1// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9//   this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11//   this list of conditions and the following disclaimer in the documentation
12//   and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14//   used to endorse or promote products derived from this software without
15//   specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30//
31// The National Institute of Standards and Technology has released a
32// set of problems to test non-linear least squares solvers.
33//
34// More information about the background on these problems and
35// suggested evaluation methodology can be found at:
36//
37//   http://www.itl.nist.gov/div898/strd/nls/nls_info.shtml
38//
39// The problem data themselves can be found at
40//
41//   http://www.itl.nist.gov/div898/strd/nls/nls_main.shtml
42//
43// The problems are divided into three levels of difficulty, Easy,
44// Medium and Hard. For each problem there are two starting guesses,
45// the first one far away from the global minimum and the second
46// closer to it.
47//
48// A problem is considered successfully solved, if every components of
49// the solution matches the globally optimal solution in at least 4
50// digits or more.
51//
52// This dataset was used for an evaluation of Non-linear least squares
53// solvers:
54//
55// P. F. Mondragon & B. Borchers, A Comparison of Nonlinear Regression
56// Codes, Journal of Modern Applied Statistical Methods, 4(1):343-351,
57// 2005.
58//
59// The results from Mondragon & Borchers can be summarized as
60//               Excel  Gnuplot  GaussFit  HBN  MinPack
61// Average LRE     2.3      4.3       4.0  6.8      4.4
62//      Winner       1        5        12   29       12
63//
64// Where the row Winner counts, the number of problems for which the
65// solver had the highest LRE.
66
67// In this file, we implement the same evaluation methodology using
68// Ceres. Currently using Levenberg-Marquard with DENSE_QR, we get
69//
70//               Excel  Gnuplot  GaussFit  HBN  MinPack  Ceres
71// Average LRE     2.3      4.3       4.0  6.8      4.4    9.4
72//      Winner       0        0         5   11        2     41
73
74#include <iostream>
75#include <iterator>
76#include <fstream>
77#include "ceres/ceres.h"
78#include "gflags/gflags.h"
79#include "glog/logging.h"
80#include "Eigen/Core"
81
82DEFINE_string(nist_data_dir, "", "Directory containing the NIST non-linear"
83              "regression examples");
84DEFINE_string(minimizer, "trust_region",
85              "Minimizer type to use, choices are: line_search & trust_region");
86DEFINE_string(trust_region_strategy, "levenberg_marquardt",
87              "Options are: levenberg_marquardt, dogleg");
88DEFINE_string(dogleg, "traditional_dogleg",
89              "Options are: traditional_dogleg, subspace_dogleg");
90DEFINE_string(linear_solver, "dense_qr", "Options are: "
91              "sparse_cholesky, dense_qr, dense_normal_cholesky and"
92              "cgnr");
93DEFINE_string(preconditioner, "jacobi", "Options are: "
94              "identity, jacobi");
95DEFINE_string(line_search, "armijo",
96              "Line search algorithm to use, choices are: armijo and wolfe.");
97DEFINE_string(line_search_direction, "lbfgs",
98              "Line search direction algorithm to use, choices: lbfgs, bfgs");
99DEFINE_int32(max_line_search_iterations, 20,
100             "Maximum number of iterations for each line search.");
101DEFINE_int32(max_line_search_restarts, 10,
102             "Maximum number of restarts of line search direction algorithm.");
103DEFINE_string(line_search_interpolation, "cubic",
104              "Degree of polynomial aproximation in line search, "
105              "choices are: bisection, quadratic & cubic.");
106DEFINE_int32(lbfgs_rank, 20,
107             "Rank of L-BFGS inverse Hessian approximation in line search.");
108DEFINE_bool(approximate_eigenvalue_bfgs_scaling, false,
109            "Use approximate eigenvalue scaling in (L)BFGS line search.");
110DEFINE_double(sufficient_decrease, 1.0e-4,
111              "Line search Armijo sufficient (function) decrease factor.");
112DEFINE_double(sufficient_curvature_decrease, 0.9,
113              "Line search Wolfe sufficient curvature decrease factor.");
114DEFINE_int32(num_iterations, 10000, "Number of iterations");
115DEFINE_bool(nonmonotonic_steps, false, "Trust region algorithm can use"
116            " nonmonotic steps");
117DEFINE_double(initial_trust_region_radius, 1e4, "Initial trust region radius");
118
119namespace ceres {
120namespace examples {
121
122using Eigen::Dynamic;
123using Eigen::RowMajor;
124typedef Eigen::Matrix<double, Dynamic, 1> Vector;
125typedef Eigen::Matrix<double, Dynamic, Dynamic, RowMajor> Matrix;
126
127void SplitStringUsingChar(const string& full,
128                          const char delim,
129                          vector<string>* result) {
130  back_insert_iterator< vector<string> > it(*result);
131
132  const char* p = full.data();
133  const char* end = p + full.size();
134  while (p != end) {
135    if (*p == delim) {
136      ++p;
137    } else {
138      const char* start = p;
139      while (++p != end && *p != delim) {
140        // Skip to the next occurence of the delimiter.
