1// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9//   this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11//   this list of conditions and the following disclaimer in the documentation
12//   and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14//   used to endorse or promote products derived from this software without
15//   specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: keir@google.com (Keir Mierle)
30//
31// The ProgramEvaluator runs the cost functions contained in each residual block
32// and stores the result into a jacobian. The particular type of jacobian is
33// abstracted out using two template parameters:
34//
35//   - An "EvaluatePreparer" that is responsible for creating the array with
36//     pointers to the jacobian blocks where the cost function evaluates to.
37//   - A "JacobianWriter" that is responsible for storing the resulting
38//     jacobian blocks in the passed sparse matrix.
39//
40// This abstraction affords an efficient evaluator implementation while still
41// supporting writing to multiple sparse matrix formats. For example, when the
42// ProgramEvaluator is parameterized for writing to block sparse matrices, the
43// residual jacobians are written directly into their final position in the
44// block sparse matrix by the user's CostFunction; there is no copying.
45//
46// The evaluation is threaded with OpenMP.
47//
48// The EvaluatePreparer and JacobianWriter interfaces are as follows:
49//
50//   class EvaluatePreparer {
51//     // Prepare the jacobians array for use as the destination of a call to
52//     // a cost function's evaluate method.
53//     void Prepare(const ResidualBlock* residual_block,
54//                  int residual_block_index,
55//                  SparseMatrix* jacobian,
56//                  double** jacobians);
57//   }
58//
59//   class JacobianWriter {
60//     // Create a jacobian that this writer can write. Same as
61//     // Evaluator::CreateJacobian.
62//     SparseMatrix* CreateJacobian() const;
63//
64//     // Create num_threads evaluate preparers. Caller owns result which must
65//     // be freed with delete[]. Resulting preparers are valid while *this is.
66//     EvaluatePreparer* CreateEvaluatePreparers(int num_threads);
67//
68//     // Write the block jacobians from a residual block evaluation to the
69//     // larger sparse jacobian.
70//     void Write(int residual_id,
71//                int residual_offset,
72//                double** jacobians,
73//                SparseMatrix* jacobian);
74//   }
75//
76// Note: The ProgramEvaluator is not thread safe, since internally it maintains
77// some per-thread scratch space.
78
79#ifndef CERES_INTERNAL_PROGRAM_EVALUATOR_H_
80#define CERES_INTERNAL_PROGRAM_EVALUATOR_H_
81
82// This include must come before any #ifndef check on Ceres compile options.
83#include "ceres/internal/port.h"
84
85#ifdef CERES_USE_OPENMP
86#include <omp.h>
87#endif
88
89#include <map>
90#include <string>
91#include <vector>
92#include "ceres/execution_summary.h"
93#include "ceres/internal/eigen.h"
94#include "ceres/internal/scoped_ptr.h"
95#include "ceres/parameter_block.h"
96#include "ceres/program.h"
97#include "ceres/residual_block.h"
98#include "ceres/small_blas.h"
99
100namespace ceres {
101namespace internal {
102
103struct NullJacobianFinalizer {
104  void operator()(SparseMatrix* jacobian, int num_parameters) {}
105};
106
107template<typename EvaluatePreparer,
108         typename JacobianWriter,
109         typename JacobianFinalizer = NullJacobianFinalizer>
110class ProgramEvaluator : public Evaluator {
111 public:
112  ProgramEvaluator(const Evaluator::Options &options, Program* program)
113      : options_(options),
114        program_(program),
115        jacobian_writer_(options, program),
116        evaluate_preparers_(
117            jacobian_writer_.CreateEvaluatePreparers(options.num_threads)) {
118#ifndef CERES_USE_OPENMP
119    CHECK_EQ(1, options_.num_threads)
120        << "OpenMP support is not compiled into this binary; "
121        << "only options.num_threads=1 is supported.";
122#endif
123
124    BuildResidualLayout(*program, &residual_layout_);
125    evaluate_scratch_.reset(CreateEvaluatorScratch(*program,
126                                                   options.num_threads));
127  }
128
129  // Implementation of Evaluator interface.
