solver.h revision 0ae28bd5885b5daa526898fcf7c323dc2c3e1963
10ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Ceres Solver - A fast non-linear least squares minimizer
20ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
30ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// http://code.google.com/p/ceres-solver/
40ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
50ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Redistribution and use in source and binary forms, with or without
60ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// modification, are permitted provided that the following conditions are met:
70ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
80ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// * Redistributions of source code must retain the above copyright notice,
90ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//   this list of conditions and the following disclaimer.
100ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// * Redistributions in binary form must reproduce the above copyright notice,
110ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//   this list of conditions and the following disclaimer in the documentation
120ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//   and/or other materials provided with the distribution.
130ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// * Neither the name of Google Inc. nor the names of its contributors may be
140ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//   used to endorse or promote products derived from this software without
150ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//   specific prior written permission.
160ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
170ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
180ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
190ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
200ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
210ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
220ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
230ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
240ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
250ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
260ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
270ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// POSSIBILITY OF SUCH DAMAGE.
280ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
290ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Author: sameeragarwal@google.com (Sameer Agarwal)
300ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
310ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#ifndef CERES_PUBLIC_SOLVER_H_
320ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#define CERES_PUBLIC_SOLVER_H_
330ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
340ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include <cmath>
350ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include <string>
360ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include <vector>
370ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include "ceres/crs_matrix.h"
380ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include "ceres/internal/macros.h"
390ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include "ceres/internal/port.h"
400ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include "ceres/iteration_callback.h"
410ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include "ceres/ordered_groups.h"
420ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include "ceres/types.h"
430ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
440ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongnamespace ceres {
450ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
460ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongclass Problem;
470ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
480ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Interface for non-linear least squares solvers.
490ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongclass Solver {
500ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong public:
510ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  virtual ~Solver();
520ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
530ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // The options structure contains, not surprisingly, options that control how
540ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // the solver operates. The defaults should be suitable for a wide range of
550ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // problems; however, better performance is often obtainable with tweaking.
560ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  //
570ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // The constants are defined inside types.h
580ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  struct Options {
590ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Default constructor that sets up a generic sparse problem.
600ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    Options() {
610ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      trust_region_strategy_type = LEVENBERG_MARQUARDT;
620ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      dogleg_type = TRADITIONAL_DOGLEG;
630ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      use_nonmonotonic_steps = false;
640ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      max_consecutive_nonmonotonic_steps = 5;
650ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      max_num_iterations = 50;
660ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      max_solver_time_in_seconds = 1e9;
670ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      num_threads = 1;
680ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      initial_trust_region_radius = 1e4;
690ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      max_trust_region_radius = 1e16;
700ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      min_trust_region_radius = 1e-32;
710ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      min_relative_decrease = 1e-3;
720ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      lm_min_diagonal = 1e-6;
730ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      lm_max_diagonal = 1e32;
740ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      max_num_consecutive_invalid_steps = 5;
750ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      function_tolerance = 1e-6;
760ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      gradient_tolerance = 1e-10;
770ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      parameter_tolerance = 1e-8;
780ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
790ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#if defined(CERES_NO_SUITESPARSE) && defined(CERES_NO_CXSPARSE)
800ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      linear_solver_type = DENSE_QR;
810ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#else
820ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      linear_solver_type = SPARSE_NORMAL_CHOLESKY;
830ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#endif
840ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
850ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      preconditioner_type = JACOBI;
860ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
870ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      sparse_linear_algebra_library = SUITE_SPARSE;
880ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#if defined(CERES_NO_SUITESPARSE) && !defined(CERES_NO_CXSPARSE)
890ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      sparse_linear_algebra_library = CX_SPARSE;
900ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#endif
910ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
920ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      num_linear_solver_threads = 1;
930ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
940ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#if defined(CERES_NO_SUITESPARSE)
950ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      use_block_amd = false;
960ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#else
970ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      use_block_amd = true;
980ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#endif
990ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      linear_solver_ordering = NULL;
1000ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      use_inner_iterations = false;
1010ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      inner_iteration_ordering = NULL;
1020ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      linear_solver_min_num_iterations = 1;
1030ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      linear_solver_max_num_iterations = 500;
1040ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      eta = 1e-1;
1050ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      jacobi_scaling = true;
1060ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      logging_type = PER_MINIMIZER_ITERATION;
1070ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      minimizer_progress_to_stdout = false;
1080ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      return_initial_residuals = false;
1090ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      return_initial_gradient = false;
1100ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      return_initial_jacobian = false;
1110ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      return_final_residuals = false;
1120ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      return_final_gradient = false;
1130ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      return_final_jacobian = false;
1140ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      lsqp_dump_directory = "/tmp";
1150ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      lsqp_dump_format_type = TEXTFILE;
1160ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      check_gradients = false;
1170ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      gradient_check_relative_precision = 1e-8;
1180ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      numeric_derivative_relative_step_size = 1e-6;
1190ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      update_state_every_iteration = false;
1200ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    }
1210ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1220ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    ~Options();
1230ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Minimizer options ----------------------------------------
1240ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1250ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    TrustRegionStrategyType trust_region_strategy_type;
1260ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1270ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Type of dogleg strategy to use.
