bind_helpers.h revision a36e5920737c6adbddd3e43b760e5de8431db6e0
1// Copyright (c) 2011 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5// This defines a set of argument wrappers and related factory methods that
6// can be used specify the refcounting and reference semantics of arguments
7// that are bound by the Bind() function in base/bind.h.
8//
9// It also defines a set of simple functions and utilities that people want
10// when using Callback<> and Bind().
11//
12//
13// ARGUMENT BINDING WRAPPERS
14//
15// The wrapper functions are base::Unretained(), base::Owned(), bass::Passed(),
16// base::ConstRef(), and base::IgnoreResult().
17//
18// Unretained() allows Bind() to bind a non-refcounted class, and to disable
19// refcounting on arguments that are refcounted objects.
20//
21// Owned() transfers ownership of an object to the Callback resulting from
22// bind; the object will be deleted when the Callback is deleted.
23//
24// Passed() is for transferring movable-but-not-copyable types (eg. scoped_ptr)
25// through a Callback. Logically, this signifies a destructive transfer of
26// the state of the argument into the target function.  Invoking
27// Callback::Run() twice on a Callback that was created with a Passed()
28// argument will CHECK() because the first invocation would have already
29// transferred ownership to the target function.
30//
31// ConstRef() allows binding a constant reference to an argument rather
32// than a copy.
33//
34// IgnoreResult() is used to adapt a function or Callback with a return type to
35// one with a void return. This is most useful if you have a function with,
36// say, a pesky ignorable bool return that you want to use with PostTask or
37// something else that expect a Callback with a void return.
38//
39// EXAMPLE OF Unretained():
40//
41//   class Foo {
42//    public:
43//     void func() { cout << "Foo:f" << endl; }
44//   };
45//
46//   // In some function somewhere.
47//   Foo foo;
48//   Closure foo_callback =
49//       Bind(&Foo::func, Unretained(&foo));
50//   foo_callback.Run();  // Prints "Foo:f".
51//
52// Without the Unretained() wrapper on |&foo|, the above call would fail
53// to compile because Foo does not support the AddRef() and Release() methods.
54//
55//
56// EXAMPLE OF Owned():
57//
58//   void foo(int* arg) { cout << *arg << endl }
59//
60//   int* pn = new int(1);
61//   Closure foo_callback = Bind(&foo, Owned(pn));
62//
63//   foo_callback.Run();  // Prints "1"
64//   foo_callback.Run();  // Prints "1"
65//   *n = 2;
66//   foo_callback.Run();  // Prints "2"
67//
68//   foo_callback.Reset();  // |pn| is deleted.  Also will happen when
69//                          // |foo_callback| goes out of scope.
70//
71// Without Owned(), someone would have to know to delete |pn| when the last
72// reference to the Callback is deleted.
73//
74//
75// EXAMPLE OF ConstRef():
76//
77//   void foo(int arg) { cout << arg << endl }
78//
79//   int n = 1;
80//   Closure no_ref = Bind(&foo, n);
81//   Closure has_ref = Bind(&foo, ConstRef(n));
82//
83//   no_ref.Run();  // Prints "1"
84//   has_ref.Run();  // Prints "1"
85//
86//   n = 2;
87//   no_ref.Run();  // Prints "1"
88//   has_ref.Run();  // Prints "2"
89//
90// Note that because ConstRef() takes a reference on |n|, |n| must outlive all
91// its bound callbacks.
92//
93//
94// EXAMPLE OF IgnoreResult():
95//
96//   int DoSomething(int arg) { cout << arg << endl; }
97//
98//   // Assign to a Callback with a void return type.
99//   Callback<void(int)> cb = Bind(IgnoreResult(&DoSomething));
100//   cb->Run(1);  // Prints "1".
101//
102//   // Prints "1" on |ml|.
103//   ml->PostTask(FROM_HERE, Bind(IgnoreResult(&DoSomething), 1);
104//
105//
106// EXAMPLE OF Passed():
107//
108//   void TakesOwnership(scoped_ptr<Foo> arg) { }
109//   scoped_ptr<Foo> CreateFoo() { return scoped_ptr<Foo>(new Foo()); }
110//
111//   scoped_ptr<Foo> f(new Foo());
112//
113//   // |cb| is given ownership of Foo(). |f| is now NULL.