141      }
142      *it++ = string(start, p - start);
143    }
144  }
145}
146
147bool GetAndSplitLine(std::ifstream& ifs, std::vector<std::string>* pieces) {
148  pieces->clear();
149  char buf[256];
150  ifs.getline(buf, 256);
151  SplitStringUsingChar(std::string(buf), ' ', pieces);
152  return true;
153}
154
155void SkipLines(std::ifstream& ifs, int num_lines) {
156  char buf[256];
157  for (int i = 0; i < num_lines; ++i) {
158    ifs.getline(buf, 256);
159  }
160}
161
162class NISTProblem {
163 public:
164  explicit NISTProblem(const std::string& filename) {
165    std::ifstream ifs(filename.c_str(), std::ifstream::in);
166
167    std::vector<std::string> pieces;
168    SkipLines(ifs, 24);
169    GetAndSplitLine(ifs, &pieces);
170    const int kNumResponses = std::atoi(pieces[1].c_str());
171
172    GetAndSplitLine(ifs, &pieces);
173    const int kNumPredictors = std::atoi(pieces[0].c_str());
174
175    GetAndSplitLine(ifs, &pieces);
176    const int kNumObservations = std::atoi(pieces[0].c_str());
177
178    SkipLines(ifs, 4);
179    GetAndSplitLine(ifs, &pieces);
180    const int kNumParameters = std::atoi(pieces[0].c_str());
181    SkipLines(ifs, 8);
182
183    // Get the first line of initial and final parameter values to
184    // determine the number of tries.
185    GetAndSplitLine(ifs, &pieces);
186    const int kNumTries = pieces.size() - 4;
187
188    predictor_.resize(kNumObservations, kNumPredictors);
189    response_.resize(kNumObservations, kNumResponses);
190    initial_parameters_.resize(kNumTries, kNumParameters);
191    final_parameters_.resize(1, kNumParameters);
192
193    // Parse the line for parameter b1.
194    int parameter_id = 0;
195    for (int i = 0; i < kNumTries; ++i) {
196      initial_parameters_(i, parameter_id) = std::atof(pieces[i + 2].c_str());
197    }
198    final_parameters_(0, parameter_id) = std::atof(pieces[2 + kNumTries].c_str());
199
200    // Parse the remaining parameter lines.
201    for (int parameter_id = 1; parameter_id < kNumParameters; ++parameter_id) {
202     GetAndSplitLine(ifs, &pieces);
203     // b2, b3, ....
204     for (int i = 0; i < kNumTries; ++i) {
205       initial_parameters_(i, parameter_id) = std::atof(pieces[i + 2].c_str());
206     }
207     final_parameters_(0, parameter_id) = std::atof(pieces[2 + kNumTries].c_str());
208    }
209
210    // Certfied cost
211    SkipLines(ifs, 1);
212    GetAndSplitLine(ifs, &pieces);
213    certified_cost_ = std::atof(pieces[4].c_str()) / 2.0;
214
215    // Read the observations.
216    SkipLines(ifs, 18 - kNumParameters);
217    for (int i = 0; i < kNumObservations; ++i) {
218      GetAndSplitLine(ifs, &pieces);
219      // Response.
220      for (int j = 0; j < kNumResponses; ++j) {
221        response_(i, j) =  std::atof(pieces[j].c_str());
222      }
223
224      // Predictor variables.