1280ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    DoglegType dogleg_type;
1290ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1300ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // The classical trust region methods are descent methods, in that
1310ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // they only accept a point if it strictly reduces the value of
1320ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // the objective function.
1330ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
1340ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Relaxing this requirement allows the algorithm to be more
1350ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // efficient in the long term at the cost of some local increase
1360ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // in the value of the objective function.
1370ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
1380ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // This is because allowing for non-decreasing objective function
1390ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // values in a princpled manner allows the algorithm to "jump over
1400ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // boulders" as the method is not restricted to move into narrow
1410ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // valleys while preserving its convergence properties.
1420ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
1430ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Setting use_nonmonotonic_steps to true enables the
1440ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // non-monotonic trust region algorithm as described by Conn,
1450ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Gould & Toint in "Trust Region Methods", Section 10.1.
1460ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
1470ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // The parameter max_consecutive_nonmonotonic_steps controls the
1480ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // window size used by the step selection algorithm to accept
1490ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // non-monotonic steps.
1500ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
1510ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Even though the value of the objective function may be larger
1520ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // than the minimum value encountered over the course of the
1530ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // optimization, the final parameters returned to the user are the
1540ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // ones corresponding to the minimum cost over all iterations.
1550ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    bool use_nonmonotonic_steps;
1560ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    int max_consecutive_nonmonotonic_steps;
1570ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1580ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Maximum number of iterations for the minimizer to run for.
1590ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    int max_num_iterations;
1600ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1610ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Maximum time for which the minimizer should run for.
1620ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    double max_solver_time_in_seconds;
1630ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1640ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Number of threads used by Ceres for evaluating the cost and
1650ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // jacobians.
1660ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    int num_threads;
1670ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1680ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Trust region minimizer settings.
1690ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    double initial_trust_region_radius;
1700ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    double max_trust_region_radius;
1710ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1720ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Minimizer terminates when the trust region radius becomes
1730ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // smaller than this value.
1740ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    double min_trust_region_radius;
1750ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1760ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Lower bound for the relative decrease before a step is
1770ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // accepted.
1780ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    double min_relative_decrease;
1790ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1800ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // For the Levenberg-Marquadt algorithm, the scaled diagonal of
1810ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // the normal equations J'J is used to control the size of the
1820ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // trust region. Extremely small and large values along the
1830ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // diagonal can make this regularization scheme
1840ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // fail. lm_max_diagonal and lm_min_diagonal, clamp the values of
1850ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // diag(J'J) from above and below. In the normal course of
1860ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // operation, the user should not have to modify these parameters.
1870ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    double lm_min_diagonal;
1880ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    double lm_max_diagonal;
1890ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1900ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Sometimes due to numerical conditioning problems or linear
1910ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // solver flakiness, the trust region strategy may return a
1920ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // numerically invalid step that can be fixed by reducing the
1930ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // trust region size. So the TrustRegionMinimizer allows for a few
1940ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // successive invalid steps before it declares NUMERICAL_FAILURE.
