1// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2013 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9//   this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11//   this list of conditions and the following disclaimer in the documentation
12//   and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14//   used to endorse or promote products derived from this software without
15//   specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30//         keir@google.com (Keir Mierle)
31//
32// The Problem object is used to build and hold least squares problems.
33
34#ifndef CERES_PUBLIC_PROBLEM_H_
35#define CERES_PUBLIC_PROBLEM_H_
36
37#include <cstddef>
38#include <map>
39#include <set>
40#include <vector>
41
42#include "glog/logging.h"
43#include "ceres/internal/macros.h"
44#include "ceres/internal/port.h"
45#include "ceres/internal/scoped_ptr.h"
46#include "ceres/types.h"
47#include "ceres/internal/disable_warnings.h"
48
49
50namespace ceres {
51
52class CostFunction;
53class LossFunction;
54class LocalParameterization;
55class Solver;
56struct CRSMatrix;
57
58namespace internal {
59class Preprocessor;
60class ProblemImpl;
61class ParameterBlock;
62class ResidualBlock;
63}  // namespace internal
64
65// A ResidualBlockId is an opaque handle clients can use to remove residual
66// blocks from a Problem after adding them.
67typedef internal::ResidualBlock* ResidualBlockId;
68
69// A class to represent non-linear least squares problems. Such
70// problems have a cost function that is a sum of error terms (known
71// as "residuals"), where each residual is a function of some subset
72// of the parameters. The cost function takes the form
73//
74//    N    1
75//   SUM  --- loss( || r_i1, r_i2,..., r_ik ||^2  ),
76//   i=1   2
77//
78// where
79//
80//   r_ij     is residual number i, component j; the residual is a
81//            function of some subset of the parameters x1...xk. For
82//            example, in a structure from motion problem a residual
83//            might be the difference between a measured point in an
84//            image and the reprojected position for the matching
85//            camera, point pair. The residual would have two
86//            components, error in x and error in y.
87//
88//   loss(y)  is the loss function; for example, squared error or
89//            Huber L1 loss. If loss(y) = y, then the cost function is
90//            non-robustified least squares.
91//
92// This class is specifically designed to address the important subset
93// of "sparse" least squares problems, where each component of the
94// residual depends only on a small number number of parameters, even
95// though the total number of residuals and parameters may be very
96// large. This property affords tremendous gains in scale, allowing
97// efficient solving of large problems that are otherwise
98// inaccessible.
99//
100// The canonical example of a sparse least squares problem is
101// "structure-from-motion" (SFM), where the parameters are points and
102// cameras, and residuals are reprojection errors. Typically a single
103// residual will depend only on 9 parameters (3 for the point, 6 for
104// the camera).
105//
106// To create a least squares problem, use the AddResidualBlock() and
107// AddParameterBlock() methods, documented below. Here is an example least
108// squares problem containing 3 parameter blocks of sizes 3, 4 and 5
109// respectively and two residual terms of size 2 and 6:
110//
111//   double x1[] = { 1.0, 2.0, 3.0 };
112//   double x2[] = { 1.0, 2.0, 3.0, 5.0 };
113//   double x3[] = { 1.0, 2.0, 3.0, 6.0, 7.0 };
114//
115//   Problem problem;
116//
117//   problem.AddResidualBlock(new MyUnaryCostFunction(...), x1);
118//   problem.AddResidualBlock(new MyBinaryCostFunction(...), x2, x3);
119//
120// Please see cost_function.h for details of the CostFunction object.
121class CERES_EXPORT Problem {
122 public:
123  struct CERES_EXPORT Options {
124    Options()
125        : cost_function_ownership(TAKE_OWNERSHIP),
126          loss_function_ownership(TAKE_OWNERSHIP),
127          local_parameterization_ownership(TAKE_OWNERSHIP),
128          enable_fast_removal(false),
129          disable_all_safety_checks(false) {}
130
131    // These flags control whether the Problem object owns the cost
132    // functions, loss functions, and parameterizations passed into
133    // the Problem. If set to TAKE_OWNERSHIP, then the problem object
134    // will delete the corresponding cost or loss functions on
135    // destruction. The destructor is careful to delete the pointers
136    // only once, since sharing cost/loss/parameterizations is
137    // allowed.
138    Ownership cost_function_ownership;
139    Ownership loss_function_ownership;
140    Ownership local_parameterization_ownership;
141
142    // If true, trades memory for faster RemoveResidualBlock() and
143    // RemoveParameterBlock() operations.
144    //
145    // By default, RemoveParameterBlock() and RemoveResidualBlock() take time
146    // proportional to the size of the entire problem.  If you only ever remove
147    // parameters or residuals from the problem occassionally, this might be
148    // acceptable.  However, if you have memory to spare, enable this option to
149    // make RemoveParameterBlock() take time proportional to the number of
150    // residual blocks that depend on it, and RemoveResidualBlock() take (on
151    // average) constant time.
