1// Copyright (c) 2012 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "base/message_loop/message_pump_win.h"
6
7#include <math.h>
8
9#include "base/debug/trace_event.h"
10#include "base/message_loop/message_loop.h"
11#include "base/metrics/histogram.h"
12#include "base/process/memory.h"
13#include "base/strings/stringprintf.h"
14#include "base/win/wrapped_window_proc.h"
15
16namespace base {
17
18namespace {
19
20enum MessageLoopProblems {
21  MESSAGE_POST_ERROR,
22  COMPLETION_POST_ERROR,
23  SET_TIMER_ERROR,
24  MESSAGE_LOOP_PROBLEM_MAX,
25};
26
27}  // namespace
28
29static const wchar_t kWndClassFormat[] = L"Chrome_MessagePumpWindow_%p";
30
31// Message sent to get an additional time slice for pumping (processing) another
32// task (a series of such messages creates a continuous task pump).
33static const int kMsgHaveWork = WM_USER + 1;
34
35//-----------------------------------------------------------------------------
36// MessagePumpWin public:
37
38void MessagePumpWin::RunWithDispatcher(
39    Delegate* delegate, MessagePumpDispatcher* dispatcher) {
40  RunState s;
41  s.delegate = delegate;
42  s.dispatcher = dispatcher;
43  s.should_quit = false;
44  s.run_depth = state_ ? state_->run_depth + 1 : 1;
45
46  RunState* previous_state = state_;
47  state_ = &s;
48
49  DoRunLoop();
50
51  state_ = previous_state;
52}
53
54void MessagePumpWin::Quit() {
55  DCHECK(state_);
56  state_->should_quit = true;
57}
58
59//-----------------------------------------------------------------------------
60// MessagePumpWin protected:
61
62int MessagePumpWin::GetCurrentDelay() const {
63  if (delayed_work_time_.is_null())
64    return -1;
65
66  // Be careful here.  TimeDelta has a precision of microseconds, but we want a
67  // value in milliseconds.  If there are 5.5ms left, should the delay be 5 or
68  // 6?  It should be 6 to avoid executing delayed work too early.
69  double timeout =
70      ceil((delayed_work_time_ - TimeTicks::Now()).InMillisecondsF());
71
72  // If this value is negative, then we need to run delayed work soon.
73  int delay = static_cast<int>(timeout);
74  if (delay < 0)
75    delay = 0;
76
77  return delay;
78}
79
80//-----------------------------------------------------------------------------
81// MessagePumpForUI public:
82
83MessagePumpForUI::MessagePumpForUI()
84    : atom_(0) {
85  InitMessageWnd();
86}
87
88MessagePumpForUI::~MessagePumpForUI() {
89  DestroyWindow(message_hwnd_);
90  UnregisterClass(MAKEINTATOM(atom_),
91                  GetModuleFromAddress(&WndProcThunk));
92}
93
94void MessagePumpForUI::ScheduleWork() {
95  if (InterlockedExchange(&have_work_, 1))
96    return;  // Someone else continued the pumping.
97
98  // Make sure the MessagePump does some work for us.
99  BOOL ret = PostMessage(message_hwnd_, kMsgHaveWork,
100                         reinterpret_cast<WPARAM>(this), 0);
101  if (ret)
102    return;  // There was room in the Window Message queue.
103
104  // We have failed to insert a have-work message, so there is a chance that we
105  // will starve tasks/timers while sitting in a nested message loop.  Nested
106  // loops only look at Windows Message queues, and don't look at *our* task
107  // queues, etc., so we might not get a time slice in such. :-(
108  // We could abort here, but the fear is that this failure mode is plausibly
109  // common (queue is full, of about 2000 messages), so we'll do a near-graceful
110  // recovery.  Nested loops are pretty transient (we think), so this will
111  // probably be recoverable.
112  InterlockedExchange(&have_work_, 0);  // Clarify that we didn't really insert.
113  UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", MESSAGE_POST_ERROR,
114                            MESSAGE_LOOP_PROBLEM_MAX);
115}
116
117void MessagePumpForUI::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
118  //
119  // We would *like* to provide high resolution timers.  Windows timers using
120  // SetTimer() have a 10ms granularity.  We have to use WM_TIMER as a wakeup
121  // mechanism because the application can enter modal windows loops where it
122  // is not running our MessageLoop; the only way to have our timers fire in
123  // these cases is to post messages there.
