weak_ptr.h revision a36e5920737c6adbddd3e43b760e5de8431db6e0
1// Copyright (c) 2012 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5// Weak pointers are pointers to an object that do not affect its lifetime,
6// and which may be invalidated (i.e. reset to NULL) by the object, or its
7// owner, at any time, most commonly when the object is about to be deleted.
8
9// Weak pointers are useful when an object needs to be accessed safely by one
10// or more objects other than its owner, and those callers can cope with the
11// object vanishing and e.g. tasks posted to it being silently dropped.
12// Reference-counting such an object would complicate the ownership graph and
13// make it harder to reason about the object's lifetime.
14
15// EXAMPLE:
16//
17//  class Controller {
18//   public:
19//    void SpawnWorker() { Worker::StartNew(weak_factory_.GetWeakPtr()); }
20//    void WorkComplete(const Result& result) { ... }
21//   private:
22//    // Member variables should appear before the WeakPtrFactory, to ensure
23//    // that any WeakPtrs to Controller are invalidated before its members
24//    // variable's destructors are executed, rendering them invalid.
25//    WeakPtrFactory<Controller> weak_factory_;
26//  };
27//
28//  class Worker {
29//   public:
30//    static void StartNew(const WeakPtr<Controller>& controller) {
31//      Worker* worker = new Worker(controller);
32//      // Kick off asynchronous processing...
33//    }
34//   private:
35//    Worker(const WeakPtr<Controller>& controller)
36//        : controller_(controller) {}
37//    void DidCompleteAsynchronousProcessing(const Result& result) {
38//      if (controller_)
39//        controller_->WorkComplete(result);
40//    }
41//    WeakPtr<Controller> controller_;
42//  };
43//
44// With this implementation a caller may use SpawnWorker() to dispatch multiple
45// Workers and subsequently delete the Controller, without waiting for all
46// Workers to have completed.
47
48// ------------------------- IMPORTANT: Thread-safety -------------------------
49
50// Weak pointers may be passed safely between threads, but must always be
51// dereferenced and invalidated on the same thread otherwise checking the
52// pointer would be racey.
53//
54// To ensure correct use, the first time a WeakPtr issued by a WeakPtrFactory
55// is dereferenced, the factory and its WeakPtrs become bound to the calling
56// thread, and cannot be dereferenced or invalidated on any other thread. Bound
57// WeakPtrs can still be handed off to other threads, e.g. to use to post tasks
58// back to object on the bound thread.
59//
60// Invalidating the factory's WeakPtrs un-binds it from the thread, allowing it
61// to be passed for a different thread to use or delete it.
62
63#ifndef BASE_MEMORY_WEAK_PTR_H_
64#define BASE_MEMORY_WEAK_PTR_H_
65
66#include "base/basictypes.h"
67#include "base/base_export.h"
68#include "base/logging.h"
69#include "base/memory/ref_counted.h"
70#include "base/sequence_checker.h"
71#include "base/template_util.h"
72
73namespace base {
74
75template <typename T> class SupportsWeakPtr;
76template <typename T> class WeakPtr;
77
78namespace internal {
79// These classes are part of the WeakPtr implementation.
80// DO NOT USE THESE CLASSES DIRECTLY YOURSELF.
81
82class BASE_EXPORT WeakReference {
83 public:
84  // Although Flag is bound to a specific thread, it may be deleted from another
85  // via base::WeakPtr::~WeakPtr().
86  class Flag : public RefCountedThreadSafe<Flag> {
87   public:
88    Flag();
89
90    void Invalidate();
91    bool IsValid() const;
92
93   private:
94    friend class base::RefCountedThreadSafe<Flag>;
95
96    ~Flag();
97
98    SequenceChecker sequence_checker_;
99    bool is_valid_;
100  };
101
102  WeakReference();
103  explicit WeakReference(const Flag* flag);
104  ~WeakReference();
105
106  bool is_valid() const;
107
108 private:
109  scoped_refptr<const Flag> flag_;
110};
111
112class BASE_EXPORT WeakReferenceOwner {
113 public:
114  WeakReferenceOwner();
115  ~WeakReferenceOwner();
116
117  WeakReference GetRef() const;
118
119  bool HasRefs() const {
120    return flag_.get() && !flag_->HasOneRef();
121  }
122
123  void Invalidate();
124
125 private:
126  mutable scoped_refptr<WeakReference::Flag> flag_;
127};
128
129// This class simplifies the implementation of WeakPtr's type conversion
130// constructor by avoiding the need for a public accessor for ref_.  A
131// WeakPtr<T> cannot access the private members of WeakPtr<U>, so this
132// base class gives us a way to access ref_ in a protected fashion.