152    //
153    // The increase in memory usage is twofold: an additonal hash set per
154    // parameter block containing all the residuals that depend on the parameter
155    // block; and a hash set in the problem containing all residuals.
156    bool enable_fast_removal;
157
158    // By default, Ceres performs a variety of safety checks when constructing
159    // the problem. There is a small but measurable performance penalty to
160    // these checks, typically around 5% of construction time. If you are sure
161    // your problem construction is correct, and 5% of the problem construction
162    // time is truly an overhead you want to avoid, then you can set
163    // disable_all_safety_checks to true.
164    //
165    // WARNING: Do not set this to true, unless you are absolutely sure of what
166    // you are doing.
167    bool disable_all_safety_checks;
168  };
169
170  // The default constructor is equivalent to the
171  // invocation Problem(Problem::Options()).
172  Problem();
173  explicit Problem(const Options& options);
174
175  ~Problem();
176
177  // Add a residual block to the overall cost function. The cost
178  // function carries with it information about the sizes of the
179  // parameter blocks it expects. The function checks that these match
180  // the sizes of the parameter blocks listed in parameter_blocks. The
181  // program aborts if a mismatch is detected. loss_function can be
182  // NULL, in which case the cost of the term is just the squared norm
183  // of the residuals.
184  //
185  // The user has the option of explicitly adding the parameter blocks
186  // using AddParameterBlock. This causes additional correctness
187  // checking; however, AddResidualBlock implicitly adds the parameter
188  // blocks if they are not present, so calling AddParameterBlock
189  // explicitly is not required.
190  //
191  // The Problem object by default takes ownership of the
192  // cost_function and loss_function pointers. These objects remain
193  // live for the life of the Problem object. If the user wishes to
194  // keep control over the destruction of these objects, then they can
195  // do this by setting the corresponding enums in the Options struct.
196  //
197  // Note: Even though the Problem takes ownership of cost_function
198  // and loss_function, it does not preclude the user from re-using
199  // them in another residual block. The destructor takes care to call
200  // delete on each cost_function or loss_function pointer only once,
201  // regardless of how many residual blocks refer to them.
202  //
203  // Example usage:
204  //
205  //   double x1[] = {1.0, 2.0, 3.0};
206  //   double x2[] = {1.0, 2.0, 5.0, 6.0};
207  //   double x3[] = {3.0, 6.0, 2.0, 5.0, 1.0};
208  //
209  //   Problem problem;
210  //
211  //   problem.AddResidualBlock(new MyUnaryCostFunction(...), NULL, x1);
212  //   problem.AddResidualBlock(new MyBinaryCostFunction(...), NULL, x2, x1);
213  //
214  ResidualBlockId AddResidualBlock(CostFunction* cost_function,
215                                   LossFunction* loss_function,
216                                   const vector<double*>& parameter_blocks);
217
218  // Convenience methods for adding residuals with a small number of
219  // parameters. This is the common case. Instead of specifying the
220  // parameter block arguments as a vector, list them as pointers.
221  ResidualBlockId AddResidualBlock(CostFunction* cost_function,
222                                   LossFunction* loss_function,
223                                   double* x0);
224  ResidualBlockId AddResidualBlock(CostFunction* cost_function,
225                                   LossFunction* loss_function,
226                                   double* x0, double* x1);
227  ResidualBlockId AddResidualBlock(CostFunction* cost_function,
228                                   LossFunction* loss_function,
229                                   double* x0, double* x1, double* x2);
230  ResidualBlockId AddResidualBlock(CostFunction* cost_function,
231                                   LossFunction* loss_function,
232                                   double* x0, double* x1, double* x2,
233                                   double* x3);
234  ResidualBlockId AddResidualBlock(CostFunction* cost_function,
235                                   LossFunction* loss_function,
236                                   double* x0, double* x1, double* x2,
237                                   double* x3, double* x4);
238  ResidualBlockId AddResidualBlock(CostFunction* cost_function,
239                                   LossFunction* loss_function,
240                                   double* x0, double* x1, double* x2,
241                                   double* x3, double* x4, double* x5);
242  ResidualBlockId AddResidualBlock(CostFunction* cost_function,
243                                   LossFunction* loss_function,
244                                   double* x0, double* x1, double* x2,
245                                   double* x3, double* x4, double* x5,
246                                   double* x6);
247  ResidualBlockId AddResidualBlock(CostFunction* cost_function,
248                                   LossFunction* loss_function,
249                                   double* x0, double* x1, double* x2,
250                                   double* x3, double* x4, double* x5,
251                                   double* x6, double* x7);
252  ResidualBlockId AddResidualBlock(CostFunction* cost_function,
253                                   LossFunction* loss_function,
254                                   double* x0, double* x1, double* x2,
255                                   double* x3, double* x4, double* x5,
256                                   double* x6, double* x7, double* x8);
257  ResidualBlockId AddResidualBlock(CostFunction* cost_function,
258                                   LossFunction* loss_function,
259                                   double* x0, double* x1, double* x2,
260                                   double* x3, double* x4, double* x5,
261                                   double* x6, double* x7, double* x8,
262                                   double* x9);
263
264  // Add a parameter block with appropriate size to the problem.