1950ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    int max_num_consecutive_invalid_steps;
1960ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1970ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Minimizer terminates when
1980ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
1990ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //   (new_cost - old_cost) < function_tolerance * old_cost;
2000ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
2010ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    double function_tolerance;
2020ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
2030ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Minimizer terminates when
2040ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
2050ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //   max_i |gradient_i| < gradient_tolerance * max_i|initial_gradient_i|
2060ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
2070ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // This value should typically be 1e-4 * function_tolerance.
2080ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    double gradient_tolerance;
2090ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
2100ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Minimizer terminates when
2110ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
2120ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //   |step|_2 <= parameter_tolerance * ( |x|_2 +  parameter_tolerance)
2130ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
2140ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    double parameter_tolerance;
2150ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
2160ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Linear least squares solver options -------------------------------------
2170ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
2180ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    LinearSolverType linear_solver_type;
2190ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
2200ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Type of preconditioner to use with the iterative linear solvers.
2210ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    PreconditionerType preconditioner_type;
2220ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
2230ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Ceres supports using multiple sparse linear algebra libraries
2240ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // for sparse matrix ordering and factorizations. Currently,
2250ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // SUITE_SPARSE and CX_SPARSE are the valid choices, depending on
2260ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // whether they are linked into Ceres at build time.
2270ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    SparseLinearAlgebraLibraryType sparse_linear_algebra_library;
2280ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
2290ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Number of threads used by Ceres to solve the Newton
2300ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // step. Currently only the SPARSE_SCHUR solver is capable of
2310ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // using this setting.
2320ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    int num_linear_solver_threads;
2330ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
2340ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // The order in which variables are eliminated in a linear solver
2350ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // can have a significant of impact on the efficiency and accuracy
2360ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // of the method. e.g., when doing sparse Cholesky factorization,
2370ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // there are matrices for which a good ordering will give a
2380ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Cholesky factor with O(n) storage, where as a bad ordering will
2390ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // result in an completely dense factor.
2400ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
2410ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Ceres allows the user to provide varying amounts of hints to
2420ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // the solver about the variable elimination ordering to use. This
2430ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // can range from no hints, where the solver is free to decide the
2440ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // best possible ordering based on the user's choices like the
2450ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // linear solver being used, to an exact order in which the
2460ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // variables should be eliminated, and a variety of possibilities
2470ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // in between.
2480ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
2490ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Instances of the ParameterBlockOrdering class are used to
2500ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // communicate this information to Ceres.
2510ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
2520ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Formally an ordering is an ordered partitioning of the
2530ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // parameter blocks, i.e, each parameter block belongs to exactly
2540ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // one group, and each group has a unique non-negative integer
2550ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // associated with it, that determines its order in the set of
2560ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // groups.
2570ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
2580ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Given such an ordering, Ceres ensures that the parameter blocks in
2590ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // the lowest numbered group are eliminated first, and then the
2600ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // parmeter blocks in the next lowest numbered group and so on. Within
2610ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // each group, Ceres is free to order the parameter blocks as it
2620ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // chooses.
2630ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
2640ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // If NULL, then all parameter blocks are assumed to be in the
2650ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // same group and the solver is free to decide the best
2660ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // ordering.
2670ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
2680ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // e.g. Consider the linear system
2690ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
2700ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //   x + y = 3
2710ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //   2x + 3y = 7
2720ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
2730ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // There are two ways in which it can be solved. First eliminating x
2740ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // from the two equations, solving for y and then back substituting
2750ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // for x, or first eliminating y, solving for x and back substituting
2760ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // for y. The user can construct three orderings here.
2770ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
2780ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //   {0: x}, {1: y} - eliminate x first.
2790ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //   {0: y}, {1: x} - eliminate y first.
2800ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //   {0: x, y}      - Solver gets to decide the elimination order.
2810ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
2820ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Thus, to have Ceres determine the ordering automatically using
2830ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // heuristics, put all the variables in group 0 and to control the
2840ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // ordering for every variable, create groups 0..N-1, one per
2850ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // variable, in the desired order.
2860ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
2870ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Bundle Adjustment
2880ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // -----------------
2890ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
2900ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // A particular case of interest is bundle adjustment, where the user
2910ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // has two options. The default is to not specify an ordering at all,
2920ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // the solver will see that the user wants to use a Schur type solver
2930ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // and figure out the right elimination ordering.