225      for (int j = 0; j < kNumPredictors; ++j) {
226        predictor_(i, j) =  std::atof(pieces[j + kNumResponses].c_str());
227      }
228    }
229  }
230
231  Matrix initial_parameters(int start) const { return initial_parameters_.row(start); }
232  Matrix final_parameters() const  { return final_parameters_; }
233  Matrix predictor()        const { return predictor_;         }
234  Matrix response()         const { return response_;          }
235  int predictor_size()      const { return predictor_.cols();  }
236  int num_observations()    const { return predictor_.rows();  }
237  int response_size()       const { return response_.cols();   }
238  int num_parameters()      const { return initial_parameters_.cols(); }
239  int num_starts()          const { return initial_parameters_.rows(); }
240  double certified_cost()   const { return certified_cost_; }
241
242 private:
243  Matrix predictor_;
244  Matrix response_;
245  Matrix initial_parameters_;
246  Matrix final_parameters_;
247  double certified_cost_;
248};
249
250#define NIST_BEGIN(CostFunctionName) \
251  struct CostFunctionName { \
252    CostFunctionName(const double* const x, \
253                     const double* const y) \
254        : x_(*x), y_(*y) {} \
255    double x_; \
256    double y_; \
257    template <typename T> \
258    bool operator()(const T* const b, T* residual) const { \
259    const T y(y_); \
260    const T x(x_); \
261      residual[0] = y - (
262
263#define NIST_END ); return true; }};
264
265// y = b1 * (b2+x)**(-1/b3)  +  e
266NIST_BEGIN(Bennet5)
267  b[0] * pow(b[1] + x, T(-1.0) / b[2])
268NIST_END
269
270// y = b1*(1-exp[-b2*x])  +  e
271NIST_BEGIN(BoxBOD)
272  b[0] * (T(1.0) - exp(-b[1] * x))
273NIST_END
274
275// y = exp[-b1*x]/(b2+b3*x)  +  e
276NIST_BEGIN(Chwirut)
277  exp(-b[0] * x) / (b[1] + b[2] * x)
278NIST_END
279
280// y  = b1*x**b2  +  e
281NIST_BEGIN(DanWood)
282  b[0] * pow(x, b[1])
283NIST_END
284
285// y = b1*exp( -b2*x ) + b3*exp( -(x-b4)**2 / b5**2 )
286//     + b6*exp( -(x-b7)**2 / b8**2 ) + e
287NIST_BEGIN(Gauss)
288  b[0] * exp(-b[1] * x) +
289  b[2] * exp(-pow((x - b[3])/b[4], 2)) +
290  b[5] * exp(-pow((x - b[6])/b[7],2))
291NIST_END
292
293// y = b1*exp(-b2*x) + b3*exp(-b4*x) + b5*exp(-b6*x)  +  e
294NIST_BEGIN(Lanczos)
295  b[0] * exp(-b[1] * x) + b[2] * exp(-b[3] * x) + b[4] * exp(-b[5] * x)
296NIST_END
297
298// y = (b1+b2*x+b3*x**2+b4*x**3) /
299//     (1+b5*x+b6*x**2+b7*x**3)  +  e
300NIST_BEGIN(Hahn1)
301  (b[0] + b[1] * x + b[2] * x * x + b[3] * x * x * x) /
302  (T(1.0) + b[4] * x + b[5] * x * x + b[6] * x * x * x)
303NIST_END
304
305// y = (b1 + b2*x + b3*x**2) /
306//    (1 + b4*x + b5*x**2)  +  e
307NIST_BEGIN(Kirby2)
308  (b[0] + b[1] * x + b[2] * x * x) /
309  (T(1.0) + b[3] * x + b[4] * x * x)
310NIST_END
311
312// y = b1*(x**2+x*b2) / (x**2+x*b3+b4)  +  e
313NIST_BEGIN(MGH09)
314  b[0] * (x * x + x * b[1]) / (x * x + x * b[2] + b[3])
315NIST_END
316
317// y = b1 * exp[b2/(x+b3)]  +  e
318NIST_BEGIN(MGH10)
319  b[0] * exp(b[1] / (x + b[2]))
320NIST_END
321
322// y = b1 + b2*exp[-x*b4] + b3*exp[-x*b5]
323NIST_BEGIN(MGH17)
324  b[0] + b[1] * exp(-x * b[3]) + b[2] * exp(-x * b[4])
