1// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9//   this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11//   this list of conditions and the following disclaimer in the documentation
12//   and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14//   used to endorse or promote products derived from this software without
15//   specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30
31#include "ceres/dogleg_strategy.h"
32
33#include <cmath>
34#include "Eigen/Dense"
35#include "ceres/array_utils.h"
36#include "ceres/internal/eigen.h"
37#include "ceres/linear_least_squares_problems.h"
38#include "ceres/linear_solver.h"
39#include "ceres/polynomial.h"
40#include "ceres/sparse_matrix.h"
41#include "ceres/trust_region_strategy.h"
42#include "ceres/types.h"
43#include "glog/logging.h"
44
45namespace ceres {
46namespace internal {
47namespace {
48const double kMaxMu = 1.0;
49const double kMinMu = 1e-8;
50}
51
52DoglegStrategy::DoglegStrategy(const TrustRegionStrategy::Options& options)
53    : linear_solver_(options.linear_solver),
54      radius_(options.initial_radius),
55      max_radius_(options.max_radius),
56      min_diagonal_(options.min_lm_diagonal),
57      max_diagonal_(options.max_lm_diagonal),
58      mu_(kMinMu),
59      min_mu_(kMinMu),
60      max_mu_(kMaxMu),
61      mu_increase_factor_(10.0),
62      increase_threshold_(0.75),
63      decrease_threshold_(0.25),
64      dogleg_step_norm_(0.0),
65      reuse_(false),
66      dogleg_type_(options.dogleg_type) {
67  CHECK_NOTNULL(linear_solver_);
68  CHECK_GT(min_diagonal_, 0.0);
69  CHECK_LE(min_diagonal_, max_diagonal_);
70  CHECK_GT(max_radius_, 0.0);
71}
72
73// If the reuse_ flag is not set, then the Cauchy point (scaled
74// gradient) and the new Gauss-Newton step are computed from
75// scratch. The Dogleg step is then computed as interpolation of these
76// two vectors.
77TrustRegionStrategy::Summary DoglegStrategy::ComputeStep(
78    const TrustRegionStrategy::PerSolveOptions& per_solve_options,
79    SparseMatrix* jacobian,
80    const double* residuals,
81    double* step) {
82  CHECK_NOTNULL(jacobian);
83  CHECK_NOTNULL(residuals);
84  CHECK_NOTNULL(step);
85
86  const int n = jacobian->num_cols();
87  if (reuse_) {
88    // Gauss-Newton and gradient vectors are always available, only a
89    // new interpolant need to be computed. For the subspace case,
90    // the subspace and the two-dimensional model are also still valid.
91    switch (dogleg_type_) {
92      case TRADITIONAL_DOGLEG:
93        ComputeTraditionalDoglegStep(step);
94        break;
95
96      case SUBSPACE_DOGLEG:
97        ComputeSubspaceDoglegStep(step);
98        break;
99    }
100    TrustRegionStrategy::Summary summary;
101    summary.num_iterations = 0;
102    summary.termination_type = LINEAR_SOLVER_SUCCESS;
103    return summary;
104  }
105
106  reuse_ = true;
107  // Check that we have the storage needed to hold the various
108  // temporary vectors.
109  if (diagonal_.rows() != n) {
110    diagonal_.resize(n, 1);
111    gradient_.resize(n, 1);
112    gauss_newton_step_.resize(n, 1);
113  }
114
115  // Vector used to form the diagonal matrix that is used to
116  // regularize the Gauss-Newton solve and that defines the
117  // elliptical trust region
118  //
119  //   || D * step || <= radius_ .
120  //
121  jacobian->SquaredColumnNorm(diagonal_.data());
122  for (int i = 0; i < n; ++i) {
123    diagonal_[i] = min(max(diagonal_[i], min_diagonal_), max_diagonal_);
124  }
125  diagonal_ = diagonal_.array().sqrt();
126
127  ComputeGradient(jacobian, residuals);
128  ComputeCauchyPoint(jacobian);
129
130  LinearSolver::Summary linear_solver_summary =
131      ComputeGaussNewtonStep(per_solve_options, jacobian, residuals);
132
133  TrustRegionStrategy::Summary summary;
134  summary.residual_norm = linear_solver_summary.residual_norm;
135  summary.num_iterations = linear_solver_summary.num_iterations;
136  summary.termination_type = linear_solver_summary.termination_type;
137
138  if (linear_solver_summary.termination_type == LINEAR_SOLVER_FATAL_ERROR) {
139    return summary;
140  }
141
142  if (linear_solver_summary.termination_type != LINEAR_SOLVER_FAILURE) {
143    switch (dogleg_type_) {
144      // Interpolate the Cauchy point and the Gauss-Newton step.