2940ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
2950ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // But if the user already knows what parameter blocks are points and
2960ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // what are cameras, they can save preprocessing time by partitioning
2970ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // the parameter blocks into two groups, one for the points and one
2980ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // for the cameras, where the group containing the points has an id
2990ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // smaller than the group containing cameras.
3000ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
3010ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Once assigned, Solver::Options owns this pointer and will
3020ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // deallocate the memory when destroyed.
3030ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    ParameterBlockOrdering* linear_solver_ordering;
3040ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
3050ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // By virtue of the modeling layer in Ceres being block oriented,
3060ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // all the matrices used by Ceres are also block oriented. When
3070ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // doing sparse direct factorization of these matrices (for
3080ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // SPARSE_NORMAL_CHOLESKY, SPARSE_SCHUR and ITERATIVE in
3090ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // conjunction with CLUSTER_TRIDIAGONAL AND CLUSTER_JACOBI
3100ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // preconditioners), the fill-reducing ordering algorithms can
3110ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // either be run on the block or the scalar form of these matrices.
3120ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Running it on the block form exposes more of the super-nodal
3130ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // structure of the matrix to the factorization routines. Setting
3140ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // this parameter to true runs the ordering algorithms in block
3150ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // form. Currently this option only makes sense with
3160ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // sparse_linear_algebra_library = SUITE_SPARSE.
3170ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    bool use_block_amd;
3180ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
3190ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Some non-linear least squares problems have additional
3200ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // structure in the way the parameter blocks interact that it is
3210ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // beneficial to modify the way the trust region step is computed.
3220ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
3230ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // e.g., consider the following regression problem
3240ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
3250ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //   y = a_1 exp(b_1 x) + a_2 exp(b_3 x^2 + c_1)
3260ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
3270ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Given a set of pairs{(x_i, y_i)}, the user wishes to estimate
3280ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // a_1, a_2, b_1, b_2, and c_1.
3290ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
3300ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Notice here that the expression on the left is linear in a_1
3310ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // and a_2, and given any value for b_1, b_2 and c_1, it is
3320ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // possible to use linear regression to estimate the optimal
3330ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // values of a_1 and a_2. Indeed, its possible to analytically
3340ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // eliminate the variables a_1 and a_2 from the problem all
3350ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // together. Problems like these are known as separable least
3360ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // squares problem and the most famous algorithm for solving them
3370ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // is the Variable Projection algorithm invented by Golub &
3380ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Pereyra.
3390ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
3400ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Similar structure can be found in the matrix factorization with
3410ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // missing data problem. There the corresponding algorithm is
3420ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // known as Wiberg's algorithm.
3430ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
3440ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Ruhe & Wedin (Algorithms for Separable Nonlinear Least Squares
3450ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Problems, SIAM Reviews, 22(3), 1980) present an analyis of
3460ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // various algorithms for solving separable non-linear least
3470ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // squares problems and refer to "Variable Projection" as
3480ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Algorithm I in their paper.
3490ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
3500ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Implementing Variable Projection is tedious and expensive, and
3510ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // they present a simpler algorithm, which they refer to as
3520ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Algorithm II, where once the Newton/Trust Region step has been
3530ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // computed for the whole problem (a_1, a_2, b_1, b_2, c_1) and
3540ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // additional optimization step is performed to estimate a_1 and
3550ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // a_2 exactly.
3560ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
3570ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // This idea can be generalized to cases where the residual is not
3580ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // linear in a_1 and a_2, i.e., Solve for the trust region step
3590ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // for the full problem, and then use it as the starting point to
3600ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // further optimize just a_1 and a_2. For the linear case, this
3610ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // amounts to doing a single linear least squares solve. For
3620ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // non-linear problems, any method for solving the a_1 and a_2
3630ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // optimization problems will do. The only constraint on a_1 and
3640ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // a_2 is that they do not co-occur in any residual block.
3650ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
3660ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // This idea can be further generalized, by not just optimizing
3670ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // (a_1, a_2), but decomposing the graph corresponding to the
3680ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Hessian matrix's sparsity structure in a collection of
3690ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // non-overlapping independent sets and optimizing each of them.
