iteration_callback.h revision 1d2624a10e2c559f8ba9ef89eaa30832c0a83a96
1// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9//   this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11//   this list of conditions and the following disclaimer in the documentation
12//   and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14//   used to endorse or promote products derived from this software without
15//   specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30//
31// When an iteration callback is specified, Ceres calls the callback
32// after each minimizer step (if the minimizer has not converged) and
33// passes it an IterationSummary object, defined below.
34
35#ifndef CERES_PUBLIC_ITERATION_CALLBACK_H_
36#define CERES_PUBLIC_ITERATION_CALLBACK_H_
37
38#include "ceres/types.h"
39
40namespace ceres {
41
42// This struct describes the state of the optimizer after each
43// iteration of the minimization.
44struct IterationSummary {
45  IterationSummary()
46      : iteration(0),
47        step_is_valid(false),
48        step_is_nonmonotonic(false),
49        step_is_successful(false),
50        cost(0.0),
51        cost_change(0.0),
52        gradient_max_norm(0.0),
53        step_norm(0.0),
54        eta(0.0),
55        step_size(0.0),
56        line_search_function_evaluations(0),
57        line_search_gradient_evaluations(0),
58        line_search_iterations(0),
59        linear_solver_iterations(0),
60        iteration_time_in_seconds(0.0),
61        step_solver_time_in_seconds(0.0),
62        cumulative_time_in_seconds(0.0) {}
63
64  // Current iteration number.
65  int32 iteration;
66
67  // Step was numerically valid, i.e., all values are finite and the
68  // step reduces the value of the linearized model.
69  //
70  // Note: step_is_valid is false when iteration = 0.
71  bool step_is_valid;
72
73  // Step did not reduce the value of the objective function
74  // sufficiently, but it was accepted because of the relaxed
75  // acceptance criterion used by the non-monotonic trust region
76  // algorithm.
77  //
78  // Note: step_is_nonmonotonic is false when iteration = 0;
79  bool step_is_nonmonotonic;
80
81  // Whether or not the minimizer accepted this step or not. If the
82  // ordinary trust region algorithm is used, this means that the
83  // relative reduction in the objective function value was greater
84  // than Solver::Options::min_relative_decrease. However, if the
85  // non-monotonic trust region algorithm is used
86  // (Solver::Options:use_nonmonotonic_steps = true), then even if the
87  // relative decrease is not sufficient, the algorithm may accept the
88  // step and the step is declared successful.
89  //
90  // Note: step_is_successful is false when iteration = 0.
91  bool step_is_successful;
92
93  // Value of the objective function.
94  double cost;
95
96  // Change in the value of the objective function in this
97  // iteration. This can be positive or negative.
98  double cost_change;
99
100  // Infinity norm of the gradient vector.
101  double gradient_max_norm;
102
103  // 2-norm of the size of the step computed by the optimization
104  // algorithm.
105  double step_norm;
106
107  // For trust region algorithms, the ratio of the actual change in
108  // cost and the change in the cost of the linearized approximation.
109  double relative_decrease;
110
111  // Size of the trust region at the end of the current iteration. For
112  // the Levenberg-Marquardt algorithm, the regularization parameter
113  // mu = 1.0 / trust_region_radius.
114  double trust_region_radius;
115
116  // For the inexact step Levenberg-Marquardt algorithm, this is the
117  // relative accuracy with which the Newton(LM) step is solved. This
118  // number affects only the iterative solvers capable of solving
119  // linear systems inexactly. Factorization-based exact solvers
120  // ignore it.
121  double eta;
122
123  // Step sized computed by the line search algorithm.
124  double step_size;
125
126  // Number of function value evaluations used by the line search algorithm.
127  int line_search_function_evaluations;
128
129  // Number of function gradient evaluations used by the line search algorithm.
130  int line_search_gradient_evaluations;
131
132  // Number of iterations taken by the line search algorithm.
133  int line_search_iterations;
134
135  // Number of iterations taken by the linear solver to solve for the
136  // Newton step.
137  int linear_solver_iterations;
138
139  // All times reported below are wall times.
140
141  // Time (in seconds) spent inside the minimizer loop in the current
142  // iteration.
143  double iteration_time_in_seconds;
144
145  // Time (in seconds) spent inside the trust region step solver.
146  double step_solver_time_in_seconds;
147
148  // Time (in seconds) since the user called Solve().
149  double cumulative_time_in_seconds;
150};
151
152// Interface for specifying callbacks that are executed at the end of
153// each iteration of the Minimizer. The solver uses the return value
154// of operator() to decide whether to continue solving or to
155// terminate. The user can return three values.
156//
157// SOLVER_ABORT indicates that the callback detected an abnormal
158// situation. The solver returns without updating the parameter blocks
159// (unless Solver::Options::update_state_every_iteration is set
160// true). Solver returns with Solver::Summary::termination_type set to
161// USER_ABORT.
162//
163// SOLVER_TERMINATE_SUCCESSFULLY indicates that there is no need to
164// optimize anymore (some user specified termination criterion has
165// been met). Solver returns with Solver::Summary::termination_type
166// set to USER_SUCCESS.
167//
168// SOLVER_CONTINUE indicates that the solver should continue
169// optimizing.
170//
171// For example, the following Callback is used internally by Ceres to
172// log the progress of the optimization.
173//
174// Callback for logging the state of the minimizer to STDERR or STDOUT
175// depending on the user's preferences and logging level.
176//
177//   class LoggingCallback : public IterationCallback {
178//    public:
179//     explicit LoggingCallback(bool log_to_stdout)
180//         : log_to_stdout_(log_to_stdout) {}
181//
182//     ~LoggingCallback() {}
183//
184//     CallbackReturnType operator()(const IterationSummary& summary) {
185//       const char* kReportRowFormat =
186//           "% 4d: f:% 8e d:% 3.2e g:% 3.2e h:% 3.2e "
187//           "rho:% 3.2e mu:% 3.2e eta:% 3.2e li:% 3d";
188//       string output = StringPrintf(kReportRowFormat,
189//                                    summary.iteration,
190//                                    summary.cost,
191//                                    summary.cost_change,
192//                                    summary.gradient_max_norm,
193//                                    summary.step_norm,
194//                                    summary.relative_decrease,
195//                                    summary.trust_region_radius,
196//                                    summary.eta,
197//                                    summary.linear_solver_iterations);
198//       if (log_to_stdout_) {
199//         cout << output << endl;
200//       } else {
201//         VLOG(1) << output;
202//       }
203//       return SOLVER_CONTINUE;
204//     }
205//
206//    private:
207//     const bool log_to_stdout_;
208//   };
209//
210class IterationCallback {
211 public:
212  virtual ~IterationCallback() {}
213  virtual CallbackReturnType operator()(const IterationSummary& summary) = 0;
214};
215
216}  // namespace ceres
217
218#endif  // CERES_PUBLIC_ITERATION_CALLBACK_H_
219