124  //
125  // To provide sub-10ms timers, we process timers directly from our run loop.
126  // For the common case, timers will be processed there as the run loop does
127  // its normal work.  However, we *also* set the system timer so that WM_TIMER
128  // events fire.  This mops up the case of timers not being able to work in
129  // modal message loops.  It is possible for the SetTimer to pop and have no
130  // pending timers, because they could have already been processed by the
131  // run loop itself.
132  //
133  // We use a single SetTimer corresponding to the timer that will expire
134  // soonest.  As new timers are created and destroyed, we update SetTimer.
135  // Getting a spurrious SetTimer event firing is benign, as we'll just be
136  // processing an empty timer queue.
137  //
138  delayed_work_time_ = delayed_work_time;
139
140  int delay_msec = GetCurrentDelay();
141  DCHECK_GE(delay_msec, 0);
142  if (delay_msec < USER_TIMER_MINIMUM)
143    delay_msec = USER_TIMER_MINIMUM;
144
145  // Create a WM_TIMER event that will wake us up to check for any pending
146  // timers (in case we are running within a nested, external sub-pump).
147  BOOL ret = SetTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this),
148                      delay_msec, NULL);
149  if (ret)
150    return;
151  // If we can't set timers, we are in big trouble... but cross our fingers for
152  // now.
153  // TODO(jar): If we don't see this error, use a CHECK() here instead.
154  UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", SET_TIMER_ERROR,
155                            MESSAGE_LOOP_PROBLEM_MAX);
156}
157
158//-----------------------------------------------------------------------------
159// MessagePumpForUI private:
160
161// static
162LRESULT CALLBACK MessagePumpForUI::WndProcThunk(
163    HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam) {
164  switch (message) {
165    case kMsgHaveWork:
166      reinterpret_cast<MessagePumpForUI*>(wparam)->HandleWorkMessage();
167      break;
168    case WM_TIMER:
169      reinterpret_cast<MessagePumpForUI*>(wparam)->HandleTimerMessage();
170      break;
171  }
172  return DefWindowProc(hwnd, message, wparam, lparam);
173}
174
175void MessagePumpForUI::DoRunLoop() {
176  // IF this was just a simple PeekMessage() loop (servicing all possible work
177  // queues), then Windows would try to achieve the following order according
178  // to MSDN documentation about PeekMessage with no filter):
179  //    * Sent messages
180  //    * Posted messages
181  //    * Sent messages (again)
182  //    * WM_PAINT messages
183  //    * WM_TIMER messages
184  //
185  // Summary: none of the above classes is starved, and sent messages has twice
186  // the chance of being processed (i.e., reduced service time).
187
188  for (;;) {
189    // If we do any work, we may create more messages etc., and more work may
190    // possibly be waiting in another task group.  When we (for example)
191    // ProcessNextWindowsMessage(), there is a good chance there are still more
192    // messages waiting.  On the other hand, when any of these methods return
193    // having done no work, then it is pretty unlikely that calling them again
194    // quickly will find any work to do.  Finally, if they all say they had no
195    // work, then it is a good time to consider sleeping (waiting) for more
196    // work.
197
198    bool more_work_is_plausible = ProcessNextWindowsMessage();
199    if (state_->should_quit)
200      break;
201
202    more_work_is_plausible |= state_->delegate->DoWork();
203    if (state_->should_quit)
204      break;
205
206    more_work_is_plausible |=
207        state_->delegate->DoDelayedWork(&delayed_work_time_);
208    // If we did not process any delayed work, then we can assume that our
209    // existing WM_TIMER if any will fire when delayed work should run.  We
210    // don't want to disturb that timer if it is already in flight.  However,
211    // if we did do all remaining delayed work, then lets kill the WM_TIMER.
212    if (more_work_is_plausible && delayed_work_time_.is_null())
213      KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
214    if (state_->should_quit)
215      break;
216
217    if (more_work_is_plausible)
218      continue;
219
220    more_work_is_plausible = state_->delegate->DoIdleWork();
221    if (state_->should_quit)
222      break;
223
224    if (more_work_is_plausible)
225      continue;
226
227    WaitForWork();  // Wait (sleep) until we have work to do again.
228  }
229}
230
231void MessagePumpForUI::InitMessageWnd() {
232  // Generate a unique window class name.