325NIST_END
326
327// y = b1*(1-exp[-b2*x])  +  e
328NIST_BEGIN(Misra1a)
329  b[0] * (T(1.0) - exp(-b[1] * x))
330NIST_END
331
332// y = b1 * (1-(1+b2*x/2)**(-2))  +  e
333NIST_BEGIN(Misra1b)
334  b[0] * (T(1.0) - T(1.0)/ ((T(1.0) + b[1] * x / 2.0) * (T(1.0) + b[1] * x / 2.0)))
335NIST_END
336
337// y = b1 * (1-(1+2*b2*x)**(-.5))  +  e
338NIST_BEGIN(Misra1c)
339  b[0] * (T(1.0) - pow(T(1.0) + T(2.0) * b[1] * x, -0.5))
340NIST_END
341
342// y = b1*b2*x*((1+b2*x)**(-1))  +  e
343NIST_BEGIN(Misra1d)
344  b[0] * b[1] * x / (T(1.0) + b[1] * x)
345NIST_END
346
347const double kPi = 3.141592653589793238462643383279;
348// pi = 3.141592653589793238462643383279E0
349// y =  b1 - b2*x - arctan[b3/(x-b4)]/pi  +  e
350NIST_BEGIN(Roszman1)
351  b[0] - b[1] * x - atan2(b[2], (x - b[3]))/T(kPi)
352NIST_END
353
354// y = b1 / (1+exp[b2-b3*x])  +  e
355NIST_BEGIN(Rat42)
356  b[0] / (T(1.0) + exp(b[1] - b[2] * x))
357NIST_END
358
359// y = b1 / ((1+exp[b2-b3*x])**(1/b4))  +  e
360NIST_BEGIN(Rat43)
361  b[0] / pow(T(1.0) + exp(b[1] - b[2] * x), T(1.0) / b[3])
362NIST_END
363
364// y = (b1 + b2*x + b3*x**2 + b4*x**3) /
365//    (1 + b5*x + b6*x**2 + b7*x**3)  +  e
366NIST_BEGIN(Thurber)
367  (b[0] + b[1] * x + b[2] * x * x  + b[3] * x * x * x) /
368  (T(1.0) + b[4] * x + b[5] * x * x + b[6] * x * x * x)
369NIST_END
370
371// y = b1 + b2*cos( 2*pi*x/12 ) + b3*sin( 2*pi*x/12 )
372//        + b5*cos( 2*pi*x/b4 ) + b6*sin( 2*pi*x/b4 )
373//        + b8*cos( 2*pi*x/b7 ) + b9*sin( 2*pi*x/b7 )  + e
374NIST_BEGIN(ENSO)
375  b[0] + b[1] * cos(T(2.0 * kPi) * x / T(12.0)) +
376         b[2] * sin(T(2.0 * kPi) * x / T(12.0)) +
377         b[4] * cos(T(2.0 * kPi) * x / b[3]) +
378         b[5] * sin(T(2.0 * kPi) * x / b[3]) +
379         b[7] * cos(T(2.0 * kPi) * x / b[6]) +
380         b[8] * sin(T(2.0 * kPi) * x / b[6])
381NIST_END
382
383// y = (b1/b2) * exp[-0.5*((x-b3)/b2)**2]  +  e
384NIST_BEGIN(Eckerle4)
385  b[0] / b[1] * exp(T(-0.5) * pow((x - b[2])/b[1], 2))
386NIST_END
387
388struct Nelson {
389 public:
390  Nelson(const double* const x, const double* const y)
391      : x1_(x[0]), x2_(x[1]), y_(y[0]) {}
392
393  template <typename T>
394  bool operator()(const T* const b, T* residual) const {
395    // log[y] = b1 - b2*x1 * exp[-b3*x2]  +  e
396    residual[0] = T(log(y_)) - (b[0] - b[1] * T(x1_) * exp(-b[2] * T(x2_)));
397    return true;
398  }
399
400 private:
401  double x1_;
402  double x2_;
403  double y_;
404};
405
406template <typename Model, int num_residuals, int num_parameters>
407int RegressionDriver(const std::string& filename,
408                     const ceres::Solver::Options& options) {
409  NISTProblem nist_problem(FLAGS_nist_data_dir + filename);
410  CHECK_EQ(num_residuals, nist_problem.response_size());
411  CHECK_EQ(num_parameters, nist_problem.num_parameters());
412
413  Matrix predictor = nist_problem.predictor();
414  Matrix response = nist_problem.response();
415  Matrix final_parameters = nist_problem.final_parameters();
416
417  printf("%s\n", filename.c_str());
418
419  // Each NIST problem comes with multiple starting points, so we
420  // construct the problem from scratch for each case and solve it.
