numeric_diff_cost_function.h revision 0ae28bd5885b5daa526898fcf7c323dc2c3e1963
1// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9//   this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11//   this list of conditions and the following disclaimer in the documentation
12//   and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14//   used to endorse or promote products derived from this software without
15//   specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: keir@google.com (Keir Mierle)
30//
31// Create CostFunctions as needed by the least squares framework with jacobians
32// computed via numeric (a.k.a. finite) differentiation. For more details see
33// http://en.wikipedia.org/wiki/Numerical_differentiation.
34//
35// To get a numerically differentiated cost function, define a subclass of
36// CostFunction such that the Evaluate() function ignores the jacobian
37// parameter. The numeric differentiation wrapper will fill in the jacobian
38// parameter if nececssary by repeatedly calling the Evaluate() function with
39// small changes to the appropriate parameters, and computing the slope. For
40// performance, the numeric differentiation wrapper class is templated on the
41// concrete cost function, even though it could be implemented only in terms of
42// the virtual CostFunction interface.
43//
44// The numerically differentiated version of a cost function for a cost function
45// can be constructed as follows:
46//
47//   CostFunction* cost_function
48//       = new NumericDiffCostFunction<MyCostFunction, CENTRAL, 1, 4, 8>(
49//           new MyCostFunction(...), TAKE_OWNERSHIP);
50//
51// where MyCostFunction has 1 residual and 2 parameter blocks with sizes 4 and 8
52// respectively. Look at the tests for a more detailed example.
53//
54// The central difference method is considerably more accurate at the cost of
55// twice as many function evaluations than forward difference. Consider using
56// central differences begin with, and only after that works, trying forward
57// difference to improve performance.
58//
59// TODO(keir): Characterize accuracy; mention pitfalls; provide alternatives.
60
61#ifndef CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_
62#define CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_
63
64#include <cstring>
65#include <glog/logging.h>
66#include "Eigen/Dense"
67#include "ceres/internal/scoped_ptr.h"
68#include "ceres/sized_cost_function.h"
69#include "ceres/types.h"
70
71namespace ceres {
72
73enum NumericDiffMethod {
74  CENTRAL,
75  FORWARD
76};
77
78// This is split from the main class because C++ doesn't allow partial template
79// specializations for member functions. The alternative is to repeat the main
80// class for differing numbers of parameters, which is also unfortunate.
81template <typename CostFunctionNoJacobian,
82          int num_residuals,
83          int parameter_block_size,
84          int parameter_block,
85          NumericDiffMethod method>
86struct Differencer {
87  // Mutates parameters but must restore them before return.
88  static bool EvaluateJacobianForParameterBlock(
89      const CostFunctionNoJacobian *function,
90      double const* residuals_at_eval_point,
91      double **parameters,
92      double **jacobians) {
93    using Eigen::Map;
94    using Eigen::Matrix;
95    using Eigen::RowMajor;
96    using Eigen::ColMajor;
97
98    typedef Matrix<double, num_residuals, 1> ResidualVector;
99    typedef Matrix<double, parameter_block_size, 1> ParameterVector;
100    typedef Matrix<double, num_residuals, parameter_block_size,
101                   (parameter_block_size == 1 &&
102                    num_residuals > 1) ? ColMajor : RowMajor> JacobianMatrix;
103
104    Map<JacobianMatrix> parameter_jacobian(jacobians[parameter_block],
105                                           num_residuals,
106                                           parameter_block_size);
107
108    // Mutate 1 element at a time and then restore.
109    Map<ParameterVector> x_plus_delta(parameters[parameter_block],
110                                      parameter_block_size);
111    ParameterVector x(x_plus_delta);
112
113    // TODO(keir): Pick a smarter number! In theory a good choice is sqrt(eps) *
114    // x, which for doubles means about 1e-8 * x. However, I have found this
115    // number too optimistic. This number should be exposed for users to change.
116    const double kRelativeStepSize = 1e-6;
117
118    ParameterVector step_size = x.array().abs() * kRelativeStepSize;
119
120    // To handle cases where a parameter is exactly zero, instead use the mean
121    // step_size for the other dimensions.
122    double fallback_step_size = step_size.sum() / step_size.rows();
123    if (fallback_step_size == 0.0) {
124      // If all the parameters are zero, there's no good answer. Take
125      // kRelativeStepSize as a guess and hope for the best.
126      fallback_step_size = kRelativeStepSize;
127    }
128
129    // For each parameter in the parameter block, use finite differences to
130    // compute the derivative for that parameter.
131    for (int j = 0; j < parameter_block_size; ++j) {
132      if (step_size(j) == 0.0) {
133        // The parameter is exactly zero, so compromise and use the mean
134        // step_size from the other parameters. This can break in many cases,
135        // but it's hard to pick a good number without problem specific
136        // knowledge.
137        step_size(j) = fallback_step_size;
138      }
139      x_plus_delta(j) = x(j) + step_size(j);
140
141      double residuals[num_residuals];  // NOLINT
142      if (!function->Evaluate(parameters, residuals, NULL)) {
143        // Something went wrong; bail.
144        return false;
145      }
146
147      // Compute this column of the jacobian in 3 steps:
148      // 1. Store residuals for the forward part.
149      // 2. Subtract residuals for the backward (or 0) part.
150      // 3. Divide out the run.