233  string16 class_name = StringPrintf(kWndClassFormat, this);
234
235  HINSTANCE instance = GetModuleFromAddress(&WndProcThunk);
236  WNDCLASSEX wc = {0};
237  wc.cbSize = sizeof(wc);
238  wc.lpfnWndProc = base::win::WrappedWindowProc<WndProcThunk>;
239  wc.hInstance = instance;
240  wc.lpszClassName = class_name.c_str();
241  atom_ = RegisterClassEx(&wc);
242  DCHECK(atom_);
243
244  message_hwnd_ = CreateWindow(MAKEINTATOM(atom_), 0, 0, 0, 0, 0, 0,
245                               HWND_MESSAGE, 0, instance, 0);
246  DCHECK(message_hwnd_);
247}
248
249void MessagePumpForUI::WaitForWork() {
250  // Wait until a message is available, up to the time needed by the timer
251  // manager to fire the next set of timers.
252  int delay = GetCurrentDelay();
253  if (delay < 0)  // Negative value means no timers waiting.
254    delay = INFINITE;
255
256  DWORD result;
257  result = MsgWaitForMultipleObjectsEx(0, NULL, delay, QS_ALLINPUT,
258                                       MWMO_INPUTAVAILABLE);
259
260  if (WAIT_OBJECT_0 == result) {
261    // A WM_* message is available.
262    // If a parent child relationship exists between windows across threads
263    // then their thread inputs are implicitly attached.
264    // This causes the MsgWaitForMultipleObjectsEx API to return indicating
265    // that messages are ready for processing (Specifically, mouse messages
266    // intended for the child window may appear if the child window has
267    // capture).
268    // The subsequent PeekMessages call may fail to return any messages thus
269    // causing us to enter a tight loop at times.
270    // The WaitMessage call below is a workaround to give the child window
271    // some time to process its input messages.
272    MSG msg = {0};
273    DWORD queue_status = GetQueueStatus(QS_MOUSE);
274    if (HIWORD(queue_status) & QS_MOUSE &&
275        !PeekMessage(&msg, NULL, WM_MOUSEFIRST, WM_MOUSELAST, PM_NOREMOVE)) {
276      WaitMessage();
277    }
278    return;
279  }
280
281  DCHECK_NE(WAIT_FAILED, result) << GetLastError();
282}
283
284void MessagePumpForUI::HandleWorkMessage() {
285  // If we are being called outside of the context of Run, then don't try to do
286  // any work.  This could correspond to a MessageBox call or something of that
287  // sort.
288  if (!state_) {
289    // Since we handled a kMsgHaveWork message, we must still update this flag.
290    InterlockedExchange(&have_work_, 0);
291    return;
292  }
293
294  // Let whatever would have run had we not been putting messages in the queue
295  // run now.  This is an attempt to make our dummy message not starve other
296  // messages that may be in the Windows message queue.
297  ProcessPumpReplacementMessage();
298
299  // Now give the delegate a chance to do some work.  He'll let us know if he
300  // needs to do more work.
301  if (state_->delegate->DoWork())
302    ScheduleWork();
303}
304
305void MessagePumpForUI::HandleTimerMessage() {
306  KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
307
308  // If we are being called outside of the context of Run, then don't do
309  // anything.  This could correspond to a MessageBox call or something of
310  // that sort.
311  if (!state_)
312    return;
313
314  state_->delegate->DoDelayedWork(&delayed_work_time_);
315  if (!delayed_work_time_.is_null()) {
316    // A bit gratuitous to set delayed_work_time_ again, but oh well.
317    ScheduleDelayedWork(delayed_work_time_);
318  }
319}
320
321bool MessagePumpForUI::ProcessNextWindowsMessage() {
322  // If there are sent messages in the queue then PeekMessage internally
323  // dispatches the message and returns false. We return true in this
324  // case to ensure that the message loop peeks again instead of calling
325  // MsgWaitForMultipleObjectsEx again.