421  int num_success = 0;
422  for (int start = 0; start < nist_problem.num_starts(); ++start) {
423    Matrix initial_parameters = nist_problem.initial_parameters(start);
424
425    ceres::Problem problem;
426    for (int i = 0; i < nist_problem.num_observations(); ++i) {
427      problem.AddResidualBlock(
428          new ceres::AutoDiffCostFunction<Model, num_residuals, num_parameters>(
429              new Model(predictor.data() + nist_problem.predictor_size() * i,
430                        response.data() + nist_problem.response_size() * i)),
431          NULL,
432          initial_parameters.data());
433    }
434
435    ceres::Solver::Summary summary;
436    Solve(options, &problem, &summary);
437
438    // Compute the LRE by comparing each component of the solution
439    // with the ground truth, and taking the minimum.
440    Matrix final_parameters = nist_problem.final_parameters();
441    const double kMaxNumSignificantDigits = 11;
442    double log_relative_error = kMaxNumSignificantDigits + 1;
443    for (int i = 0; i < num_parameters; ++i) {
444      const double tmp_lre =
445          -std::log10(std::fabs(final_parameters(i) - initial_parameters(i)) /
446                      std::fabs(final_parameters(i)));
447      // The maximum LRE is capped at 11 - the precision at which the
448      // ground truth is known.
449      //
450      // The minimum LRE is capped at 0 - no digits match between the
451      // computed solution and the ground truth.
452      log_relative_error =
453          std::min(log_relative_error,
454                   std::max(0.0, std::min(kMaxNumSignificantDigits, tmp_lre)));
455    }
456
457    const int kMinNumMatchingDigits = 4;
458    if (log_relative_error >= kMinNumMatchingDigits) {
459      ++num_success;
460    }
461
462    printf("start: %d status: %s lre: %4.1f initial cost: %e final cost:%e "
463           "certified cost: %e total iterations: %d\n",
464           start + 1,
465           log_relative_error < kMinNumMatchingDigits ? "FAILURE" : "SUCCESS",
466           log_relative_error,
467           summary.initial_cost,
468           summary.final_cost,
469           nist_problem.certified_cost(),
470           (summary.num_successful_steps + summary.num_unsuccessful_steps));
471  }
472  return num_success;
473}
474
475void SetMinimizerOptions(ceres::Solver::Options* options) {
476  CHECK(ceres::StringToMinimizerType(FLAGS_minimizer,
477                                     &options->minimizer_type));
478  CHECK(ceres::StringToLinearSolverType(FLAGS_linear_solver,
479                                        &options->linear_solver_type));
480  CHECK(ceres::StringToPreconditionerType(FLAGS_preconditioner,
481                                          &options->preconditioner_type));
482  CHECK(ceres::StringToTrustRegionStrategyType(
483            FLAGS_trust_region_strategy,
484            &options->trust_region_strategy_type));
485  CHECK(ceres::StringToDoglegType(FLAGS_dogleg, &options->dogleg_type));
486  CHECK(ceres::StringToLineSearchDirectionType(
487      FLAGS_line_search_direction,
488      &options->line_search_direction_type));
489  CHECK(ceres::StringToLineSearchType(FLAGS_line_search,
490                                      &options->line_search_type));
491  CHECK(ceres::StringToLineSearchInterpolationType(
492      FLAGS_line_search_interpolation,
493      &options->line_search_interpolation_type));
494
495  options->max_num_iterations = FLAGS_num_iterations;
496  options->use_nonmonotonic_steps = FLAGS_nonmonotonic_steps;
497  options->initial_trust_region_radius = FLAGS_initial_trust_region_radius;
498  options->max_lbfgs_rank = FLAGS_lbfgs_rank;
499  options->line_search_sufficient_function_decrease = FLAGS_sufficient_decrease;
