1// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9//   this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11//   this list of conditions and the following disclaimer in the documentation
12//   and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14//   used to endorse or promote products derived from this software without
15//   specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30//
31// Abstract interface for objects solving linear systems of various
32// kinds.
33
34#ifndef CERES_INTERNAL_LINEAR_SOLVER_H_
35#define CERES_INTERNAL_LINEAR_SOLVER_H_
36
37#include <cstddef>
38#include <map>
39#include <string>
40#include <vector>
41#include "ceres/block_sparse_matrix.h"
42#include "ceres/casts.h"
43#include "ceres/compressed_row_sparse_matrix.h"
44#include "ceres/dense_sparse_matrix.h"
45#include "ceres/execution_summary.h"
46#include "ceres/triplet_sparse_matrix.h"
47#include "ceres/types.h"
48#include "glog/logging.h"
49
50namespace ceres {
51namespace internal {
52
53enum LinearSolverTerminationType {
54  // Termination criterion was met.
55  LINEAR_SOLVER_SUCCESS,
56
57  // Solver ran for max_num_iterations and terminated before the
58  // termination tolerance could be satisfied.
59  LINEAR_SOLVER_NO_CONVERGENCE,
60
61  // Solver was terminated due to numerical problems, generally due to
62  // the linear system being poorly conditioned.
63  LINEAR_SOLVER_FAILURE,
64
65  // Solver failed with a fatal error that cannot be recovered from,
66  // e.g. CHOLMOD ran out of memory when computing the symbolic or
67  // numeric factorization or an underlying library was called with
68  // the wrong arguments.
69  LINEAR_SOLVER_FATAL_ERROR
70};
71
72
73class LinearOperator;
74
75// Abstract base class for objects that implement algorithms for
76// solving linear systems
77//
78//   Ax = b
79//
80// It is expected that a single instance of a LinearSolver object
81// maybe used multiple times for solving multiple linear systems with
82// the same sparsity structure. This allows them to cache and reuse
83// information across solves. This means that calling Solve on the
84// same LinearSolver instance with two different linear systems will
85// result in undefined behaviour.
86//
87// Subclasses of LinearSolver use two structs to configure themselves.
88// The Options struct configures the LinearSolver object for its
89// lifetime. The PerSolveOptions struct is used to specify options for
90// a particular Solve call.
91class LinearSolver {
92 public:
93  struct Options {
94    Options()
95        : type(SPARSE_NORMAL_CHOLESKY),
96          preconditioner_type(JACOBI),
97          visibility_clustering_type(CANONICAL_VIEWS),
98          dense_linear_algebra_library_type(EIGEN),
99          sparse_linear_algebra_library_type(SUITE_SPARSE),
100          use_postordering(false),
101          dynamic_sparsity(false),
102          min_num_iterations(1),
103          max_num_iterations(1),
104          num_threads(1),
105          residual_reset_period(10),
106          row_block_size(Eigen::Dynamic),
107          e_block_size(Eigen::Dynamic),
108          f_block_size(Eigen::Dynamic) {
109    }
110
111    LinearSolverType type;
112    PreconditionerType preconditioner_type;
113    VisibilityClusteringType visibility_clustering_type;
114    DenseLinearAlgebraLibraryType dense_linear_algebra_library_type;
115    SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type;
116
117    // See solver.h for information about this flag.
118    bool use_postordering;
119    bool dynamic_sparsity;
120
121    // Number of internal iterations that the solver uses. This
122    // parameter only makes sense for iterative solvers like CG.
123    int min_num_iterations;
124    int max_num_iterations;
125
126    // If possible, how many threads can the solver use.
127    int num_threads;
128
129    // Hints about the order in which the parameter blocks should be
130    // eliminated by the linear solver.
131    //
132    // For example if elimination_groups is a vector of size k, then
133    // the linear solver is informed that it should eliminate the
134    // parameter blocks 0 ... elimination_groups[0] - 1 first, and
135    // then elimination_groups[0] ... elimination_groups[1] - 1 and so
136    // on. Within each elimination group, the linear solver is free to
137    // choose how the parameter blocks are ordered. Different linear
138    // solvers have differing requirements on elimination_groups.