133class BASE_EXPORT WeakPtrBase {
134 public:
135  WeakPtrBase();
136  ~WeakPtrBase();
137
138 protected:
139  explicit WeakPtrBase(const WeakReference& ref);
140
141  WeakReference ref_;
142};
143
144// This class provides a common implementation of common functions that would
145// otherwise get instantiated separately for each distinct instantiation of
146// SupportsWeakPtr<>.
147class SupportsWeakPtrBase {
148 public:
149  // A safe static downcast of a WeakPtr<Base> to WeakPtr<Derived>. This
150  // conversion will only compile if there is exists a Base which inherits
151  // from SupportsWeakPtr<Base>. See base::AsWeakPtr() below for a helper
152  // function that makes calling this easier.
153  template<typename Derived>
154  static WeakPtr<Derived> StaticAsWeakPtr(Derived* t) {
155    typedef
156        is_convertible<Derived, internal::SupportsWeakPtrBase&> convertible;
157    COMPILE_ASSERT(convertible::value,
158                   AsWeakPtr_argument_inherits_from_SupportsWeakPtr);
159    return AsWeakPtrImpl<Derived>(t, *t);
160  }
161
162 private:
163  // This template function uses type inference to find a Base of Derived
164  // which is an instance of SupportsWeakPtr<Base>. We can then safely
165  // static_cast the Base* to a Derived*.
166  template <typename Derived, typename Base>
167  static WeakPtr<Derived> AsWeakPtrImpl(
168      Derived* t, const SupportsWeakPtr<Base>&) {
169    WeakPtr<Base> ptr = t->Base::AsWeakPtr();
170    return WeakPtr<Derived>(ptr.ref_, static_cast<Derived*>(ptr.ptr_));
171  }
172};
173
174}  // namespace internal
175
176template <typename T> class WeakPtrFactory;
177
178// The WeakPtr class holds a weak reference to |T*|.
179//
180// This class is designed to be used like a normal pointer.  You should always
181// null-test an object of this class before using it or invoking a method that
182// may result in the underlying object being destroyed.
183//
184// EXAMPLE:
185//
186//   class Foo { ... };
187//   WeakPtr<Foo> foo;
188//   if (foo)
189//     foo->method();
190//
191template <typename T>
192class WeakPtr : public internal::WeakPtrBase {
193 public:
194  WeakPtr() : ptr_(NULL) {
195  }
196
197  // Allow conversion from U to T provided U "is a" T. Note that this
198  // is separate from the (implicit) copy constructor.
199  template <typename U>
200  WeakPtr(const WeakPtr<U>& other) : WeakPtrBase(other), ptr_(other.ptr_) {
201  }
202
203  T* get() const { return ref_.is_valid() ? ptr_ : NULL; }
204
205  T& operator*() const {
206    DCHECK(get() != NULL);
207    return *get();
208  }
209  T* operator->() const {
210    DCHECK(get() != NULL);
211    return get();
212  }
213
214  // Allow WeakPtr<element_type> to be used in boolean expressions, but not
215  // implicitly convertible to a real bool (which is dangerous).
216  //
217  // Note that this trick is only safe when the == and != operators
218  // are declared explicitly, as otherwise "weak_ptr1 == weak_ptr2"
219  // will compile but do the wrong thing (i.e., convert to Testable
220  // and then do the comparison).
221 private:
222  typedef T* WeakPtr::*Testable;
223
224 public:
225  operator Testable() const { return get() ? &WeakPtr::ptr_ : NULL; }
226
227  void reset() {
228    ref_ = internal::WeakReference();
229    ptr_ = NULL;
230  }
231
232 private:
233  // Explicitly declare comparison operators as required by the bool
234  // trick, but keep them private.