500  options->line_search_sufficient_curvature_decrease =
501      FLAGS_sufficient_curvature_decrease;
502  options->max_num_line_search_step_size_iterations =
503      FLAGS_max_line_search_iterations;
504  options->max_num_line_search_direction_restarts =
505      FLAGS_max_line_search_restarts;
506  options->use_approximate_eigenvalue_bfgs_scaling =
507      FLAGS_approximate_eigenvalue_bfgs_scaling;
508  options->function_tolerance = 1e-18;
509  options->gradient_tolerance = 1e-18;
510  options->parameter_tolerance = 1e-18;
511}
512
513void SolveNISTProblems() {
514  if (FLAGS_nist_data_dir.empty()) {
515    LOG(FATAL) << "Must specify the directory containing the NIST problems";
516  }
517
518  ceres::Solver::Options options;
519  SetMinimizerOptions(&options);
520
521  std::cout << "Lower Difficulty\n";
522  int easy_success = 0;
523  easy_success += RegressionDriver<Misra1a,  1, 2>("Misra1a.dat",  options);
524  easy_success += RegressionDriver<Chwirut,  1, 3>("Chwirut1.dat", options);
525  easy_success += RegressionDriver<Chwirut,  1, 3>("Chwirut2.dat", options);
526  easy_success += RegressionDriver<Lanczos,  1, 6>("Lanczos3.dat", options);
527  easy_success += RegressionDriver<Gauss,    1, 8>("Gauss1.dat",   options);
528  easy_success += RegressionDriver<Gauss,    1, 8>("Gauss2.dat",   options);
529  easy_success += RegressionDriver<DanWood,  1, 2>("DanWood.dat",  options);
530  easy_success += RegressionDriver<Misra1b,  1, 2>("Misra1b.dat",  options);
531
532  std::cout << "\nMedium Difficulty\n";
533  int medium_success = 0;
534  medium_success += RegressionDriver<Kirby2,   1, 5>("Kirby2.dat",   options);
535  medium_success += RegressionDriver<Hahn1,    1, 7>("Hahn1.dat",    options);
536  medium_success += RegressionDriver<Nelson,   1, 3>("Nelson.dat",   options);
537  medium_success += RegressionDriver<MGH17,    1, 5>("MGH17.dat",    options);
538  medium_success += RegressionDriver<Lanczos,  1, 6>("Lanczos1.dat", options);
539  medium_success += RegressionDriver<Lanczos,  1, 6>("Lanczos2.dat", options);
540  medium_success += RegressionDriver<Gauss,    1, 8>("Gauss3.dat",   options);
541  medium_success += RegressionDriver<Misra1c,  1, 2>("Misra1c.dat",  options);
542  medium_success += RegressionDriver<Misra1d,  1, 2>("Misra1d.dat",  options);
543  medium_success += RegressionDriver<Roszman1, 1, 4>("Roszman1.dat", options);
544  medium_success += RegressionDriver<ENSO,     1, 9>("ENSO.dat",     options);
545
546  std::cout << "\nHigher Difficulty\n";
547  int hard_success = 0;
548  hard_success += RegressionDriver<MGH09,    1, 4>("MGH09.dat",    options);
549  hard_success += RegressionDriver<Thurber,  1, 7>("Thurber.dat",  options);
550  hard_success += RegressionDriver<BoxBOD,   1, 2>("BoxBOD.dat",   options);
551  hard_success += RegressionDriver<Rat42,    1, 3>("Rat42.dat",    options);
552  hard_success += RegressionDriver<MGH10,    1, 3>("MGH10.dat",    options);
553
554  hard_success += RegressionDriver<Eckerle4, 1, 3>("Eckerle4.dat", options);
555  hard_success += RegressionDriver<Rat43,    1, 4>("Rat43.dat",    options);
556  hard_success += RegressionDriver<Bennet5,  1, 3>("Bennett5.dat", options);
557
558  std::cout << "\n";
559  std::cout << "Easy    : " << easy_success << "/16\n";
560  std::cout << "Medium  : " << medium_success << "/22\n";
561  std::cout << "Hard    : " << hard_success << "/16\n";
562  std::cout << "Total   : " << easy_success + medium_success + hard_success << "/54\n";
563}
564
565}  // namespace examples
566}  // namespace ceres
567
568int main(int argc, char** argv) {
569  google::ParseCommandLineFlags(&argc, &argv, true);
570  google::InitGoogleLogging(argv[0]);
571  ceres::examples::SolveNISTProblems();
572  return 0;
573};
574