114//   // You can use f.Pass() in place of &f, but it's more verbose.
115//   Closure cb = Bind(&TakesOwnership, Passed(&f));
116//
117//   // Run was never called so |cb| still owns Foo() and deletes
118//   // it on Reset().
119//   cb.Reset();
120//
121//   // |cb| is given a new Foo created by CreateFoo().
122//   cb = Bind(&TakesOwnership, Passed(CreateFoo()));
123//
124//   // |arg| in TakesOwnership() is given ownership of Foo(). |cb|
125//   // no longer owns Foo() and, if reset, would not delete Foo().
126//   cb.Run();  // Foo() is now transferred to |arg| and deleted.
127//   cb.Run();  // This CHECK()s since Foo() already been used once.
128//
129// Passed() is particularly useful with PostTask() when you are transferring
130// ownership of an argument into a task, but don't necessarily know if the
131// task will always be executed. This can happen if the task is cancellable
132// or if it is posted to a MessageLoopProxy.
133//
134//
135// SIMPLE FUNCTIONS AND UTILITIES.
136//
137//   DoNothing() - Useful for creating a Closure that does nothing when called.
138//   DeletePointer<T>() - Useful for creating a Closure that will delete a
139//                        pointer when invoked. Only use this when necessary.
140//                        In most cases MessageLoop::DeleteSoon() is a better
141//                        fit.
142//   ScopedClosureRunner - Scoper object that runs the wrapped closure when it
143//                         goes out of scope. It's conceptually similar to
144//                         scoped_ptr<> but calls Run() instead of deleting
145//                         the pointer.
146
147#ifndef BASE_BIND_HELPERS_H_
148#define BASE_BIND_HELPERS_H_
149
150#include "base/basictypes.h"
151#include "base/callback.h"
152#include "base/memory/weak_ptr.h"
153#include "base/template_util.h"
154
155namespace base {
156namespace internal {
157
158// Use the Substitution Failure Is Not An Error (SFINAE) trick to inspect T
159// for the existence of AddRef() and Release() functions of the correct
160// signature.
161//
162// http://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error
163// http://stackoverflow.com/questions/257288/is-it-possible-to-write-a-c-template-to-check-for-a-functions-existence
164// http://stackoverflow.com/questions/4358584/sfinae-approach-comparison
165// http://stackoverflow.com/questions/1966362/sfinae-to-check-for-inherited-member-functions
166//
167// The last link in particular show the method used below.
168//
169// For SFINAE to work with inherited methods, we need to pull some extra tricks
170// with multiple inheritance.  In the more standard formulation, the overloads
171// of Check would be:
172//
173//   template <typename C>
174//   Yes NotTheCheckWeWant(Helper<&C::TargetFunc>*);
175//
176//   template <typename C>
177//   No NotTheCheckWeWant(...);
178//
179//   static const bool value = sizeof(NotTheCheckWeWant<T>(0)) == sizeof(Yes);
180//
181// The problem here is that template resolution will not match
182// C::TargetFunc if TargetFunc does not exist directly in C.  That is, if
183// TargetFunc in inherited from an ancestor, &C::TargetFunc will not match,
184// |value| will be false.  This formulation only checks for whether or
185// not TargetFunc exist directly in the class being introspected.
186//
187// To get around this, we play a dirty trick with multiple inheritance.
188// First, We create a class BaseMixin that declares each function that we
189// want to probe for.  Then we create a class Base that inherits from both T
190// (the class we wish to probe) and BaseMixin.  Note that the function
191// signature in BaseMixin does not need to match the signature of the function
192// we are probing for; thus it's easiest to just use void(void).
193//
194// Now, if TargetFunc exists somewhere in T, then &Base::TargetFunc has an
195// ambiguous resolution between BaseMixin and T.  This lets us write the
196// following:
197//
198//   template <typename C>
199//   No GoodCheck(Helper<&C::TargetFunc>*);
200//
201//   template <typename C>
202//   Yes GoodCheck(...);
203//
204//   static const bool value = sizeof(GoodCheck<Base>(0)) == sizeof(Yes);
205//
206// Notice here that the variadic version of GoodCheck() returns Yes here
207// instead of No like the previous one. Also notice that we calculate |value|
208// by specializing GoodCheck() on Base instead of T.