3700ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
3710ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Setting "use_inner_iterations" to true enables the use of this
3720ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // non-linear generalization of Ruhe & Wedin's Algorithm II.  This
3730ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // version of Ceres has a higher iteration complexity, but also
3740ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // displays better convergence behaviour per iteration. Setting
3750ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Solver::Options::num_threads to the maximum number possible is
3760ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // highly recommended.
3770ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    bool use_inner_iterations;
3780ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
3790ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // If inner_iterations is true, then the user has two choices.
3800ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
3810ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // 1. Let the solver heuristically decide which parameter blocks
3820ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //    to optimize in each inner iteration. To do this leave
3830ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //    Solver::Options::inner_iteration_ordering untouched.
3840ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
3850ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // 2. Specify a collection of of ordered independent sets. Where
3860ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //    the lower numbered groups are optimized before the higher
3870ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //    number groups. Each group must be an independent set.
3880ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    ParameterBlockOrdering* inner_iteration_ordering;
3890ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
3900ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Minimum number of iterations for which the linear solver should
3910ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // run, even if the convergence criterion is satisfied.
3920ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    int linear_solver_min_num_iterations;
3930ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
3940ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Maximum number of iterations for which the linear solver should
3950ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // run. If the solver does not converge in less than
3960ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // linear_solver_max_num_iterations, then it returns
3970ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // MAX_ITERATIONS, as its termination type.
3980ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    int linear_solver_max_num_iterations;
3990ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
4000ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Forcing sequence parameter. The truncated Newton solver uses
4010ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // this number to control the relative accuracy with which the
4020ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Newton step is computed.
4030ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
4040ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // This constant is passed to ConjugateGradientsSolver which uses
4050ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // it to terminate the iterations when
4060ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
4070ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //  (Q_i - Q_{i-1})/Q_i < eta/i
4080ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    double eta;
4090ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
4100ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Normalize the jacobian using Jacobi scaling before calling
4110ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // the linear least squares solver.
4120ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    bool jacobi_scaling;
4130ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
4140ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Logging options ---------------------------------------------------------
4150ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
4160ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    LoggingType logging_type;
4170ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
4180ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // By default the Minimizer progress is logged to VLOG(1), which
4190ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // is sent to STDERR depending on the vlog level. If this flag is
4200ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // set to true, and logging_type is not SILENT, the logging output
4210ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // is sent to STDOUT.
4220ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    bool minimizer_progress_to_stdout;
4230ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
4240ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    bool return_initial_residuals;
4250ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    bool return_initial_gradient;
4260ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    bool return_initial_jacobian;
4270ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
4280ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    bool return_final_residuals;
4290ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    bool return_final_gradient;
4300ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    bool return_final_jacobian;
4310ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
4320ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // List of iterations at which the optimizer should dump the
4330ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // linear least squares problem to disk. Useful for testing and
4340ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // benchmarking. If empty (default), no problems are dumped.
4350ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
4360ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // This is ignored if protocol buffers are disabled.
4370ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    vector<int> lsqp_iterations_to_dump;
4380ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    string lsqp_dump_directory;
4390ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    DumpFormatType lsqp_dump_format_type;
4400ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
4410ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Finite differences options ----------------------------------------------
4420ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
4430ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Check all jacobians computed by each residual block with finite
4440ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // differences. This is expensive since it involves computing the
4450ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // derivative by normal means (e.g. user specified, autodiff,
4460ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // etc), then also computing it using finite differences. The
4470ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // results are compared, and if they differ substantially, details
4480ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // are printed to the log.
4490ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    bool check_gradients;
4500ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
4510ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Relative precision to check for in the gradient checker. If the
4520ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // relative difference between an element in a jacobian exceeds
4530ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // this number, then the jacobian for that cost term is dumped.