130  SparseMatrix* CreateJacobian() const {
131    return jacobian_writer_.CreateJacobian();
132  }
133
134  bool Evaluate(const Evaluator::EvaluateOptions& evaluate_options,
135                const double* state,
136                double* cost,
137                double* residuals,
138                double* gradient,
139                SparseMatrix* jacobian) {
140    ScopedExecutionTimer total_timer("Evaluator::Total", &execution_summary_);
141    ScopedExecutionTimer call_type_timer(gradient == NULL && jacobian == NULL
142                                         ? "Evaluator::Residual"
143                                         : "Evaluator::Jacobian",
144                                         &execution_summary_);
145
146    // The parameters are stateful, so set the state before evaluating.
147    if (!program_->StateVectorToParameterBlocks(state)) {
148      return false;
149    }
150
151    if (residuals != NULL) {
152      VectorRef(residuals, program_->NumResiduals()).setZero();
153    }
154
155    if (jacobian != NULL) {
156      jacobian->SetZero();
157    }
158
159    // Each thread gets it's own cost and evaluate scratch space.
160    for (int i = 0; i < options_.num_threads; ++i) {
161      evaluate_scratch_[i].cost = 0.0;
162      if (gradient != NULL) {
163        VectorRef(evaluate_scratch_[i].gradient.get(),
164                  program_->NumEffectiveParameters()).setZero();
165      }
166    }
167
168    // This bool is used to disable the loop if an error is encountered
169    // without breaking out of it. The remaining loop iterations are still run,
170    // but with an empty body, and so will finish quickly.
171    bool abort = false;
172    int num_residual_blocks = program_->NumResidualBlocks();
173#pragma omp parallel for num_threads(options_.num_threads)
174    for (int i = 0; i < num_residual_blocks; ++i) {
175// Disable the loop instead of breaking, as required by OpenMP.
176#pragma omp flush(abort)
177      if (abort) {
178        continue;
179      }
180
181#ifdef CERES_USE_OPENMP
182      int thread_id = omp_get_thread_num();
183#else
184      int thread_id = 0;
185#endif
186      EvaluatePreparer* preparer = &evaluate_preparers_[thread_id];
187      EvaluateScratch* scratch = &evaluate_scratch_[thread_id];
188
189      // Prepare block residuals if requested.
190      const ResidualBlock* residual_block = program_->residual_blocks()[i];
191      double* block_residuals = NULL;
192      if (residuals != NULL) {
193        block_residuals = residuals + residual_layout_[i];
194      } else if (gradient != NULL) {
195        block_residuals = scratch->residual_block_residuals.get();
196      }
197
198      // Prepare block jacobians if requested.
199      double** block_jacobians = NULL;
200      if (jacobian != NULL || gradient != NULL) {
201        preparer->Prepare(residual_block,
202                          i,
203                          jacobian,
204                          scratch->jacobian_block_ptrs.get());
205        block_jacobians = scratch->jacobian_block_ptrs.get();
206      }
207
208      // Evaluate the cost, residuals, and jacobians.
209      double block_cost;
210      if (!residual_block->Evaluate(
211              evaluate_options.apply_loss_function,
212              &block_cost,
213              block_residuals,
214              block_jacobians,
215              scratch->residual_block_evaluate_scratch.get())) {
216        abort = true;
217// This ensures that the OpenMP threads have a consistent view of 'abort'. Do
218// the flush inside the failure case so that there is usually only one
219// synchronization point per loop iteration instead of two.
220#pragma omp flush(abort)
221        continue;
222      }
223
224      scratch->cost += block_cost;
225
226      // Store the jacobians, if they were requested.
227      if (jacobian != NULL) {
228        jacobian_writer_.Write(i,
229                               residual_layout_[i],
230                               block_jacobians,
231                               jacobian);
232      }
233
234      // Compute and store the gradient, if it was requested.
235      if (gradient != NULL) {
236        int num_residuals = residual_block->NumResiduals();
237        int num_parameter_blocks = residual_block->NumParameterBlocks();
238        for (int j = 0; j < num_parameter_blocks; ++j) {
239          const ParameterBlock* parameter_block =
240              residual_block->parameter_blocks()[j];
241          if (parameter_block->IsConstant()) {
242            continue;
243          }
244
245          MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(
246              block_jacobians[j],
247              num_residuals,
248              parameter_block->LocalSize(),
249              block_residuals,
250              scratch->gradient.get() + parameter_block->delta_offset());
251        }
252      }
253    }
254
255    if (!abort) {
256      const int num_parameters = program_->NumEffectiveParameters();
257
258      // Sum the cost and gradient (if requested) from each thread.