139    //
140    // The most common use is for Schur type solvers, where there
141    // should be at least two elimination groups and the first
142    // elimination group must form an independent set in the normal
143    // equations. The first elimination group corresponds to the
144    // num_eliminate_blocks in the Schur type solvers.
145    vector<int> elimination_groups;
146
147    // Iterative solvers, e.g. Preconditioned Conjugate Gradients
148    // maintain a cheap estimate of the residual which may become
149    // inaccurate over time. Thus for non-zero values of this
150    // parameter, the solver can be told to recalculate the value of
151    // the residual using a |b - Ax| evaluation.
152    int residual_reset_period;
153
154    // If the block sizes in a BlockSparseMatrix are fixed, then in
155    // some cases the Schur complement based solvers can detect and
156    // specialize on them.
157    //
158    // It is expected that these parameters are set programmatically
159    // rather than manually.
160    //
161    // Please see schur_complement_solver.h and schur_eliminator.h for
162    // more details.
163    int row_block_size;
164    int e_block_size;
165    int f_block_size;
166  };
167
168  // Options for the Solve method.
169  struct PerSolveOptions {
170    PerSolveOptions()
171        : D(NULL),
172          preconditioner(NULL),
173          r_tolerance(0.0),
174          q_tolerance(0.0) {
175    }
176
177    // This option only makes sense for unsymmetric linear solvers
178    // that can solve rectangular linear systems.
179    //
180    // Given a matrix A, an optional diagonal matrix D as a vector,
181    // and a vector b, the linear solver will solve for
182    //
183    //   | A | x = | b |
184    //   | D |     | 0 |
185    //
186    // If D is null, then it is treated as zero, and the solver returns
187    // the solution to
188    //
189    //   A x = b
190    //
191    // In either case, x is the vector that solves the following
192    // optimization problem.
193    //
194    //   arg min_x ||Ax - b||^2 + ||Dx||^2
195    //
196    // Here A is a matrix of size m x n, with full column rank. If A
197    // does not have full column rank, the results returned by the
198    // solver cannot be relied on. D, if it is not null is an array of
199    // size n.  b is an array of size m and x is an array of size n.
200    double * D;
201
202    // This option only makes sense for iterative solvers.
203    //
204    // In general the performance of an iterative linear solver
205    // depends on the condition number of the matrix A. For example
206    // the convergence rate of the conjugate gradients algorithm
207    // is proportional to the square root of the condition number.
208    //
209    // One particularly useful technique for improving the
210    // conditioning of a linear system is to precondition it. In its
211    // simplest form a preconditioner is a matrix M such that instead
212    // of solving Ax = b, we solve the linear system AM^{-1} y = b
213    // instead, where M is such that the condition number k(AM^{-1})
214    // is smaller than the conditioner k(A). Given the solution to
215    // this system, x = M^{-1} y. The iterative solver takes care of
216    // the mechanics of solving the preconditioned system and
217    // returning the corrected solution x. The user only needs to
218    // supply a linear operator.
219    //
220    // A null preconditioner is equivalent to an identity matrix being
221    // used a preconditioner.
222    LinearOperator* preconditioner;
223
224
225    // The following tolerance related options only makes sense for
226    // iterative solvers. Direct solvers ignore them.
227
228    // Solver terminates when
229    //
230    //   |Ax - b| <= r_tolerance * |b|.
231    //
232    // This is the most commonly used termination criterion for
233    // iterative solvers.
234    double r_tolerance;
235
236    // For PSD matrices A, let
237    //
238    //   Q(x) = x'Ax - 2b'x
239    //
240    // be the cost of the quadratic function defined by A and b. Then,
241    // the solver terminates at iteration i if
242    //
243    //   i * (Q(x_i) - Q(x_i-1)) / Q(x_i) < q_tolerance.
244    //
245    // This termination criterion is more useful when using CG to
246    // solve the Newton step. This particular convergence test comes
247    // from Stephen Nash's work on truncated Newton
248    // methods. References:
249    //
250    //   1. Stephen G. Nash & Ariela Sofer, Assessing A Search
251    //      Direction Within A Truncated Newton Method, Operation
252    //      Research Letters 9(1990) 219-221.