4540ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    double gradient_check_relative_precision;
4550ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
4560ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Relative shift used for taking numeric derivatives. For finite
4570ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // differencing, each dimension is evaluated at slightly shifted
4580ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // values; for the case of central difference, this is what gets
4590ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // evaluated:
4600ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
4610ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //   delta = numeric_derivative_relative_step_size;
4620ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //   f_initial  = f(x)
4630ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //   f_forward  = f((1 + delta) * x)
4640ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //   f_backward = f((1 - delta) * x)
4650ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
4660ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // The finite differencing is done along each dimension. The
4670ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // reason to use a relative (rather than absolute) step size is
4680ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // that this way, numeric differentation works for functions where
4690ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // the arguments are typically large (e.g. 1e9) and when the
4700ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // values are small (e.g. 1e-5). It is possible to construct
4710ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // "torture cases" which break this finite difference heuristic,
4720ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // but they do not come up often in practice.
4730ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
4740ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // TODO(keir): Pick a smarter number than the default above! In
4750ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // theory a good choice is sqrt(eps) * x, which for doubles means
4760ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // about 1e-8 * x. However, I have found this number too
4770ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // optimistic. This number should be exposed for users to change.
4780ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    double numeric_derivative_relative_step_size;
4790ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
4800ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // If true, the user's parameter blocks are updated at the end of
4810ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // every Minimizer iteration, otherwise they are updated when the
4820ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Minimizer terminates. This is useful if, for example, the user
4830ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // wishes to visualize the state of the optimization every
4840ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // iteration.
4850ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    bool update_state_every_iteration;
4860ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
4870ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Callbacks that are executed at the end of each iteration of the
4880ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Minimizer. An iteration may terminate midway, either due to
4890ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // numerical failures or because one of the convergence tests has
4900ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // been satisfied. In this case none of the callbacks are
4910ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // executed.
4920ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
4930ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Callbacks are executed in the order that they are specified in
4940ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // this vector. By default, parameter blocks are updated only at
4950ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // the end of the optimization, i.e when the Minimizer
4960ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // terminates. This behaviour is controlled by
4970ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // update_state_every_variable. If the user wishes to have access
4980ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // to the update parameter blocks when his/her callbacks are
4990ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // executed, then set update_state_every_iteration to true.
5000ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
5010ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // The solver does NOT take ownership of these pointers.
5020ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    vector<IterationCallback*> callbacks;
5030ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
5040ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // If non-empty, a summary of the execution of the solver is
5050ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // recorded to this file.
5060ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    string solver_log;
5070ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  };
5080ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
5090ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  struct Summary {
5100ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    Summary();
5110ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
5120ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // A brief one line description of the state of the solver after
5130ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // termination.
5140ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    string BriefReport() const;
5150ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
5160ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // A full multiline description of the state of the solver after
5170ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // termination.
5180ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    string FullReport() const;
5190ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
5200ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Minimizer summary -------------------------------------------------
5210ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    SolverTerminationType termination_type;
5220ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
5230ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // If the solver did not run, or there was a failure, a
5240ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // description of the error.
5250ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    string error;
5260ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
5270ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Cost of the problem before and after the optimization. See
5280ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // problem.h for definition of the cost of a problem.
5290ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    double initial_cost;
5300ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    double final_cost;
5310ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
5320ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // The part of the total cost that comes from residual blocks that
5330ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // were held fixed by the preprocessor because all the parameter
5340ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // blocks that they depend on were fixed.
5350ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    double fixed_cost;
5360ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
5370ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Vectors of residuals before and after the optimization. The
5380ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // entries of these vectors are in the order in which
5390ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // ResidualBlocks were added to the Problem object.
5400ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
5410ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Whether the residual vectors are populated with values is
5420ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // controlled by Solver::Options::return_initial_residuals and
5430ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Solver::Options::return_final_residuals respectively.
5440ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    vector<double> initial_residuals;
5450ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    vector<double> final_residuals;
5460ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
5470ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Gradient vectors, before and after the optimization.  The rows
5480ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // are in the same order in which the ParameterBlocks were added
5490ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // to the Problem object.
5500ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
5510ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // NOTE: Since AddResidualBlock adds ParameterBlocks to the
5520ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Problem automatically if they do not already exist, if you wish
5530ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // to have explicit control over the ordering of the vectors, then
5540ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // use Problem::AddParameterBlock to explicitly add the
5550ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // ParameterBlocks in the order desired.