151      parameter_jacobian.col(j) =
152          Map<const ResidualVector>(residuals, num_residuals);
153
154      double one_over_h = 1 / step_size(j);
155      if (method == CENTRAL) {
156        // Compute the function on the other side of x(j).
157        x_plus_delta(j) = x(j) - step_size(j);
158
159        if (!function->Evaluate(parameters, residuals, NULL)) {
160          // Something went wrong; bail.
161          return false;
162        }
163        parameter_jacobian.col(j) -=
164            Map<ResidualVector>(residuals, num_residuals, 1);
165        one_over_h /= 2;
166      } else {
167        // Forward difference only; reuse existing residuals evaluation.
168        parameter_jacobian.col(j) -=
169            Map<const ResidualVector>(residuals_at_eval_point, num_residuals);
170      }
171      x_plus_delta(j) = x(j);  // Restore x_plus_delta.
172
173      // Divide out the run to get slope.
174      parameter_jacobian.col(j) *= one_over_h;
175    }
176    return true;
177  }
178};
179
180// Prevent invalid instantiations.
181template <typename CostFunctionNoJacobian,
182          int num_residuals,
183          int parameter_block,
184          NumericDiffMethod method>
185struct Differencer<CostFunctionNoJacobian,
186                  num_residuals,
187                  0 /* parameter_block_size */,
188                  parameter_block,
189                  method> {
190  static bool EvaluateJacobianForParameterBlock(
191      const CostFunctionNoJacobian *function,
192      double const* residuals_at_eval_point,
193      double **parameters,
194      double **jacobians) {
195    LOG(FATAL) << "Shouldn't get here.";
196    return true;
197  }
198};
199
200template <typename CostFunctionNoJacobian,
201         NumericDiffMethod method = CENTRAL, int M = 0,
202         int N0 = 0, int N1 = 0, int N2 = 0, int N3 = 0, int N4 = 0, int N5 = 0>
203class NumericDiffCostFunction
204    : public SizedCostFunction<M, N0, N1, N2, N3, N4, N5> {
205 public:
206  NumericDiffCostFunction(CostFunctionNoJacobian* function,
207                          Ownership ownership)
208      : function_(function), ownership_(ownership) {}
209
210  virtual ~NumericDiffCostFunction() {
211    if (ownership_ != TAKE_OWNERSHIP) {
212      function_.release();
213    }
214  }
215
216  virtual bool Evaluate(double const* const* parameters,
217                        double* residuals,
218                        double** jacobians) const {
219    // Get the function value (residuals) at the the point to evaluate.
220    bool success = function_->Evaluate(parameters, residuals, NULL);
221    if (!success) {
222      // Something went wrong; ignore the jacobian.
223      return false;
224    }
225    if (!jacobians) {
226      // Nothing to do; just forward.
227      return true;
228    }
229
230    // Create a copy of the parameters which will get mutated.
231    const int kParametersSize = N0 + N1 + N2 + N3 + N4 + N5;
232    double parameters_copy[kParametersSize];
233    double *parameters_references_copy[6];
234    parameters_references_copy[0] = &parameters_copy[0];
235    parameters_references_copy[1] = &parameters_copy[0] + N0;
236    parameters_references_copy[2] = &parameters_copy[0] + N0 + N1;
237    parameters_references_copy[3] = &parameters_copy[0] + N0 + N1 + N2;
238    parameters_references_copy[4] = &parameters_copy[0] + N0 + N1 + N2 + N3;
239    parameters_references_copy[5] =
240        &parameters_copy[0] + N0 + N1 + N2 + N3 + N4;
241
242#define COPY_PARAMETER_BLOCK(block) \
243    if (N ## block) memcpy(parameters_references_copy[block], \
244                           parameters[block], \
245                           sizeof(double) * N ## block);  // NOLINT
246    COPY_PARAMETER_BLOCK(0);
247    COPY_PARAMETER_BLOCK(1);
248    COPY_PARAMETER_BLOCK(2);
249    COPY_PARAMETER_BLOCK(3);
250    COPY_PARAMETER_BLOCK(4);
251    COPY_PARAMETER_BLOCK(5);
252#undef COPY_PARAMETER_BLOCK
253
254#define EVALUATE_JACOBIAN_FOR_BLOCK(block) \
255    if (N ## block && jacobians[block]) { \
256      if (!Differencer<CostFunctionNoJacobian, /* NOLINT */ \
257                       M, \
258                       N ## block, \
259                       block, \
260                       method>::EvaluateJacobianForParameterBlock( \
261          function_.get(), \
262          residuals, \
263          parameters_references_copy, \
264          jacobians)) { \
265        return false; \
266      } \
267    }
268    EVALUATE_JACOBIAN_FOR_BLOCK(0);
269    EVALUATE_JACOBIAN_FOR_BLOCK(1);
270    EVALUATE_JACOBIAN_FOR_BLOCK(2);
271    EVALUATE_JACOBIAN_FOR_BLOCK(3);
272    EVALUATE_JACOBIAN_FOR_BLOCK(4);
273    EVALUATE_JACOBIAN_FOR_BLOCK(5);
274#undef EVALUATE_JACOBIAN_FOR_BLOCK
275    return true;
276  }
277
278 private:
279  internal::scoped_ptr<CostFunctionNoJacobian> function_;
280  Ownership ownership_;
281};
282
283}  // namespace ceres
284
285#endif  // CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_
286