145      case TRADITIONAL_DOGLEG:
146        ComputeTraditionalDoglegStep(step);
147        break;
148
149      // Find the minimum in the subspace defined by the
150      // Cauchy point and the (Gauss-)Newton step.
151      case SUBSPACE_DOGLEG:
152        if (!ComputeSubspaceModel(jacobian)) {
153          summary.termination_type = LINEAR_SOLVER_FAILURE;
154          break;
155        }
156        ComputeSubspaceDoglegStep(step);
157        break;
158    }
159  }
160
161  return summary;
162}
163
164// The trust region is assumed to be elliptical with the
165// diagonal scaling matrix D defined by sqrt(diagonal_).
166// It is implemented by substituting step' = D * step.
167// The trust region for step' is spherical.
168// The gradient, the Gauss-Newton step, the Cauchy point,
169// and all calculations involving the Jacobian have to
170// be adjusted accordingly.
171void DoglegStrategy::ComputeGradient(
172    SparseMatrix* jacobian,
173    const double* residuals) {
174  gradient_.setZero();
175  jacobian->LeftMultiply(residuals, gradient_.data());
176  gradient_.array() /= diagonal_.array();
177}
178
179// The Cauchy point is the global minimizer of the quadratic model
180// along the one-dimensional subspace spanned by the gradient.
181void DoglegStrategy::ComputeCauchyPoint(SparseMatrix* jacobian) {
182  // alpha * -gradient is the Cauchy point.
183  Vector Jg(jacobian->num_rows());
184  Jg.setZero();
185  // The Jacobian is scaled implicitly by computing J * (D^-1 * (D^-1 * g))
186  // instead of (J * D^-1) * (D^-1 * g).
187  Vector scaled_gradient =
188      (gradient_.array() / diagonal_.array()).matrix();
189  jacobian->RightMultiply(scaled_gradient.data(), Jg.data());
190  alpha_ = gradient_.squaredNorm() / Jg.squaredNorm();
191}
192
193// The dogleg step is defined as the intersection of the trust region
194// boundary with the piecewise linear path from the origin to the Cauchy
195// point and then from there to the Gauss-Newton point (global minimizer
196// of the model function). The Gauss-Newton point is taken if it lies
197// within the trust region.
198void DoglegStrategy::ComputeTraditionalDoglegStep(double* dogleg) {
199  VectorRef dogleg_step(dogleg, gradient_.rows());
200
201  // Case 1. The Gauss-Newton step lies inside the trust region, and
202  // is therefore the optimal solution to the trust-region problem.
203  const double gradient_norm = gradient_.norm();
204  const double gauss_newton_norm = gauss_newton_step_.norm();
205  if (gauss_newton_norm <= radius_) {
206    dogleg_step = gauss_newton_step_;
207    dogleg_step_norm_ = gauss_newton_norm;
208    dogleg_step.array() /= diagonal_.array();
209    VLOG(3) << "GaussNewton step size: " << dogleg_step_norm_
210            << " radius: " << radius_;
211    return;
212  }
213
214  // Case 2. The Cauchy point and the Gauss-Newton steps lie outside
215  // the trust region. Rescale the Cauchy point to the trust region
216  // and return.
217  if  (gradient_norm * alpha_ >= radius_) {
218    dogleg_step = -(radius_ / gradient_norm) * gradient_;
219    dogleg_step_norm_ = radius_;
220    dogleg_step.array() /= diagonal_.array();
221    VLOG(3) << "Cauchy step size: " << dogleg_step_norm_
222            << " radius: " << radius_;
223    return;
224  }
225
226  // Case 3. The Cauchy point is inside the trust region and the
227  // Gauss-Newton step is outside. Compute the line joining the two
228  // points and the point on it which intersects the trust region
229  // boundary.