265  // Repeated calls with the same arguments are ignored. Repeated
266  // calls with the same double pointer but a different size results
267  // in undefined behaviour.
268  void AddParameterBlock(double* values, int size);
269
270  // Add a parameter block with appropriate size and parameterization
271  // to the problem. Repeated calls with the same arguments are
272  // ignored. Repeated calls with the same double pointer but a
273  // different size results in undefined behaviour.
274  void AddParameterBlock(double* values,
275                         int size,
276                         LocalParameterization* local_parameterization);
277
278  // Remove a parameter block from the problem. The parameterization of the
279  // parameter block, if it exists, will persist until the deletion of the
280  // problem (similar to cost/loss functions in residual block removal). Any
281  // residual blocks that depend on the parameter are also removed, as
282  // described above in RemoveResidualBlock().
283  //
284  // If Problem::Options::enable_fast_removal is true, then the
285  // removal is fast (almost constant time). Otherwise, removing a parameter
286  // block will incur a scan of the entire Problem object.
287  //
288  // WARNING: Removing a residual or parameter block will destroy the implicit
289  // ordering, rendering the jacobian or residuals returned from the solver
290  // uninterpretable. If you depend on the evaluated jacobian, do not use
291  // remove! This may change in a future release.
292  void RemoveParameterBlock(double* values);
293
294  // Remove a residual block from the problem. Any parameters that the residual
295  // block depends on are not removed. The cost and loss functions for the
296  // residual block will not get deleted immediately; won't happen until the
297  // problem itself is deleted.
298  //
299  // WARNING: Removing a residual or parameter block will destroy the implicit
300  // ordering, rendering the jacobian or residuals returned from the solver
301  // uninterpretable. If you depend on the evaluated jacobian, do not use
302  // remove! This may change in a future release.
303  void RemoveResidualBlock(ResidualBlockId residual_block);
304
305  // Hold the indicated parameter block constant during optimization.
306  void SetParameterBlockConstant(double* values);
307
308  // Allow the indicated parameter block to vary during optimization.
309  void SetParameterBlockVariable(double* values);
310
311  // Set the local parameterization for one of the parameter blocks.
312  // The local_parameterization is owned by the Problem by default. It
313  // is acceptable to set the same parameterization for multiple
314  // parameters; the destructor is careful to delete local
315  // parameterizations only once. The local parameterization can only
316  // be set once per parameter, and cannot be changed once set.
317  void SetParameterization(double* values,
318                           LocalParameterization* local_parameterization);
319
320  // Get the local parameterization object associated with this
321  // parameter block. If there is no parameterization object
322  // associated then NULL is returned.
323  const LocalParameterization* GetParameterization(double* values) const;
324
325  // Set the lower/upper bound for the parameter with position "index".
326  void SetParameterLowerBound(double* values, int index, double lower_bound);
327  void SetParameterUpperBound(double* values, int index, double upper_bound);
328
329  // Number of parameter blocks in the problem. Always equals
330  // parameter_blocks().size() and parameter_block_sizes().size().
331  int NumParameterBlocks() const;
332
333  // The size of the parameter vector obtained by summing over the
334  // sizes of all the parameter blocks.
335  int NumParameters() const;
336
337  // Number of residual blocks in the problem. Always equals
338  // residual_blocks().size().
339  int NumResidualBlocks() const;
340
341  // The size of the residual vector obtained by summing over the
342  // sizes of all of the residual blocks.
343  int NumResiduals() const;
344
345  // The size of the parameter block.
346  int ParameterBlockSize(const double* values) const;
347
348  // The size of local parameterization for the parameter block. If
349  // there is no local parameterization associated with this parameter
350  // block, then ParameterBlockLocalSize = ParameterBlockSize.
351  int ParameterBlockLocalSize(const double* values) const;
352
353  // Is the given parameter block present in this problem or not?
354  bool HasParameterBlock(const double* values) const;
355
356  // Fills the passed parameter_blocks vector with pointers to the
357  // parameter blocks currently in the problem. After this call,
358  // parameter_block.size() == NumParameterBlocks.