209//
210// We've reversed the roles of the variadic, and Helper overloads.
211// GoodCheck(Helper<&C::TargetFunc>*), when C = Base, fails to be a valid
212// substitution if T::TargetFunc exists. Thus GoodCheck<Base>(0) will resolve
213// to the variadic version if T has TargetFunc.  If T::TargetFunc does not
214// exist, then &C::TargetFunc is not ambiguous, and the overload resolution
215// will prefer GoodCheck(Helper<&C::TargetFunc>*).
216//
217// This method of SFINAE will correctly probe for inherited names, but it cannot
218// typecheck those names.  It's still a good enough sanity check though.
219//
220// Works on gcc-4.2, gcc-4.4, and Visual Studio 2008.
221//
222// TODO(ajwong): Move to ref_counted.h or template_util.h when we've vetted
223// this works well.
224//
225// TODO(ajwong): Make this check for Release() as well.
226// See http://crbug.com/82038.
227template <typename T>
228class SupportsAddRefAndRelease {
229  typedef char Yes[1];
230  typedef char No[2];
231
232  struct BaseMixin {
233    void AddRef();
234  };
235
236// MSVC warns when you try to use Base if T has a private destructor, the
237// common pattern for refcounted types. It does this even though no attempt to
238// instantiate Base is made.  We disable the warning for this definition.
239#if defined(OS_WIN)
240#pragma warning(push)
241#pragma warning(disable:4624)
242#endif
243  struct Base : public T, public BaseMixin {
244  };
245#if defined(OS_WIN)
246#pragma warning(pop)
247#endif
248
249  template <void(BaseMixin::*)(void)> struct Helper {};
250
251  template <typename C>
252  static No& Check(Helper<&C::AddRef>*);
253
254  template <typename >
255  static Yes& Check(...);
256
257 public:
258  static const bool value = sizeof(Check<Base>(0)) == sizeof(Yes);
259};
260
261// Helpers to assert that arguments of a recounted type are bound with a
262// scoped_refptr.
263template <bool IsClasstype, typename T>
264struct UnsafeBindtoRefCountedArgHelper : false_type {
265};
266
267template <typename T>
268struct UnsafeBindtoRefCountedArgHelper<true, T>
269    : integral_constant<bool, SupportsAddRefAndRelease<T>::value> {
270};
271
272template <typename T>
273struct UnsafeBindtoRefCountedArg : false_type {
274};
275
276template <typename T>
277struct UnsafeBindtoRefCountedArg<T*>
278    : UnsafeBindtoRefCountedArgHelper<is_class<T>::value, T> {
279};
280
281template <typename T>
282class HasIsMethodTag {
283  typedef char Yes[1];
284  typedef char No[2];
285
286  template <typename U>
287  static Yes& Check(typename U::IsMethod*);
288
289  template <typename U>
290  static No& Check(...);
291
292 public:
293  static const bool value = sizeof(Check<T>(0)) == sizeof(Yes);
294};
295
296template <typename T>
297class UnretainedWrapper {
298 public:
299  explicit UnretainedWrapper(T* o) : ptr_(o) {}
300  T* get() const { return ptr_; }
301 private:
302  T* ptr_;
303};
304
305template <typename T>
306class ConstRefWrapper {
307 public:
308  explicit ConstRefWrapper(const T& o) : ptr_(&o) {}
309  const T& get() const { return *ptr_; }
310 private:
311  const T* ptr_;
312};
313
314template <typename T>
315struct IgnoreResultHelper {
316  explicit IgnoreResultHelper(T functor) : functor_(functor) {}
317
318  T functor_;
319};
320
321template <typename T>
322struct IgnoreResultHelper<Callback<T> > {
323  explicit IgnoreResultHelper(const Callback<T>& functor) : functor_(functor) {}
324
325  const Callback<T>& functor_;
326};
327
328// An alternate implementation is to avoid the destructive copy, and instead
329// specialize ParamTraits<> for OwnedWrapper<> to change the StorageType to
330// a class that is essentially a scoped_ptr<>.