326  bool sent_messages_in_queue = false;
327  DWORD queue_status = GetQueueStatus(QS_SENDMESSAGE);
328  if (HIWORD(queue_status) & QS_SENDMESSAGE)
329    sent_messages_in_queue = true;
330
331  MSG msg;
332  if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE) != FALSE)
333    return ProcessMessageHelper(msg);
334
335  return sent_messages_in_queue;
336}
337
338bool MessagePumpForUI::ProcessMessageHelper(const MSG& msg) {
339  TRACE_EVENT1("base", "MessagePumpForUI::ProcessMessageHelper",
340               "message", msg.message);
341  if (WM_QUIT == msg.message) {
342    // Repost the QUIT message so that it will be retrieved by the primary
343    // GetMessage() loop.
344    state_->should_quit = true;
345    PostQuitMessage(static_cast<int>(msg.wParam));
346    return false;
347  }
348
349  // While running our main message pump, we discard kMsgHaveWork messages.
350  if (msg.message == kMsgHaveWork && msg.hwnd == message_hwnd_)
351    return ProcessPumpReplacementMessage();
352
353  if (CallMsgFilter(const_cast<MSG*>(&msg), kMessageFilterCode))
354    return true;
355
356  uint32_t action = MessagePumpDispatcher::POST_DISPATCH_PERFORM_DEFAULT;
357  if (state_->dispatcher)
358    action = state_->dispatcher->Dispatch(msg);
359  if (action & MessagePumpDispatcher::POST_DISPATCH_QUIT_LOOP)
360    state_->should_quit = true;
361  if (action & MessagePumpDispatcher::POST_DISPATCH_PERFORM_DEFAULT) {
362    TranslateMessage(&msg);
363    DispatchMessage(&msg);
364  }
365
366  return true;
367}
368
369bool MessagePumpForUI::ProcessPumpReplacementMessage() {
370  // When we encounter a kMsgHaveWork message, this method is called to peek
371  // and process a replacement message, such as a WM_PAINT or WM_TIMER.  The
372  // goal is to make the kMsgHaveWork as non-intrusive as possible, even though
373  // a continuous stream of such messages are posted.  This method carefully
374  // peeks a message while there is no chance for a kMsgHaveWork to be pending,
375  // then resets the have_work_ flag (allowing a replacement kMsgHaveWork to
376  // possibly be posted), and finally dispatches that peeked replacement.  Note
377  // that the re-post of kMsgHaveWork may be asynchronous to this thread!!
378
379  bool have_message = false;
380  MSG msg;
381  // We should not process all window messages if we are in the context of an
382  // OS modal loop, i.e. in the context of a windows API call like MessageBox.
383  // This is to ensure that these messages are peeked out by the OS modal loop.
384  if (MessageLoop::current()->os_modal_loop()) {
385    // We only peek out WM_PAINT and WM_TIMER here for reasons mentioned above.
386    have_message = PeekMessage(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE) ||
387                   PeekMessage(&msg, NULL, WM_TIMER, WM_TIMER, PM_REMOVE);
388  } else {
389    have_message = PeekMessage(&msg, NULL, 0, 0, PM_REMOVE) != FALSE;
390  }
391
392  DCHECK(!have_message || kMsgHaveWork != msg.message ||
393         msg.hwnd != message_hwnd_);
394
395  // Since we discarded a kMsgHaveWork message, we must update the flag.
396  int old_have_work = InterlockedExchange(&have_work_, 0);
397  DCHECK(old_have_work);
398
399  // We don't need a special time slice if we didn't have_message to process.
400  if (!have_message)
401    return false;
402
403  // Guarantee we'll get another time slice in the case where we go into native
404  // windows code.   This ScheduleWork() may hurt performance a tiny bit when
405  // tasks appear very infrequently, but when the event queue is busy, the
406  // kMsgHaveWork events get (percentage wise) rarer and rarer.
407  ScheduleWork();
408  return ProcessMessageHelper(msg);
409}
410
411//-----------------------------------------------------------------------------
412// MessagePumpForIO public:
413
414MessagePumpForIO::MessagePumpForIO() {
415  port_.Set(CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, NULL, 1));
416  DCHECK(port_.IsValid());
417}
418
419void MessagePumpForIO::ScheduleWork() {
420  if (InterlockedExchange(&have_work_, 1))
421    return;  // Someone else continued the pumping.