5560ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
5570ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Whether the vectors are populated with values is controlled by
5580ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Solver::Options::return_initial_gradient and
5590ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Solver::Options::return_final_gradient respectively.
5600ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    vector<double> initial_gradient;
5610ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    vector<double> final_gradient;
5620ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
5630ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Jacobian matrices before and after the optimization. The rows
5640ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // of these matrices are in the same order in which the
5650ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // ResidualBlocks were added to the Problem object. The columns
5660ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // are in the same order in which the ParameterBlocks were added
5670ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // to the Problem object.
5680ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
5690ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // NOTE: Since AddResidualBlock adds ParameterBlocks to the
5700ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Problem automatically if they do not already exist, if you wish
5710ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // to have explicit control over the column ordering of the
5720ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // matrix, then use Problem::AddParameterBlock to explicitly add
5730ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // the ParameterBlocks in the order desired.
5740ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
5750ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // The Jacobian matrices are stored as compressed row sparse
5760ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // matrices. Please see ceres/crs_matrix.h for more details of the
5770ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // format.
5780ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
5790ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Whether the Jacboan matrices are populated with values is
5800ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // controlled by Solver::Options::return_initial_jacobian and
5810ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Solver::Options::return_final_jacobian respectively.
5820ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    CRSMatrix initial_jacobian;
5830ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    CRSMatrix final_jacobian;
5840ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
5850ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    vector<IterationSummary> iterations;
5860ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
5870ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    int num_successful_steps;
5880ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    int num_unsuccessful_steps;
5890ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
5900ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // When the user calls Solve, before the actual optimization
5910ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // occurs, Ceres performs a number of preprocessing steps. These
5920ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // include error checks, memory allocations, and reorderings. This
5930ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // time is accounted for as preprocessing time.
5940ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    double preprocessor_time_in_seconds;
5950ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
5960ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Time spent in the TrustRegionMinimizer.
5970ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    double minimizer_time_in_seconds;
5980ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
5990ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // After the Minimizer is finished, some time is spent in
6000ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // re-evaluating residuals etc. This time is accounted for in the
6010ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // postprocessor time.
6020ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    double postprocessor_time_in_seconds;
6030ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
6040ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Some total of all time spent inside Ceres when Solve is called.
6050ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    double total_time_in_seconds;
6060ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
6070ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Preprocessor summary.
6080ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    int num_parameter_blocks;
6090ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    int num_parameters;
6100ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    int num_residual_blocks;
6110ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    int num_residuals;
6120ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
6130ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    int num_parameter_blocks_reduced;
6140ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    int num_parameters_reduced;
6150ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    int num_residual_blocks_reduced;
6160ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    int num_residuals_reduced;
6170ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
6180ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    int num_eliminate_blocks_given;
6190ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    int num_eliminate_blocks_used;
6200ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
6210ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    int num_threads_given;
6220ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    int num_threads_used;
6230ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
6240ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    int num_linear_solver_threads_given;
6250ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    int num_linear_solver_threads_used;
6260ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
6270ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    LinearSolverType linear_solver_type_given;
6280ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    LinearSolverType linear_solver_type_used;
6290ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
6300ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    PreconditionerType preconditioner_type;
6310ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
6320ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    TrustRegionStrategyType trust_region_strategy_type;
6330ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    DoglegType dogleg_type;
6340ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    SparseLinearAlgebraLibraryType sparse_linear_algebra_library;
6350ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  };
6360ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
6370ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // Once a least squares problem has been built, this function takes
6380ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // the problem and optimizes it based on the values of the options
6390ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // parameters. Upon return, a detailed summary of the work performed
6400ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // by the preprocessor, the non-linear minmizer and the linear
6410ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // solver are reported in the summary object.
6420ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  virtual void Solve(const Options& options,
6430ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong                     Problem* problem,
6440ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong                     Solver::Summary* summary);
6450ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong};
6460ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
6470ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Helper function which avoids going through the interface.
6480ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongvoid Solve(const Solver::Options& options,
6490ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong           Problem* problem,
6500ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong           Solver::Summary* summary);
6510ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
6520ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong}  // namespace ceres
6530ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
6540ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#endif  // CERES_PUBLIC_SOLVER_H_
655