230
231  // a = alpha * -gradient
232  // b = gauss_newton_step
233  const double b_dot_a = -alpha_ * gradient_.dot(gauss_newton_step_);
234  const double a_squared_norm = pow(alpha_ * gradient_norm, 2.0);
235  const double b_minus_a_squared_norm =
236      a_squared_norm - 2 * b_dot_a + pow(gauss_newton_norm, 2);
237
238  // c = a' (b - a)
239  //   = alpha * -gradient' gauss_newton_step - alpha^2 |gradient|^2
240  const double c = b_dot_a - a_squared_norm;
241  const double d = sqrt(c * c + b_minus_a_squared_norm *
242                        (pow(radius_, 2.0) - a_squared_norm));
243
244  double beta =
245      (c <= 0)
246      ? (d - c) /  b_minus_a_squared_norm
247      : (radius_ * radius_ - a_squared_norm) / (d + c);
248  dogleg_step = (-alpha_ * (1.0 - beta)) * gradient_
249      + beta * gauss_newton_step_;
250  dogleg_step_norm_ = dogleg_step.norm();
251  dogleg_step.array() /= diagonal_.array();
252  VLOG(3) << "Dogleg step size: " << dogleg_step_norm_
253          << " radius: " << radius_;
254}
255
256// The subspace method finds the minimum of the two-dimensional problem
257//
258//   min. 1/2 x' B' H B x + g' B x
259//   s.t. || B x ||^2 <= r^2
260//
261// where r is the trust region radius and B is the matrix with unit columns
262// spanning the subspace defined by the steepest descent and Newton direction.
263// This subspace by definition includes the Gauss-Newton point, which is
264// therefore taken if it lies within the trust region.
265void DoglegStrategy::ComputeSubspaceDoglegStep(double* dogleg) {
266  VectorRef dogleg_step(dogleg, gradient_.rows());
267
268  // The Gauss-Newton point is inside the trust region if |GN| <= radius_.
269  // This test is valid even though radius_ is a length in the two-dimensional
270  // subspace while gauss_newton_step_ is expressed in the (scaled)
271  // higher dimensional original space. This is because
272  //
273  //   1. gauss_newton_step_ by definition lies in the subspace, and
274  //   2. the subspace basis is orthonormal.
275  //
276  // As a consequence, the norm of the gauss_newton_step_ in the subspace is
277  // the same as its norm in the original space.
278  const double gauss_newton_norm = gauss_newton_step_.norm();
279  if (gauss_newton_norm <= radius_) {
280    dogleg_step = gauss_newton_step_;
281    dogleg_step_norm_ = gauss_newton_norm;
282    dogleg_step.array() /= diagonal_.array();
283    VLOG(3) << "GaussNewton step size: " << dogleg_step_norm_
284            << " radius: " << radius_;
285    return;
286  }
287
288  // The optimum lies on the boundary of the trust region. The above problem
289  // therefore becomes
290  //
291  //   min. 1/2 x^T B^T H B x + g^T B x
292  //   s.t. || B x ||^2 = r^2
293  //
294  // Notice the equality in the constraint.
295  //
296  // This can be solved by forming the Lagrangian, solving for x(y), where
297  // y is the Lagrange multiplier, using the gradient of the objective, and
298  // putting x(y) back into the constraint. This results in a fourth order
299  // polynomial in y, which can be solved using e.g. the companion matrix.
300  // See the description of MakePolynomialForBoundaryConstrainedProblem for
301  // details. The result is up to four real roots y*, not all of which
302  // correspond to feasible points. The feasible points x(y*) have to be
303  // tested for optimality.
304
305  if (subspace_is_one_dimensional_) {
306    // The subspace is one-dimensional, so both the gradient and
307    // the Gauss-Newton step point towards the same direction.
308    // In this case, we move along the gradient until we reach the trust
309    // region boundary.
310    dogleg_step = -(radius_ / gradient_.norm()) * gradient_;
311    dogleg_step_norm_ = radius_;
312    dogleg_step.array() /= diagonal_.array();
313    VLOG(3) << "Dogleg subspace step size (1D): " << dogleg_step_norm_
314            << " radius: " << radius_;
315    return;
316  }
317
318  Vector2d minimum(0.0, 0.0);
319  if (!FindMinimumOnTrustRegionBoundary(&minimum)) {
320    // For the positive semi-definite case, a traditional dogleg step
321    // is taken in this case.