359  void GetParameterBlocks(vector<double*>* parameter_blocks) const;
360
361  // Fills the passed residual_blocks vector with pointers to the
362  // residual blocks currently in the problem. After this call,
363  // residual_blocks.size() == NumResidualBlocks.
364  void GetResidualBlocks(vector<ResidualBlockId>* residual_blocks) const;
365
366  // Get all the parameter blocks that depend on the given residual block.
367  void GetParameterBlocksForResidualBlock(
368      const ResidualBlockId residual_block,
369      vector<double*>* parameter_blocks) const;
370
371  // Get all the residual blocks that depend on the given parameter block.
372  //
373  // If Problem::Options::enable_fast_removal is true, then
374  // getting the residual blocks is fast and depends only on the number of
375  // residual blocks. Otherwise, getting the residual blocks for a parameter
376  // block will incur a scan of the entire Problem object.
377  void GetResidualBlocksForParameterBlock(
378      const double* values,
379      vector<ResidualBlockId>* residual_blocks) const;
380
381  // Options struct to control Problem::Evaluate.
382  struct EvaluateOptions {
383    EvaluateOptions()
384        : apply_loss_function(true),
385          num_threads(1) {
386    }
387
388    // The set of parameter blocks for which evaluation should be
389    // performed. This vector determines the order that parameter
390    // blocks occur in the gradient vector and in the columns of the
391    // jacobian matrix. If parameter_blocks is empty, then it is
392    // assumed to be equal to vector containing ALL the parameter
393    // blocks.  Generally speaking the parameter blocks will occur in
394    // the order in which they were added to the problem. But, this
395    // may change if the user removes any parameter blocks from the
396    // problem.
397    //
398    // NOTE: This vector should contain the same pointers as the ones
399    // used to add parameter blocks to the Problem. These parameter
400    // block should NOT point to new memory locations. Bad things will
401    // happen otherwise.
402    vector<double*> parameter_blocks;
403
404    // The set of residual blocks to evaluate. This vector determines
405    // the order in which the residuals occur, and how the rows of the
406    // jacobian are ordered. If residual_blocks is empty, then it is
407    // assumed to be equal to the vector containing all the residual
408    // blocks. If this vector is empty, then it is assumed to be equal
409    // to a vector containing ALL the residual blocks. Generally
410    // speaking the residual blocks will occur in the order in which
411    // they were added to the problem. But, this may change if the
412    // user removes any residual blocks from the problem.
413    vector<ResidualBlockId> residual_blocks;
414
415    // Even though the residual blocks in the problem may contain loss
416    // functions, setting apply_loss_function to false will turn off
417    // the application of the loss function to the output of the cost
418    // function. This is of use for example if the user wishes to
419    // analyse the solution quality by studying the distribution of
420    // residuals before and after the solve.
421    bool apply_loss_function;
422
423    int num_threads;
424  };
425
426  // Evaluate Problem. Any of the output pointers can be NULL. Which
427  // residual blocks and parameter blocks are used is controlled by
428  // the EvaluateOptions struct above.
429  //
430  // Note 1: The evaluation will use the values stored in the memory
431  // locations pointed to by the parameter block pointers used at the
432  // time of the construction of the problem. i.e.,
433  //
434  //   Problem problem;
435  //   double x = 1;
436  //   problem.AddResidualBlock(new MyCostFunction, NULL, &x);
437  //
438  //   double cost = 0.0;
439  //   problem.Evaluate(Problem::EvaluateOptions(), &cost, NULL, NULL, NULL);
440  //
441  // The cost is evaluated at x = 1. If you wish to evaluate the
442  // problem at x = 2, then
443  //
444  //    x = 2;
445  //    problem.Evaluate(Problem::EvaluateOptions(), &cost, NULL, NULL, NULL);
446  //
447  // is the way to do so.
448  //
449  // Note 2: If no local parameterizations are used, then the size of
450  // the gradient vector (and the number of columns in the jacobian)
451  // is the sum of the sizes of all the parameter blocks. If a
452  // parameter block has a local parameterization, then it contributes
453  // "LocalSize" entries to the gradient vector (and the number of
454  // columns in the jacobian).
455  bool Evaluate(const EvaluateOptions& options,
456                double* cost,
457                vector<double>* residuals,
458                vector<double>* gradient,
459                CRSMatrix* jacobian);
460
461 private:
462  friend class Solver;
463  friend class Covariance;
464  internal::scoped_ptr<internal::ProblemImpl> problem_impl_;
465  CERES_DISALLOW_COPY_AND_ASSIGN(Problem);
466};
467
468}  // namespace ceres
469
470#include "ceres/internal/reenable_warnings.h"
471
472#endif  // CERES_PUBLIC_PROBLEM_H_
473