259      (*cost) = 0.0;
260      if (gradient != NULL) {
261        VectorRef(gradient, num_parameters).setZero();
262      }
263      for (int i = 0; i < options_.num_threads; ++i) {
264        (*cost) += evaluate_scratch_[i].cost;
265        if (gradient != NULL) {
266          VectorRef(gradient, num_parameters) +=
267              VectorRef(evaluate_scratch_[i].gradient.get(), num_parameters);
268        }
269      }
270
271      // Finalize the Jacobian if it is available.
272      // `num_parameters` is passed to the finalizer so that additional
273      // storage can be reserved for additional diagonal elements if
274      // necessary.
275      if (jacobian != NULL) {
276        JacobianFinalizer f;
277        f(jacobian, num_parameters);
278      }
279    }
280    return !abort;
281  }
282
283  bool Plus(const double* state,
284            const double* delta,
285            double* state_plus_delta) const {
286    return program_->Plus(state, delta, state_plus_delta);
287  }
288
289  int NumParameters() const {
290    return program_->NumParameters();
291  }
292  int NumEffectiveParameters() const {
293    return program_->NumEffectiveParameters();
294  }
295
296  int NumResiduals() const {
297    return program_->NumResiduals();
298  }
299
300  virtual map<string, int> CallStatistics() const {
301    return execution_summary_.calls();
302  }
303
304  virtual map<string, double> TimeStatistics() const {
305    return execution_summary_.times();
306  }
307
308 private:
309  // Per-thread scratch space needed to evaluate and store each residual block.
310  struct EvaluateScratch {
311    void Init(int max_parameters_per_residual_block,
312              int max_scratch_doubles_needed_for_evaluate,
313              int max_residuals_per_residual_block,
314              int num_parameters) {
315      residual_block_evaluate_scratch.reset(
316          new double[max_scratch_doubles_needed_for_evaluate]);
317      gradient.reset(new double[num_parameters]);
318      VectorRef(gradient.get(), num_parameters).setZero();
319      residual_block_residuals.reset(
320          new double[max_residuals_per_residual_block]);
321      jacobian_block_ptrs.reset(
322          new double*[max_parameters_per_residual_block]);
323    }
324
325    double cost;
326    scoped_array<double> residual_block_evaluate_scratch;
327    // The gradient in the local parameterization.
328    scoped_array<double> gradient;
329    // Enough space to store the residual for the largest residual block.
330    scoped_array<double> residual_block_residuals;
331    scoped_array<double*> jacobian_block_ptrs;
332  };
333
334  static void BuildResidualLayout(const Program& program,
335                                  vector<int>* residual_layout) {
336    const vector<ResidualBlock*>& residual_blocks = program.residual_blocks();
337    residual_layout->resize(program.NumResidualBlocks());
338    int residual_pos = 0;
339    for (int i = 0; i < residual_blocks.size(); ++i) {
340      const int num_residuals = residual_blocks[i]->NumResiduals();
341      (*residual_layout)[i] = residual_pos;
342      residual_pos += num_residuals;
343    }
344  }
345
346  // Create scratch space for each thread evaluating the program.
347  static EvaluateScratch* CreateEvaluatorScratch(const Program& program,
348                                                 int num_threads) {
349    int max_parameters_per_residual_block =
350        program.MaxParametersPerResidualBlock();
351    int max_scratch_doubles_needed_for_evaluate =
352        program.MaxScratchDoublesNeededForEvaluate();
353    int max_residuals_per_residual_block =
354        program.MaxResidualsPerResidualBlock();
355    int num_parameters = program.NumEffectiveParameters();
356
357    EvaluateScratch* evaluate_scratch = new EvaluateScratch[num_threads];
358    for (int i = 0; i < num_threads; i++) {
359      evaluate_scratch[i].Init(max_parameters_per_residual_block,
360                               max_scratch_doubles_needed_for_evaluate,
361                               max_residuals_per_residual_block,
362                               num_parameters);
363    }
364    return evaluate_scratch;
365  }
366
367  Evaluator::Options options_;
368  Program* program_;
369  JacobianWriter jacobian_writer_;
370  scoped_array<EvaluatePreparer> evaluate_preparers_;
371  scoped_array<EvaluateScratch> evaluate_scratch_;
372  vector<int> residual_layout_;
373  ::ceres::internal::ExecutionSummary execution_summary_;
374};
375
376}  // namespace internal
377}  // namespace ceres
378
379#endif  // CERES_INTERNAL_PROGRAM_EVALUATOR_H_
380