322    LOG(WARNING) << "Failed to compute polynomial roots. "
323                 << "Taking traditional dogleg step instead.";
324    ComputeTraditionalDoglegStep(dogleg);
325    return;
326  }
327
328  // Test first order optimality at the minimum.
329  // The first order KKT conditions state that the minimum x*
330  // has to satisfy either || x* ||^2 < r^2 (i.e. has to lie within
331  // the trust region), or
332  //
333  //   (B x* + g) + y x* = 0
334  //
335  // for some positive scalar y.
336  // Here, as it is already known that the minimum lies on the boundary, the
337  // latter condition is tested. To allow for small imprecisions, we test if
338  // the angle between (B x* + g) and -x* is smaller than acos(0.99).
339  // The exact value of the cosine is arbitrary but should be close to 1.
340  //
341  // This condition should not be violated. If it is, the minimum was not
342  // correctly determined.
343  const double kCosineThreshold = 0.99;
344  const Vector2d grad_minimum = subspace_B_ * minimum + subspace_g_;
345  const double cosine_angle = -minimum.dot(grad_minimum) /
346      (minimum.norm() * grad_minimum.norm());
347  if (cosine_angle < kCosineThreshold) {
348    LOG(WARNING) << "First order optimality seems to be violated "
349                 << "in the subspace method!\n"
350                 << "Cosine of angle between x and B x + g is "
351                 << cosine_angle << ".\n"
352                 << "Taking a regular dogleg step instead.\n"
353                 << "Please consider filing a bug report if this "
354                 << "happens frequently or consistently.\n";
355    ComputeTraditionalDoglegStep(dogleg);
356    return;
357  }
358
359  // Create the full step from the optimal 2d solution.
360  dogleg_step = subspace_basis_ * minimum;
361  dogleg_step_norm_ = radius_;
362  dogleg_step.array() /= diagonal_.array();
363  VLOG(3) << "Dogleg subspace step size: " << dogleg_step_norm_
364          << " radius: " << radius_;
365}
366
367// Build the polynomial that defines the optimal Lagrange multipliers.
368// Let the Lagrangian be
369//
370//   L(x, y) = 0.5 x^T B x + x^T g + y (0.5 x^T x - 0.5 r^2).       (1)
371//
372// Stationary points of the Lagrangian are given by
373//
374//   0 = d L(x, y) / dx = Bx + g + y x                              (2)
375//   0 = d L(x, y) / dy = 0.5 x^T x - 0.5 r^2                       (3)
376//
377// For any given y, we can solve (2) for x as
378//
379//   x(y) = -(B + y I)^-1 g .                                       (4)
380//
381// As B + y I is 2x2, we form the inverse explicitly:
382//
383//   (B + y I)^-1 = (1 / det(B + y I)) adj(B + y I)                 (5)
384//
385// where adj() denotes adjugation. This should be safe, as B is positive
386// semi-definite and y is necessarily positive, so (B + y I) is indeed
387// invertible.
388// Plugging (5) into (4) and the result into (3), then dividing by 0.5 we
389// obtain
390//
391//   0 = (1 / det(B + y I))^2 g^T adj(B + y I)^T adj(B + y I) g - r^2
392//                                                                  (6)
393//
394// or
395//
396//   det(B + y I)^2 r^2 = g^T adj(B + y I)^T adj(B + y I) g         (7a)
397//                      = g^T adj(B)^T adj(B) g
398//                           + 2 y g^T adj(B)^T g + y^2 g^T g       (7b)
399//
400// as
401//
402//   adj(B + y I) = adj(B) + y I = adj(B)^T + y I .                 (8)
403//
404// The left hand side can be expressed explicitly using
405//
406//   det(B + y I) = det(B) + y tr(B) + y^2 .                        (9)
407//
408// So (7) is a polynomial in y of degree four.