253    //
254    //   2. Stephen G. Nash, A Survey of Truncated Newton Methods,
255    //      Journal of Computational and Applied Mathematics,
256    //      124(1-2), 45-59, 2000.
257    //
258    double q_tolerance;
259  };
260
261  // Summary of a call to the Solve method. We should move away from
262  // the true/false method for determining solver success. We should
263  // let the summary object do the talking.
264  struct Summary {
265    Summary()
266        : residual_norm(0.0),
267          num_iterations(-1),
268          termination_type(LINEAR_SOLVER_FAILURE) {
269    }
270
271    double residual_norm;
272    int num_iterations;
273    LinearSolverTerminationType termination_type;
274    string message;
275  };
276
277  // If the optimization problem is such that there are no remaining
278  // e-blocks, a Schur type linear solver cannot be used. If the
279  // linear solver is of Schur type, this function implements a policy
280  // to select an alternate nearest linear solver to the one selected
281  // by the user. The input linear_solver_type is returned otherwise.
282  static LinearSolverType LinearSolverForZeroEBlocks(
283      LinearSolverType linear_solver_type);
284
285  virtual ~LinearSolver();
286
287  // Solve Ax = b.
288  virtual Summary Solve(LinearOperator* A,
289                        const double* b,
290                        const PerSolveOptions& per_solve_options,
291                        double* x) = 0;
292
293  // The following two methods return copies instead of references so
294  // that the base class implementation does not have to worry about
295  // life time issues. Further, these calls are not expected to be
296  // frequent or performance sensitive.
297  virtual map<string, int> CallStatistics() const {
298    return map<string, int>();
299  }
300
301  virtual map<string, double> TimeStatistics() const {
302    return map<string, double>();
303  }
304
305  // Factory
306  static LinearSolver* Create(const Options& options);
307};
308
309// This templated subclass of LinearSolver serves as a base class for
310// other linear solvers that depend on the particular matrix layout of
311// the underlying linear operator. For example some linear solvers
312// need low level access to the TripletSparseMatrix implementing the
313// LinearOperator interface. This class hides those implementation
314// details behind a private virtual method, and has the Solve method
315// perform the necessary upcasting.
316template <typename MatrixType>
317class TypedLinearSolver : public LinearSolver {
318 public:
319  virtual ~TypedLinearSolver() {}
320  virtual LinearSolver::Summary Solve(
321      LinearOperator* A,
322      const double* b,
323      const LinearSolver::PerSolveOptions& per_solve_options,
324      double* x) {
325    ScopedExecutionTimer total_time("LinearSolver::Solve", &execution_summary_);
326    CHECK_NOTNULL(A);
327    CHECK_NOTNULL(b);
328    CHECK_NOTNULL(x);
329    return SolveImpl(down_cast<MatrixType*>(A), b, per_solve_options, x);
330  }
331
332  virtual map<string, int> CallStatistics() const {
333    return execution_summary_.calls();
334  }
335
336  virtual map<string, double> TimeStatistics() const {
337    return execution_summary_.times();
338  }
339
340 private:
341  virtual LinearSolver::Summary SolveImpl(
342      MatrixType* A,
343      const double* b,
344      const LinearSolver::PerSolveOptions& per_solve_options,
345      double* x) = 0;
346
347  ExecutionSummary execution_summary_;
348};
349
350// Linear solvers that depend on acccess to the low level structure of
351// a SparseMatrix.
352typedef TypedLinearSolver<BlockSparseMatrix>         BlockSparseMatrixSolver;          // NOLINT
353typedef TypedLinearSolver<CompressedRowSparseMatrix> CompressedRowSparseMatrixSolver;  // NOLINT
354typedef TypedLinearSolver<DenseSparseMatrix>         DenseSparseMatrixSolver;          // NOLINT
355typedef TypedLinearSolver<TripletSparseMatrix>       TripletSparseMatrixSolver;        // NOLINT
356
357}  // namespace internal
358}  // namespace ceres
359
360#endif  // CERES_INTERNAL_LINEAR_SOLVER_H_
361