422
423  // Make sure the MessagePump does some work for us.
424  BOOL ret = PostQueuedCompletionStatus(port_.Get(), 0,
425                                        reinterpret_cast<ULONG_PTR>(this),
426                                        reinterpret_cast<OVERLAPPED*>(this));
427  if (ret)
428    return;  // Post worked perfectly.
429
430  // See comment in MessagePumpForUI::ScheduleWork() for this error recovery.
431  InterlockedExchange(&have_work_, 0);  // Clarify that we didn't succeed.
432  UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", COMPLETION_POST_ERROR,
433                            MESSAGE_LOOP_PROBLEM_MAX);
434}
435
436void MessagePumpForIO::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
437  // We know that we can't be blocked right now since this method can only be
438  // called on the same thread as Run, so we only need to update our record of
439  // how long to sleep when we do sleep.
440  delayed_work_time_ = delayed_work_time;
441}
442
443void MessagePumpForIO::RegisterIOHandler(HANDLE file_handle,
444                                         IOHandler* handler) {
445  ULONG_PTR key = HandlerToKey(handler, true);
446  HANDLE port = CreateIoCompletionPort(file_handle, port_.Get(), key, 1);
447  DPCHECK(port);
448}
449
450bool MessagePumpForIO::RegisterJobObject(HANDLE job_handle,
451                                         IOHandler* handler) {
452  // Job object notifications use the OVERLAPPED pointer to carry the message
453  // data. Mark the completion key correspondingly, so we will not try to
454  // convert OVERLAPPED* to IOContext*.
455  ULONG_PTR key = HandlerToKey(handler, false);
456  JOBOBJECT_ASSOCIATE_COMPLETION_PORT info;
457  info.CompletionKey = reinterpret_cast<void*>(key);
458  info.CompletionPort = port_.Get();
459  return SetInformationJobObject(job_handle,
460                                 JobObjectAssociateCompletionPortInformation,
461                                 &info,
462                                 sizeof(info)) != FALSE;
463}
464
465//-----------------------------------------------------------------------------
466// MessagePumpForIO private:
467
468void MessagePumpForIO::DoRunLoop() {
469  for (;;) {
470    // If we do any work, we may create more messages etc., and more work may
471    // possibly be waiting in another task group.  When we (for example)
472    // WaitForIOCompletion(), there is a good chance there are still more
473    // messages waiting.  On the other hand, when any of these methods return
474    // having done no work, then it is pretty unlikely that calling them
475    // again quickly will find any work to do.  Finally, if they all say they
476    // had no work, then it is a good time to consider sleeping (waiting) for
477    // more work.
478
479    bool more_work_is_plausible = state_->delegate->DoWork();
480    if (state_->should_quit)
481      break;
482
483    more_work_is_plausible |= WaitForIOCompletion(0, NULL);
484    if (state_->should_quit)
485      break;
486
487    more_work_is_plausible |=
488        state_->delegate->DoDelayedWork(&delayed_work_time_);
489    if (state_->should_quit)
490      break;
491
492    if (more_work_is_plausible)
493      continue;
494
495    more_work_is_plausible = state_->delegate->DoIdleWork();
496    if (state_->should_quit)
497      break;
498
499    if (more_work_is_plausible)
500      continue;
501
502    WaitForWork();  // Wait (sleep) until we have work to do again.
503  }
504}
505
506// Wait until IO completes, up to the time needed by the timer manager to fire
507// the next set of timers.
508void MessagePumpForIO::WaitForWork() {
509  // We do not support nested IO message loops. This is to avoid messy
510  // recursion problems.
511  DCHECK_EQ(1, state_->run_depth) << "Cannot nest an IO message loop!";
512
513  int timeout = GetCurrentDelay();
514  if (timeout < 0)  // Negative value means no timers waiting.
515    timeout = INFINITE;
516
517  WaitForIOCompletion(timeout, NULL);
518}
519
520bool MessagePumpForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) {
521  IOItem item;
522  if (completed_io_.empty() || !MatchCompletedIOItem(filter, &item)) {
523    // We have to ask the system for another IO completion.