409// Bringing everything back to the left hand side, the coefficients can
410// be read off as
411//
412//     y^4  r^2
413//   + y^3  2 r^2 tr(B)
414//   + y^2 (r^2 tr(B)^2 + 2 r^2 det(B) - g^T g)
415//   + y^1 (2 r^2 det(B) tr(B) - 2 g^T adj(B)^T g)
416//   + y^0 (r^2 det(B)^2 - g^T adj(B)^T adj(B) g)
417//
418Vector DoglegStrategy::MakePolynomialForBoundaryConstrainedProblem() const {
419  const double detB = subspace_B_.determinant();
420  const double trB = subspace_B_.trace();
421  const double r2 = radius_ * radius_;
422  Matrix2d B_adj;
423  B_adj <<  subspace_B_(1, 1) , -subspace_B_(0, 1),
424            -subspace_B_(1, 0) ,  subspace_B_(0, 0);
425
426  Vector polynomial(5);
427  polynomial(0) = r2;
428  polynomial(1) = 2.0 * r2 * trB;
429  polynomial(2) = r2 * (trB * trB + 2.0 * detB) - subspace_g_.squaredNorm();
430  polynomial(3) = -2.0 * (subspace_g_.transpose() * B_adj * subspace_g_
431      - r2 * detB * trB);
432  polynomial(4) = r2 * detB * detB - (B_adj * subspace_g_).squaredNorm();
433
434  return polynomial;
435}
436
437// Given a Lagrange multiplier y that corresponds to a stationary point
438// of the Lagrangian L(x, y), compute the corresponding x from the
439// equation
440//
441//   0 = d L(x, y) / dx
442//     = B * x + g + y * x
443//     = (B + y * I) * x + g
444//
445DoglegStrategy::Vector2d DoglegStrategy::ComputeSubspaceStepFromRoot(
446    double y) const {
447  const Matrix2d B_i = subspace_B_ + y * Matrix2d::Identity();
448  return -B_i.partialPivLu().solve(subspace_g_);
449}
450
451// This function evaluates the quadratic model at a point x in the
452// subspace spanned by subspace_basis_.
453double DoglegStrategy::EvaluateSubspaceModel(const Vector2d& x) const {
454  return 0.5 * x.dot(subspace_B_ * x) + subspace_g_.dot(x);
455}
456
457// This function attempts to solve the boundary-constrained subspace problem
458//
459//   min. 1/2 x^T B^T H B x + g^T B x
460//   s.t. || B x ||^2 = r^2
461//
462// where B is an orthonormal subspace basis and r is the trust-region radius.
463//
464// This is done by finding the roots of a fourth degree polynomial. If the
465// root finding fails, the function returns false and minimum will be set
466// to (0, 0). If it succeeds, true is returned.
467//
468// In the failure case, another step should be taken, such as the traditional
469// dogleg step.
470bool DoglegStrategy::FindMinimumOnTrustRegionBoundary(Vector2d* minimum) const {
471  CHECK_NOTNULL(minimum);
472
473  // Return (0, 0) in all error cases.
474  minimum->setZero();
475
476  // Create the fourth-degree polynomial that is a necessary condition for
477  // optimality.
478  const Vector polynomial = MakePolynomialForBoundaryConstrainedProblem();
479
480  // Find the real parts y_i of its roots (not only the real roots).
481  Vector roots_real;
482  if (!FindPolynomialRoots(polynomial, &roots_real, NULL)) {
483    // Failed to find the roots of the polynomial, i.e. the candidate
484    // solutions of the constrained problem. Report this back to the caller.
485    return false;
486  }
487
488  // For each root y, compute B x(y) and check for feasibility.
489  // Notice that there should always be four roots, as the leading term of
490  // the polynomial is r^2 and therefore non-zero. However, as some roots
491  // may be complex, the real parts are not necessarily unique.
492  double minimum_value = std::numeric_limits<double>::max();
493  bool valid_root_found = false;
494  for (int i = 0; i < roots_real.size(); ++i) {
495    const Vector2d x_i = ComputeSubspaceStepFromRoot(roots_real(i));
496
497    // Not all roots correspond to points on the trust region boundary.
498    // There are at most four candidate solutions. As we are interested
499    // in the minimum, it is safe to consider all of them after projecting
500    // them onto the trust region boundary.
