1// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9//   this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11//   this list of conditions and the following disclaimer in the documentation
12//   and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14//   used to endorse or promote products derived from this software without
15//   specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30//
31// A preconditioned conjugate gradients solver
32// (ConjugateGradientsSolver) for positive semidefinite linear
33// systems.
34//
35// We have also augmented the termination criterion used by this
36// solver to support not just residual based termination but also
37// termination based on decrease in the value of the quadratic model
38// that CG optimizes.
39
40#include "ceres/conjugate_gradients_solver.h"
41
42#include <cmath>
43#include <cstddef>
44#include "ceres/fpclassify.h"
45#include "ceres/internal/eigen.h"
46#include "ceres/linear_operator.h"
47#include "ceres/stringprintf.h"
48#include "ceres/types.h"
49#include "glog/logging.h"
50
51namespace ceres {
52namespace internal {
53namespace {
54
55bool IsZeroOrInfinity(double x) {
56  return ((x == 0.0) || (IsInfinite(x)));
57}
58
59}  // namespace
60
61ConjugateGradientsSolver::ConjugateGradientsSolver(
62    const LinearSolver::Options& options)
63    : options_(options) {
64}
65
66LinearSolver::Summary ConjugateGradientsSolver::Solve(
67    LinearOperator* A,
68    const double* b,
69    const LinearSolver::PerSolveOptions& per_solve_options,
70    double* x) {
71  CHECK_NOTNULL(A);
72  CHECK_NOTNULL(x);
73  CHECK_NOTNULL(b);
74  CHECK_EQ(A->num_rows(), A->num_cols());
75
76  LinearSolver::Summary summary;
77  summary.termination_type = LINEAR_SOLVER_NO_CONVERGENCE;
78  summary.message = "Maximum number of iterations reached.";
79  summary.num_iterations = 0;
80
81  const int num_cols = A->num_cols();
82  VectorRef xref(x, num_cols);
83  ConstVectorRef bref(b, num_cols);
84
85  const double norm_b = bref.norm();
86  if (norm_b == 0.0) {
87    xref.setZero();
88    summary.termination_type = LINEAR_SOLVER_SUCCESS;
89    summary.message = "Convergence. |b| = 0.";
90    return summary;
91  }
92
93  Vector r(num_cols);
94  Vector p(num_cols);
95  Vector z(num_cols);
96  Vector tmp(num_cols);
97
98  const double tol_r = per_solve_options.r_tolerance * norm_b;
99
100  tmp.setZero();
101  A->RightMultiply(x, tmp.data());
102  r = bref - tmp;
103  double norm_r = r.norm();
104  if (norm_r <= tol_r) {
105    summary.termination_type = LINEAR_SOLVER_SUCCESS;
106    summary.message =
107        StringPrintf("Convergence. |r| = %e <= %e.", norm_r, tol_r);
108    return summary;
109  }
110
111  double rho = 1.0;
112
113  // Initial value of the quadratic model Q = x'Ax - 2 * b'x.
114  double Q0 = -1.0 * xref.dot(bref + r);
115
116  for (summary.num_iterations = 1;
117       summary.num_iterations < options_.max_num_iterations;
118       ++summary.num_iterations) {
119    // Apply preconditioner
120    if (per_solve_options.preconditioner != NULL) {
121      z.setZero();
122      per_solve_options.preconditioner->RightMultiply(r.data(), z.data());
123    } else {
124      z = r;
125    }
126
127    double last_rho = rho;
128    rho = r.dot(z);
129    if (IsZeroOrInfinity(rho)) {
130      summary.termination_type = LINEAR_SOLVER_FAILURE;
131      summary.message = StringPrintf("Numerical failure. rho = r'z = %e.", rho);
132      break;
133    };
134
135    if (summary.num_iterations == 1) {
136      p = z;
137    } else {
138      double beta = rho / last_rho;
139      if (IsZeroOrInfinity(beta)) {
140        summary.termination_type = LINEAR_SOLVER_FAILURE;
141        summary.message = StringPrintf(
142            "Numerical failure. beta = rho_n / rho_{n-1} = %e.", beta);
143        break;
144      }
145      p = z + beta * p;
146    }
147
148    Vector& q = z;
149    q.setZero();
150    A->RightMultiply(p.data(), q.data());
151    const double pq = p.dot(q);
152    if ((pq <= 0) || IsInfinite(pq))  {
153      summary.termination_type = LINEAR_SOLVER_FAILURE;
154      summary.message = StringPrintf("Numerical failure. p'q = %e.", pq);
155      break;
156    }
157
158    const double alpha = rho / pq;
159    if (IsInfinite(alpha)) {
160      summary.termination_type = LINEAR_SOLVER_FAILURE;
161      summary.message =
162          StringPrintf("Numerical failure. alpha = rho / pq = %e", alpha);
163      break;
164    }
165
166    xref = xref + alpha * p;
167
168    // Ideally we would just use the update r = r - alpha*q to keep
169    // track of the residual vector. However this estimate tends to
170    // drift over time due to round off errors. Thus every
171    // residual_reset_period iterations, we calculate the residual as
172    // r = b - Ax. We do not do this every iteration because this
173    // requires an additional matrix vector multiply which would
174    // double the complexity of the CG algorithm.
175    if (summary.num_iterations % options_.residual_reset_period == 0) {
176      tmp.setZero();
177      A->RightMultiply(x, tmp.data());
178      r = bref - tmp;
179    } else {
180      r = r - alpha * q;
181    }
182
183    // Quadratic model based termination.
184    //   Q1 = x'Ax - 2 * b' x.
185    const double Q1 = -1.0 * xref.dot(bref + r);
186
187    // For PSD matrices A, let
188    //
189    //   Q(x) = x'Ax - 2b'x
190    //
191    // be the cost of the quadratic function defined by A and b. Then,
192    // the solver terminates at iteration i if
193    //
194    //   i * (Q(x_i) - Q(x_i-1)) / Q(x_i) < q_tolerance.
195    //
196    // This termination criterion is more useful when using CG to
197    // solve the Newton step. This particular convergence test comes
198    // from Stephen Nash's work on truncated Newton
199    // methods. References:
200    //
201    //   1. Stephen G. Nash & Ariela Sofer, Assessing A Search
202    //   Direction Within A Truncated Newton Method, Operation
203    //   Research Letters 9(1990) 219-221.
204    //
205    //   2. Stephen G. Nash, A Survey of Truncated Newton Methods,
206    //   Journal of Computational and Applied Mathematics,
207    //   124(1-2), 45-59, 2000.
208    //
209    const double zeta = summary.num_iterations * (Q1 - Q0) / Q1;
210    if (zeta < per_solve_options.q_tolerance) {
211      summary.termination_type = LINEAR_SOLVER_SUCCESS;
212      summary.message =
213          StringPrintf("Convergence: zeta = %e < %e",
214                       zeta,
215                       per_solve_options.q_tolerance);
216      break;
217    }
218    Q0 = Q1;
219
220    // Residual based termination.
221    norm_r = r. norm();
222    if (norm_r <= tol_r) {
223      summary.termination_type = LINEAR_SOLVER_SUCCESS;
224      summary.message =
225          StringPrintf("Convergence. |r| = %e <= %e.", norm_r, tol_r);
226      break;
227    }
228  }
229
230  return summary;
231};
232
233}  // namespace internal
234}  // namespace ceres
235