10ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Ceres Solver - A fast non-linear least squares minimizer
20ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
30ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// http://code.google.com/p/ceres-solver/
40ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
50ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Redistribution and use in source and binary forms, with or without
60ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// modification, are permitted provided that the following conditions are met:
70ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
80ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// * Redistributions of source code must retain the above copyright notice,
90ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//   this list of conditions and the following disclaimer.
100ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// * Redistributions in binary form must reproduce the above copyright notice,
110ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//   this list of conditions and the following disclaimer in the documentation
120ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//   and/or other materials provided with the distribution.
130ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// * Neither the name of Google Inc. nor the names of its contributors may be
140ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//   used to endorse or promote products derived from this software without
150ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//   specific prior written permission.
160ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
170ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
180ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
190ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
200ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
210ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
220ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
230ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
240ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
250ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
260ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
270ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// POSSIBILITY OF SUCH DAMAGE.
280ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
290ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Author: sameeragarwal@google.com (Sameer Agarwal)
300ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
310ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include "ceres/implicit_schur_complement.h"
320ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
330ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include "Eigen/Dense"
340ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include "ceres/block_sparse_matrix.h"
350ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include "ceres/block_structure.h"
360ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include "ceres/internal/eigen.h"
370ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include "ceres/internal/scoped_ptr.h"
3879397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez#include "ceres/linear_solver.h"
390ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include "ceres/types.h"
400ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include "glog/logging.h"
410ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
420ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongnamespace ceres {
430ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongnamespace internal {
440ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
4579397c21138f54fcff6ec067b44b847f1f7e0e98Carlos HernandezImplicitSchurComplement::ImplicitSchurComplement(
4679397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    const LinearSolver::Options& options)
4779397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    : options_(options),
480ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      D_(NULL),
4979397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez      b_(NULL) {
500ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong}
510ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
520ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus KongImplicitSchurComplement::~ImplicitSchurComplement() {
530ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong}
540ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
551d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingvoid ImplicitSchurComplement::Init(const BlockSparseMatrix& A,
560ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong                                   const double* D,
570ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong                                   const double* b) {
580ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // Since initialization is reasonably heavy, perhaps we can save on
590ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // constructing a new object everytime.
600ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  if (A_ == NULL) {
6179397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    A_.reset(PartitionedMatrixViewBase::Create(options_, A));
620ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  }
630ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
640ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  D_ = D;
650ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  b_ = b;
660ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
670ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // Initialize temporary storage and compute the block diagonals of
680ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // E'E and F'E.
690ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  if (block_diagonal_EtE_inverse_ == NULL) {
700ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    block_diagonal_EtE_inverse_.reset(A_->CreateBlockDiagonalEtE());
7179397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    if (options_.preconditioner_type == JACOBI) {
720ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      block_diagonal_FtF_inverse_.reset(A_->CreateBlockDiagonalFtF());
730ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    }
740ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    rhs_.resize(A_->num_cols_f());
750ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    rhs_.setZero();
760ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    tmp_rows_.resize(A_->num_rows());
770ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    tmp_e_cols_.resize(A_->num_cols_e());
780ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    tmp_e_cols_2_.resize(A_->num_cols_e());
790ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    tmp_f_cols_.resize(A_->num_cols_f());
800ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  } else {
810ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    A_->UpdateBlockDiagonalEtE(block_diagonal_EtE_inverse_.get());
8279397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    if (options_.preconditioner_type == JACOBI) {
830ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      A_->UpdateBlockDiagonalFtF(block_diagonal_FtF_inverse_.get());
840ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    }
850ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  }
860ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
870ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // The block diagonals of the augmented linear system contain
880ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // contributions from the diagonal D if it is non-null. Add that to
890ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // the block diagonals and invert them.
900ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  AddDiagonalAndInvert(D_, block_diagonal_EtE_inverse_.get());
9179397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez  if (options_.preconditioner_type == JACOBI) {
920ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    AddDiagonalAndInvert((D_ ==  NULL) ? NULL : D_ + A_->num_cols_e(),
930ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong                         block_diagonal_FtF_inverse_.get());
940ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  }
950ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
960ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // Compute the RHS of the Schur complement system.
970ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  UpdateRhs();
980ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong}
990ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1000ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Evaluate the product
1010ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
1020ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//   Sx = [F'F - F'E (E'E)^-1 E'F]x
1030ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
1040ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// By breaking it down into individual matrix vector products
1050ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// involving the matrices E and F. This is implemented using a
1060ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// PartitionedMatrixView of the input matrix A.