501    if (x_i.norm() > 0) {
502      const double f_i = EvaluateSubspaceModel((radius_ / x_i.norm()) * x_i);
503      valid_root_found = true;
504      if (f_i < minimum_value) {
505        minimum_value = f_i;
506        *minimum = x_i;
507      }
508    }
509  }
510
511  return valid_root_found;
512}
513
514LinearSolver::Summary DoglegStrategy::ComputeGaussNewtonStep(
515    const PerSolveOptions& per_solve_options,
516    SparseMatrix* jacobian,
517    const double* residuals) {
518  const int n = jacobian->num_cols();
519  LinearSolver::Summary linear_solver_summary;
520  linear_solver_summary.termination_type = LINEAR_SOLVER_FAILURE;
521
522  // The Jacobian matrix is often quite poorly conditioned. Thus it is
523  // necessary to add a diagonal matrix at the bottom to prevent the
524  // linear solver from failing.
525  //
526  // We do this by computing the same diagonal matrix as the one used
527  // by Levenberg-Marquardt (other choices are possible), and scaling
528  // it by a small constant (independent of the trust region radius).
529  //
530  // If the solve fails, the multiplier to the diagonal is increased
531  // up to max_mu_ by a factor of mu_increase_factor_ every time. If
532  // the linear solver is still not successful, the strategy returns
533  // with LINEAR_SOLVER_FAILURE.
534  //
535  // Next time when a new Gauss-Newton step is requested, the
536  // multiplier starts out from the last successful solve.
537  //
538  // When a step is declared successful, the multiplier is decreased
539  // by half of mu_increase_factor_.
540
541  while (mu_ < max_mu_) {
542    // Dogleg, as far as I (sameeragarwal) understand it, requires a
543    // reasonably good estimate of the Gauss-Newton step. This means
544    // that we need to solve the normal equations more or less
545    // exactly. This is reflected in the values of the tolerances set
546    // below.
547    //
548    // For now, this strategy should only be used with exact
549    // factorization based solvers, for which these tolerances are
550    // automatically satisfied.
551    //
552    // The right way to combine inexact solves with trust region
553    // methods is to use Stiehaug's method.
554    LinearSolver::PerSolveOptions solve_options;
555    solve_options.q_tolerance = 0.0;
556    solve_options.r_tolerance = 0.0;
557
558    lm_diagonal_ = diagonal_ * std::sqrt(mu_);
559    solve_options.D = lm_diagonal_.data();
560
561    // As in the LevenbergMarquardtStrategy, solve Jy = r instead
562    // of Jx = -r and later set x = -y to avoid having to modify
563    // either jacobian or residuals.
564    InvalidateArray(n, gauss_newton_step_.data());
565    linear_solver_summary = linear_solver_->Solve(jacobian,
566                                                  residuals,
567                                                  solve_options,
568                                                  gauss_newton_step_.data());
569
570    if (per_solve_options.dump_format_type == CONSOLE ||
571        (per_solve_options.dump_format_type != CONSOLE &&
572         !per_solve_options.dump_filename_base.empty())) {
573      if (!DumpLinearLeastSquaresProblem(per_solve_options.dump_filename_base,
574                                         per_solve_options.dump_format_type,
575                                         jacobian,
576                                         solve_options.D,
577                                         residuals,
578                                         gauss_newton_step_.data(),
579                                         0)) {
580        LOG(ERROR) << "Unable to dump trust region problem."
581                   << " Filename base: "
582                   << per_solve_options.dump_filename_base;
583      }
584    }
585
586    if (linear_solver_summary.termination_type == LINEAR_SOLVER_FATAL_ERROR) {
587      return linear_solver_summary;
588    }
589
590    if (linear_solver_summary.termination_type == LINEAR_SOLVER_FAILURE ||
591        !IsArrayValid(n, gauss_newton_step_.data())) {
592      mu_ *= mu_increase_factor_;
593      VLOG(2) << "Increasing mu " << mu_;
594      linear_solver_summary.termination_type = LINEAR_SOLVER_FAILURE;
595      continue;
596    }
597    break;
598  }
599
600  if (linear_solver_summary.termination_type != LINEAR_SOLVER_FAILURE) {
601    // The scaled Gauss-Newton step is D * GN:
602    //
603    //     - (D^-1 J^T J D^-1)^-1 (D^-1 g)
604    //   = - D (J^T J)^-1 D D^-1 g
605    //   = D -(J^T J)^-1 g
606    //
607    gauss_newton_step_.array() *= -diagonal_.array();
608  }
609
610  return linear_solver_summary;
611}
612
613void DoglegStrategy::StepAccepted(double step_quality) {
614  CHECK_GT(step_quality, 0.0);
615
616  if (step_quality < decrease_threshold_) {
617    radius_ *= 0.5;
618  }
619
620  if (step_quality > increase_threshold_) {
621    radius_ = max(radius_, 3.0 * dogleg_step_norm_);
622  }
623
624  // Reduce the regularization multiplier, in the hope that whatever
625  // was causing the rank deficiency has gone away and we can return
626  // to doing a pure Gauss-Newton solve.