235  template <class U> bool operator==(WeakPtr<U> const&) const;
236  template <class U> bool operator!=(WeakPtr<U> const&) const;
237
238  friend class internal::SupportsWeakPtrBase;
239  template <typename U> friend class WeakPtr;
240  friend class SupportsWeakPtr<T>;
241  friend class WeakPtrFactory<T>;
242
243  WeakPtr(const internal::WeakReference& ref, T* ptr)
244      : WeakPtrBase(ref),
245        ptr_(ptr) {
246  }
247
248  // This pointer is only valid when ref_.is_valid() is true.  Otherwise, its
249  // value is undefined (as opposed to NULL).
250  T* ptr_;
251};
252
253// A class may be composed of a WeakPtrFactory and thereby
254// control how it exposes weak pointers to itself.  This is helpful if you only
255// need weak pointers within the implementation of a class.  This class is also
256// useful when working with primitive types.  For example, you could have a
257// WeakPtrFactory<bool> that is used to pass around a weak reference to a bool.
258template <class T>
259class WeakPtrFactory {
260 public:
261  explicit WeakPtrFactory(T* ptr) : ptr_(ptr) {
262  }
263
264  ~WeakPtrFactory() {
265    ptr_ = NULL;
266  }
267
268  WeakPtr<T> GetWeakPtr() {
269    DCHECK(ptr_);
270    return WeakPtr<T>(weak_reference_owner_.GetRef(), ptr_);
271  }
272
273  // Call this method to invalidate all existing weak pointers.
274  void InvalidateWeakPtrs() {
275    DCHECK(ptr_);
276    weak_reference_owner_.Invalidate();
277  }
278
279  // Call this method to determine if any weak pointers exist.
280  bool HasWeakPtrs() const {
281    DCHECK(ptr_);
282    return weak_reference_owner_.HasRefs();
283  }
284
285 private:
286  internal::WeakReferenceOwner weak_reference_owner_;
287  T* ptr_;
288  DISALLOW_IMPLICIT_CONSTRUCTORS(WeakPtrFactory);
289};
290
291// A class may extend from SupportsWeakPtr to let others take weak pointers to
292// it. This avoids the class itself implementing boilerplate to dispense weak
293// pointers.  However, since SupportsWeakPtr's destructor won't invalidate
294// weak pointers to the class until after the derived class' members have been
295// destroyed, its use can lead to subtle use-after-destroy issues.
296template <class T>
297class SupportsWeakPtr : public internal::SupportsWeakPtrBase {
298 public:
299  SupportsWeakPtr() {}
300
301  WeakPtr<T> AsWeakPtr() {
302    return WeakPtr<T>(weak_reference_owner_.GetRef(), static_cast<T*>(this));
303  }
304
305 protected:
306  ~SupportsWeakPtr() {}
307
308 private:
309  internal::WeakReferenceOwner weak_reference_owner_;
310  DISALLOW_COPY_AND_ASSIGN(SupportsWeakPtr);
311};
312
313// Helper function that uses type deduction to safely return a WeakPtr<Derived>
314// when Derived doesn't directly extend SupportsWeakPtr<Derived>, instead it
315// extends a Base that extends SupportsWeakPtr<Base>.
316//
317// EXAMPLE:
318//   class Base : public base::SupportsWeakPtr<Producer> {};
319//   class Derived : public Base {};
320//
321//   Derived derived;
322//   base::WeakPtr<Derived> ptr = base::AsWeakPtr(&derived);
323//
324// Note that the following doesn't work (invalid type conversion) since
325// Derived::AsWeakPtr() is WeakPtr<Base> SupportsWeakPtr<Base>::AsWeakPtr(),
326// and there's no way to safely cast WeakPtr<Base> to WeakPtr<Derived> at
327// the caller.
328//
329//   base::WeakPtr<Derived> ptr = derived.AsWeakPtr();  // Fails.
330
331template <typename Derived>
332WeakPtr<Derived> AsWeakPtr(Derived* t) {
333  return internal::SupportsWeakPtrBase::StaticAsWeakPtr<Derived>(t);
334}
335
336}  // namespace base
337
338#endif  // BASE_MEMORY_WEAK_PTR_H_
339