1070ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongvoid ImplicitSchurComplement::RightMultiply(const double* x, double* y) const {
1080ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // y1 = F x
1090ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  tmp_rows_.setZero();
1100ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  A_->RightMultiplyF(x, tmp_rows_.data());
1110ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1120ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // y2 = E' y1
1130ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  tmp_e_cols_.setZero();
1140ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  A_->LeftMultiplyE(tmp_rows_.data(), tmp_e_cols_.data());
1150ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1160ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // y3 = -(E'E)^-1 y2
1170ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  tmp_e_cols_2_.setZero();
1180ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  block_diagonal_EtE_inverse_->RightMultiply(tmp_e_cols_.data(),
1190ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong                                             tmp_e_cols_2_.data());
1200ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  tmp_e_cols_2_ *= -1.0;
1210ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1220ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // y1 = y1 + E y3
1230ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  A_->RightMultiplyE(tmp_e_cols_2_.data(), tmp_rows_.data());
1240ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1250ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // y5 = D * x
1260ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  if (D_ != NULL) {
1270ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    ConstVectorRef Dref(D_ + A_->num_cols_e(), num_cols());
1280ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    VectorRef(y, num_cols()) =
1290ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong        (Dref.array().square() *
1300ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong         ConstVectorRef(x, num_cols()).array()).matrix();
1310ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  } else {
1320ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    VectorRef(y, num_cols()).setZero();
1330ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  }
1340ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1350ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // y = y5 + F' y1
1360ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  A_->LeftMultiplyF(tmp_rows_.data(), y);
1370ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong}
1380ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1390ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Given a block diagonal matrix and an optional array of diagonal
1400ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// entries D, add them to the diagonal of the matrix and compute the
1410ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// inverse of each diagonal block.
1420ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongvoid ImplicitSchurComplement::AddDiagonalAndInvert(
1430ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    const double* D,
1440ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    BlockSparseMatrix* block_diagonal) {
1450ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const CompressedRowBlockStructure* block_diagonal_structure =
1460ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      block_diagonal->block_structure();
1470ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  for (int r = 0; r < block_diagonal_structure->rows.size(); ++r) {
1480ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    const int row_block_pos = block_diagonal_structure->rows[r].block.position;
1490ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    const int row_block_size = block_diagonal_structure->rows[r].block.size;
1500ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    const Cell& cell = block_diagonal_structure->rows[r].cells[0];
1510ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    MatrixRef m(block_diagonal->mutable_values() + cell.position,
1520ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong                row_block_size, row_block_size);
1530ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1540ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    if (D != NULL) {
1550ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      ConstVectorRef d(D + row_block_pos, row_block_size);
1560ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      m += d.array().square().matrix().asDiagonal();
1570ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    }
1580ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1590ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    m = m
1600ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong        .selfadjointView<Eigen::Upper>()
161399f7d09e0c45af54b77b4ab9508d6f23759b927Scott Ettinger        .llt()
1620ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong        .solve(Matrix::Identity(row_block_size, row_block_size));
1630ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  }
1640ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong}
1650ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1660ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Similar to RightMultiply, use the block structure of the matrix A
1670ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// to compute y = (E'E)^-1 (E'b - E'F x).
1680ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongvoid ImplicitSchurComplement::BackSubstitute(const double* x, double* y) {
1690ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const int num_cols_e = A_->num_cols_e();
1700ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const int num_cols_f = A_->num_cols_f();
1710ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const int num_cols =  A_->num_cols();
1720ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const int num_rows = A_->num_rows();
1730ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1740ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // y1 = F x
1750ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  tmp_rows_.setZero();
1760ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  A_->RightMultiplyF(x, tmp_rows_.data());
1770ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1780ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // y2 = b - y1
1790ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  tmp_rows_ = ConstVectorRef(b_, num_rows) - tmp_rows_;
1800ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1810ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // y3 = E' y2
1820ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  tmp_e_cols_.setZero();
1830ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  A_->LeftMultiplyE(tmp_rows_.data(), tmp_e_cols_.data());
1840ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1850ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // y = (E'E)^-1 y3
1860ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  VectorRef(y, num_cols).setZero();
1870ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  block_diagonal_EtE_inverse_->RightMultiply(tmp_e_cols_.data(), y);
1880ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1890ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // The full solution vector y has two blocks. The first block of
1900ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // variables corresponds to the eliminated variables, which we just
1910ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // computed via back substitution. The second block of variables
1920ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // corresponds to the Schur complement system, so we just copy those
1930ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // values from the solution to the Schur complement.
1940ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  VectorRef(y + num_cols_e, num_cols_f) =  ConstVectorRef(x, num_cols_f);
1950ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong}
1960ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1970ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Compute the RHS of the Schur complement system.
1980ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
1990ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// rhs = F'b - F'E (E'E)^-1 E'b
2000ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
2010ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Like BackSubstitute, we use the block structure of A to implement
2020ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// this using a series of matrix vector products.
2030ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongvoid ImplicitSchurComplement::UpdateRhs() {
2040ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // y1 = E'b
2050ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  tmp_e_cols_.setZero();
2060ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  A_->LeftMultiplyE(b_, tmp_e_cols_.data());
2070ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
2080ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // y2 = (E'E)^-1 y1
2090ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  Vector y2 = Vector::Zero(A_->num_cols_e());
2100ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  block_diagonal_EtE_inverse_->RightMultiply(tmp_e_cols_.data(), y2.data());
2110ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
2120ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // y3 = E y2
2130ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  tmp_rows_.setZero();
2140ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  A_->RightMultiplyE(y2.data(), tmp_rows_.data());
2150ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
2160ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // y3 = b - y3
2170ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  tmp_rows_ = ConstVectorRef(b_, A_->num_rows()) - tmp_rows_;
2180ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
2190ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // rhs = F' y3
2200ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  rhs_.setZero();
2210ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  A_->LeftMultiplyF(tmp_rows_.data(), rhs_.data());
2220ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong}
2230ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
2240ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong}  // namespace internal
2250ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong}  // namespace ceres
226