627  mu_ = max(min_mu_, 2.0 * mu_ / mu_increase_factor_);
628  reuse_ = false;
629}
630
631void DoglegStrategy::StepRejected(double step_quality) {
632  radius_ *= 0.5;
633  reuse_ = true;
634}
635
636void DoglegStrategy::StepIsInvalid() {
637  mu_ *= mu_increase_factor_;
638  reuse_ = false;
639}
640
641double DoglegStrategy::Radius() const {
642  return radius_;
643}
644
645bool DoglegStrategy::ComputeSubspaceModel(SparseMatrix* jacobian) {
646  // Compute an orthogonal basis for the subspace using QR decomposition.
647  Matrix basis_vectors(jacobian->num_cols(), 2);
648  basis_vectors.col(0) = gradient_;
649  basis_vectors.col(1) = gauss_newton_step_;
650  Eigen::ColPivHouseholderQR<Matrix> basis_qr(basis_vectors);
651
652  switch (basis_qr.rank()) {
653    case 0:
654      // This should never happen, as it implies that both the gradient
655      // and the Gauss-Newton step are zero. In this case, the minimizer should
656      // have stopped due to the gradient being too small.
657      LOG(ERROR) << "Rank of subspace basis is 0. "
658                 << "This means that the gradient at the current iterate is "
659                 << "zero but the optimization has not been terminated. "
660                 << "You may have found a bug in Ceres.";
661      return false;
662
663    case 1:
664      // Gradient and Gauss-Newton step coincide, so we lie on one of the
665      // major axes of the quadratic problem. In this case, we simply move
666      // along the gradient until we reach the trust region boundary.
667      subspace_is_one_dimensional_ = true;
668      return true;
669
670    case 2:
671      subspace_is_one_dimensional_ = false;
672      break;
673
674    default:
675      LOG(ERROR) << "Rank of the subspace basis matrix is reported to be "
676                 << "greater than 2. As the matrix contains only two "
677                 << "columns this cannot be true and is indicative of "
678                 << "a bug.";
679      return false;
680  }
681
682  // The subspace is two-dimensional, so compute the subspace model.
683  // Given the basis U, this is
684  //
685  //   subspace_g_ = g_scaled^T U
686  //
687  // and
688  //
689  //   subspace_B_ = U^T (J_scaled^T J_scaled) U
690  //
691  // As J_scaled = J * D^-1, the latter becomes
692  //
693  //   subspace_B_ = ((U^T D^-1) J^T) (J (D^-1 U))
694  //               = (J (D^-1 U))^T (J (D^-1 U))
695
696  subspace_basis_ =
697      basis_qr.householderQ() * Matrix::Identity(jacobian->num_cols(), 2);
698
699  subspace_g_ = subspace_basis_.transpose() * gradient_;
700
701  Eigen::Matrix<double, 2, Eigen::Dynamic, Eigen::RowMajor>
702      Jb(2, jacobian->num_rows());
703  Jb.setZero();
704
705  Vector tmp;
706  tmp = (subspace_basis_.col(0).array() / diagonal_.array()).matrix();
707  jacobian->RightMultiply(tmp.data(), Jb.row(0).data());
708  tmp = (subspace_basis_.col(1).array() / diagonal_.array()).matrix();
709  jacobian->RightMultiply(tmp.data(), Jb.row(1).data());
710
711  subspace_B_ = Jb * Jb.transpose();
712
713  return true;
714}
715
716}  // namespace internal
717}  // namespace ceres
718