331//
332// The current implementation has the benefit though of leaving ParamTraits<>
333// fully in callback_internal.h as well as avoiding type conversions during
334// storage.
335template <typename T>
336class OwnedWrapper {
337 public:
338  explicit OwnedWrapper(T* o) : ptr_(o) {}
339  ~OwnedWrapper() { delete ptr_; }
340  T* get() const { return ptr_; }
341  OwnedWrapper(const OwnedWrapper& other) {
342    ptr_ = other.ptr_;
343    other.ptr_ = NULL;
344  }
345
346 private:
347  mutable T* ptr_;
348};
349
350// PassedWrapper is a copyable adapter for a scoper that ignores const.
351//
352// It is needed to get around the fact that Bind() takes a const reference to
353// all its arguments.  Because Bind() takes a const reference to avoid
354// unnecessary copies, it is incompatible with movable-but-not-copyable
355// types; doing a destructive "move" of the type into Bind() would violate
356// the const correctness.
357//
358// This conundrum cannot be solved without either C++11 rvalue references or
359// a O(2^n) blowup of Bind() templates to handle each combination of regular
360// types and movable-but-not-copyable types.  Thus we introduce a wrapper type
361// that is copyable to transmit the correct type information down into
362// BindState<>. Ignoring const in this type makes sense because it is only
363// created when we are explicitly trying to do a destructive move.
364//
365// Two notes:
366//  1) PassedWrapper supports any type that has a "Pass()" function.
367//     This is intentional. The whitelisting of which specific types we
368//     support is maintained by CallbackParamTraits<>.
369//  2) is_valid_ is distinct from NULL because it is valid to bind a "NULL"
370//     scoper to a Callback and allow the Callback to execute once.
371template <typename T>
372class PassedWrapper {
373 public:
374  explicit PassedWrapper(T scoper) : is_valid_(true), scoper_(scoper.Pass()) {}
375  PassedWrapper(const PassedWrapper& other)
376      : is_valid_(other.is_valid_), scoper_(other.scoper_.Pass()) {
377  }
378  T Pass() const {
379    CHECK(is_valid_);
380    is_valid_ = false;
381    return scoper_.Pass();
382  }
383
384 private:
385  mutable bool is_valid_;
386  mutable T scoper_;
387};
388
389// Unwrap the stored parameters for the wrappers above.
390template <typename T>
391struct UnwrapTraits {
392  typedef const T& ForwardType;
393  static ForwardType Unwrap(const T& o) { return o; }
394};
395
396template <typename T>
397struct UnwrapTraits<UnretainedWrapper<T> > {
398  typedef T* ForwardType;
399  static ForwardType Unwrap(UnretainedWrapper<T> unretained) {
400    return unretained.get();
401  }
402};
403
404template <typename T>
405struct UnwrapTraits<ConstRefWrapper<T> > {
406  typedef const T& ForwardType;
407  static ForwardType Unwrap(ConstRefWrapper<T> const_ref) {
408    return const_ref.get();
409  }
410};
411
412template <typename T>
413struct UnwrapTraits<scoped_refptr<T> > {
414  typedef T* ForwardType;
415  static ForwardType Unwrap(const scoped_refptr<T>& o) { return o.get(); }
416};
417
418template <typename T>
419struct UnwrapTraits<WeakPtr<T> > {
420  typedef const WeakPtr<T>& ForwardType;
421  static ForwardType Unwrap(const WeakPtr<T>& o) { return o; }
422};
423
424template <typename T>
425struct UnwrapTraits<OwnedWrapper<T> > {
426  typedef T* ForwardType;
427  static ForwardType Unwrap(const OwnedWrapper<T>& o) {
428    return o.get();
429  }
430};
431
432template <typename T>
433struct UnwrapTraits<PassedWrapper<T> > {
434  typedef T ForwardType;
435  static T Unwrap(PassedWrapper<T>& o) {
436    return o.Pass();
437  }
438};
439
440// Utility for handling different refcounting semantics in the Bind()
441// function.