524    if (!GetIOItem(timeout, &item))
525      return false;
526
527    if (ProcessInternalIOItem(item))
528      return true;
529  }
530
531  // If |item.has_valid_io_context| is false then |item.context| does not point
532  // to a context structure, and so should not be dereferenced, although it may
533  // still hold valid non-pointer data.
534  if (!item.has_valid_io_context || item.context->handler) {
535    if (filter && item.handler != filter) {
536      // Save this item for later
537      completed_io_.push_back(item);
538    } else {
539      DCHECK(!item.has_valid_io_context ||
540             (item.context->handler == item.handler));
541      WillProcessIOEvent();
542      item.handler->OnIOCompleted(item.context, item.bytes_transfered,
543                                  item.error);
544      DidProcessIOEvent();
545    }
546  } else {
547    // The handler must be gone by now, just cleanup the mess.
548    delete item.context;
549  }
550  return true;
551}
552
553// Asks the OS for another IO completion result.
554bool MessagePumpForIO::GetIOItem(DWORD timeout, IOItem* item) {
555  memset(item, 0, sizeof(*item));
556  ULONG_PTR key = NULL;
557  OVERLAPPED* overlapped = NULL;
558  if (!GetQueuedCompletionStatus(port_.Get(), &item->bytes_transfered, &key,
559                                 &overlapped, timeout)) {
560    if (!overlapped)
561      return false;  // Nothing in the queue.
562    item->error = GetLastError();
563    item->bytes_transfered = 0;
564  }
565
566  item->handler = KeyToHandler(key, &item->has_valid_io_context);
567  item->context = reinterpret_cast<IOContext*>(overlapped);
568  return true;
569}
570
571bool MessagePumpForIO::ProcessInternalIOItem(const IOItem& item) {
572  if (this == reinterpret_cast<MessagePumpForIO*>(item.context) &&
573      this == reinterpret_cast<MessagePumpForIO*>(item.handler)) {
574    // This is our internal completion.
575    DCHECK(!item.bytes_transfered);
576    InterlockedExchange(&have_work_, 0);
577    return true;
578  }
579  return false;
580}
581
582// Returns a completion item that was previously received.
583bool MessagePumpForIO::MatchCompletedIOItem(IOHandler* filter, IOItem* item) {
584  DCHECK(!completed_io_.empty());
585  for (std::list<IOItem>::iterator it = completed_io_.begin();
586       it != completed_io_.end(); ++it) {
587    if (!filter || it->handler == filter) {
588      *item = *it;
589      completed_io_.erase(it);
590      return true;
591    }
592  }
593  return false;
594}
595
596void MessagePumpForIO::AddIOObserver(IOObserver *obs) {
597  io_observers_.AddObserver(obs);
598}
599
600void MessagePumpForIO::RemoveIOObserver(IOObserver *obs) {
601  io_observers_.RemoveObserver(obs);
602}
603
604void MessagePumpForIO::WillProcessIOEvent() {
605  FOR_EACH_OBSERVER(IOObserver, io_observers_, WillProcessIOEvent());
606}
607
608void MessagePumpForIO::DidProcessIOEvent() {
609  FOR_EACH_OBSERVER(IOObserver, io_observers_, DidProcessIOEvent());
610}
611
612// static
613ULONG_PTR MessagePumpForIO::HandlerToKey(IOHandler* handler,
614                                         bool has_valid_io_context) {
615  ULONG_PTR key = reinterpret_cast<ULONG_PTR>(handler);
616
617  // |IOHandler| is at least pointer-size aligned, so the lowest two bits are
618  // always cleared. We use the lowest bit to distinguish completion keys with
619  // and without the associated |IOContext|.
620  DCHECK((key & 1) == 0);
621
622  // Mark the completion key as context-less.
623  if (!has_valid_io_context)
624    key = key | 1;
625  return key;
626}
627
628// static
629MessagePumpForIO::IOHandler* MessagePumpForIO::KeyToHandler(
630    ULONG_PTR key,
631    bool* has_valid_io_context) {
632  *has_valid_io_context = ((key & 1) == 0);
633  return reinterpret_cast<IOHandler*>(key & ~static_cast<ULONG_PTR>(1));
634}
635
636}  // namespace base
637