, max)                                \
232  ((min) < 0 ? INT_ADD_RANGE_OVERFLOW (a, b, min, max)                  \
233   : (a) < 0 ? (b) <= (a) + (b)                                         \
234   : (b) < 0 ? (a) <= (a) + (b)                                         \
235   : (a) + (b) < (b))
236#define _GL_SUBTRACT_OVERFLOW(a, b, min, max)                           \
237  ((min) < 0 ? INT_SUBTRACT_RANGE_OVERFLOW (a, b, min, max)             \
238   : (a) < 0 ? 1                                                        \
239   : (b) < 0 ? (a) - (b) <= (a)                                         \
240   : (a) < (b))
241#define _GL_MULTIPLY_OVERFLOW(a, b, min, max)                           \
242  (((min) == 0 && (((a) < 0 && 0 < (b)) || ((b) < 0 && 0 < (a))))       \
243   || INT_MULTIPLY_RANGE_OVERFLOW (a, b, min, max))
244#define _GL_DIVIDE_OVERFLOW(a, b, min, max)                             \
245  ((min) < 0 ? (b) == _GL_INT_NEGATE_CONVERT (min, 1) && (a) < - (max)  \
246   : (a) < 0 ? (b) <= (a) + (b) - 1                                     \
247   : (b) < 0 && (a) + (b) <= (a))
248#define _GL_REMAINDER_OVERFLOW(a, b, min, max)                          \
249  ((min) < 0 ? (b) == _GL_INT_NEGATE_CONVERT (min, 1) && (a) < - (max)  \
250   : (a) < 0 ? (a) % (b) != ((max) - (b) + 1) % (b)                     \
251   : (b) < 0 && ! _GL_UNSIGNED_NEG_MULTIPLE (a, b, max))
252
253/* Return a nonzero value if A is a mathematical multiple of B, where
254   A is unsigned, B is negative, and MAX is the maximum value of A's
255   type.  A's type must be the same as (A % B)'s type.  Normally (A %
256   -B == 0) suffices, but things get tricky if -B would overflow.  */
257#define _GL_UNSIGNED_NEG_MULTIPLE(a, b, max)                            \
258  (((b) < -_GL_SIGNED_INT_MAXIMUM (b)                                   \
259    ? (_GL_SIGNED_INT_MAXIMUM (b) == (max)                              \
260       ? (a)                                                            \
261       : (a) % (_GL_INT_CONVERT (a, _GL_SIGNED_INT_MAXIMUM (b)) + 1))   \
262    : (a) % - (b))                                                      \
263   == 0)
264
265
266/* Integer overflow checks.
267
268   The INT_<op>_OVERFLOW macros return 1 if the corresponding C operators
269   might not yield numerically correct answers due to arithmetic overflow.
270   They work correctly on all known practical hosts, and do not rely
271   on undefined behavior due to signed arithmetic overflow.
272
273   Example usage:
274
275     long int i = ...;
276     long int j = ...;
277     if (INT_MULTIPLY_OVERFLOW (i, j))
278       printf ("multiply would overflow");
279     else
280       printf ("product is %ld", i * j);
281
282   These macros do not check for all possible numerical problems or
283   undefined or unspecified behavior: they do not check for division
284   by zero, for bad shift counts, or for shifting negative numbers.
285
286   These macros may evaluate their arguments zero or multiple times, so the
287   arguments should not have side effects.
288
289   These macros are tuned for their last argument being a constant.
290
291   Return 1 if the integer expressions A * B, A - B, -A, A * B, A / B,
292   A % B, and A << B would overflow, respectively.  */
293
294#define INT_ADD_OVERFLOW(a, b) \
295  _GL_BINARY_OP_OVERFLOW (a, b, _GL_ADD_OVERFLOW)
296#define INT_SUBTRACT_OVERFLOW(a, b) \
297  _GL_BINARY_OP_OVERFLOW (a, b, _GL_SUBTRACT_OVERFLOW)
298#define INT_NEGATE_OVERFLOW(a) \
299  INT_NEGATE_RANGE_OVERFLOW (a, _GL_INT_MINIMUM (a), _GL_INT_MAXIMUM (a))
300#define INT_MULTIPLY_OVERFLOW(a, b) \
301  _GL_BINARY_OP_OVERFLOW (a, b, _GL_MULTIPLY_OVERFLOW)
302#define INT_DIVIDE_OVERFLOW(a, b) \
303  _GL_BINARY_OP_OVERFLOW (a, b, _GL_DIVIDE_OVERFLOW)
304#define INT_REMAINDER_OVERFLOW(a, b) \
305  _GL_BINARY_OP_OVERFLOW (a, b, _GL_REMAINDER_OVERFLOW)
306#define INT_LEFT_SHIFT_OVERFLOW(a, b) \
307  INT_LEFT_SHIFT_RANGE_OVERFLOW (a, b, \
308                                 _GL_INT_MINIMUM (a), _GL_INT_MAXIMUM (a))
309
310/* Return 1 if the expression A <op> B would overflow,
311   where OP_RESULT_OVERFLOW (A, B, MIN, MAX) does the actual test,
312   assuming MIN and MAX are the minimum and maximum for the result type.
313   Arguments should be free of side effects.  */
314#define _GL_BINARY_OP_OVERFLOW(a, b, op_result_overflow)        \
315  op_result_overflow (a, b,                                     \
316                      _GL_INT_MINIMUM (0 * (b) + (a)),          \
317                      _GL_INT_MAXIMUM (0 * (b) + (a)))
318
319#endif /* _GL_INTPROPS_H */
320