442template <bool is_method, typename T>
443struct MaybeRefcount;
444
445template <typename T>
446struct MaybeRefcount<false, T> {
447  static void AddRef(const T&) {}
448  static void Release(const T&) {}
449};
450
451template <typename T, size_t n>
452struct MaybeRefcount<false, T[n]> {
453  static void AddRef(const T*) {}
454  static void Release(const T*) {}
455};
456
457template <typename T>
458struct MaybeRefcount<true, T> {
459  static void AddRef(const T&) {}
460  static void Release(const T&) {}
461};
462
463template <typename T>
464struct MaybeRefcount<true, T*> {
465  static void AddRef(T* o) { o->AddRef(); }
466  static void Release(T* o) { o->Release(); }
467};
468
469// No need to additionally AddRef() and Release() since we are storing a
470// scoped_refptr<> inside the storage object already.
471template <typename T>
472struct MaybeRefcount<true, scoped_refptr<T> > {
473  static void AddRef(const scoped_refptr<T>& o) {}
474  static void Release(const scoped_refptr<T>& o) {}
475};
476
477template <typename T>
478struct MaybeRefcount<true, const T*> {
479  static void AddRef(const T* o) { o->AddRef(); }
480  static void Release(const T* o) { o->Release(); }
481};
482
483// IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a
484// method.  It is used internally by Bind() to select the correct
485// InvokeHelper that will no-op itself in the event the WeakPtr<> for
486// the target object is invalidated.
487//
488// P1 should be the type of the object that will be received of the method.
489template <bool IsMethod, typename P1>
490struct IsWeakMethod : public false_type {};
491
492template <typename T>
493struct IsWeakMethod<true, WeakPtr<T> > : public true_type {};
494
495template <typename T>
496struct IsWeakMethod<true, ConstRefWrapper<WeakPtr<T> > > : public true_type {};
497
498}  // namespace internal
499
500template <typename T>
501static inline internal::UnretainedWrapper<T> Unretained(T* o) {
502  return internal::UnretainedWrapper<T>(o);
503}
504
505template <typename T>
506static inline internal::ConstRefWrapper<T> ConstRef(const T& o) {
507  return internal::ConstRefWrapper<T>(o);
508}
509
510template <typename T>
511static inline internal::OwnedWrapper<T> Owned(T* o) {
512  return internal::OwnedWrapper<T>(o);
513}
514
515// We offer 2 syntaxes for calling Passed().  The first takes a temporary and
516// is best suited for use with the return value of a function. The second
517// takes a pointer to the scoper and is just syntactic sugar to avoid having
518// to write Passed(scoper.Pass()).
519template <typename T>
520static inline internal::PassedWrapper<T> Passed(T scoper) {
521  return internal::PassedWrapper<T>(scoper.Pass());
522}
523template <typename T>
524static inline internal::PassedWrapper<T> Passed(T* scoper) {
525  return internal::PassedWrapper<T>(scoper->Pass());
526}
527
528template <typename T>
529static inline internal::IgnoreResultHelper<T> IgnoreResult(T data) {
530  return internal::IgnoreResultHelper<T>(data);
531}
532
533template <typename T>
534static inline internal::IgnoreResultHelper<Callback<T> >
535IgnoreResult(const Callback<T>& data) {
536  return internal::IgnoreResultHelper<Callback<T> >(data);
537}
538
539BASE_EXPORT void DoNothing();
540
541template<typename T>
542void DeletePointer(T* obj) {
543  delete obj;
544}
545
546// ScopedClosureRunner is akin to scoped_ptr for Closures. It ensures that the
547// Closure is executed and deleted no matter how the current scope exits.
548class BASE_EXPORT ScopedClosureRunner {
549 public:
550  explicit ScopedClosureRunner(const Closure& closure);
551  ~ScopedClosureRunner();
552
553  Closure Release();
554
555 private:
556  Closure closure_;
557
558  DISALLOW_IMPLICIT_CONSTRUCTORS(ScopedClosureRunner);
559};
560
561}  // namespace base
562
563#endif  // BASE_BIND_HELPERS_H_
564