message_pump_win.h revision 5e3f23d412006dc4db4e659864679f29341e113f
1// Copyright (c) 2012 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef BASE_MESSAGE_PUMP_WIN_H_
6#define BASE_MESSAGE_PUMP_WIN_H_
7
8#include <windows.h>
9
10#include <list>
11
12#include "base/base_export.h"
13#include "base/basictypes.h"
14#include "base/memory/scoped_ptr.h"
15#include "base/message_pump.h"
16#include "base/message_pump_dispatcher.h"
17#include "base/message_pump_observer.h"
18#include "base/observer_list.h"
19#include "base/time.h"
20#include "base/win/scoped_handle.h"
21
22namespace base {
23
24// MessagePumpWin serves as the base for specialized versions of the MessagePump
25// for Windows. It provides basic functionality like handling of observers and
26// controlling the lifetime of the message pump.
27class BASE_EXPORT MessagePumpWin : public MessagePump {
28 public:
29  MessagePumpWin() : have_work_(0), state_(NULL) {}
30  virtual ~MessagePumpWin() {}
31
32  // Add an Observer, which will start receiving notifications immediately.
33  void AddObserver(MessagePumpObserver* observer);
34
35  // Remove an Observer.  It is safe to call this method while an Observer is
36  // receiving a notification callback.
37  void RemoveObserver(MessagePumpObserver* observer);
38
39  // Give a chance to code processing additional messages to notify the
40  // message loop observers that another message has been processed.
41  void WillProcessMessage(const MSG& msg);
42  void DidProcessMessage(const MSG& msg);
43
44  // Like MessagePump::Run, but MSG objects are routed through dispatcher.
45  void RunWithDispatcher(Delegate* delegate, MessagePumpDispatcher* dispatcher);
46
47  // MessagePump methods:
48  virtual void Run(Delegate* delegate) { RunWithDispatcher(delegate, NULL); }
49  virtual void Quit();
50
51 protected:
52  struct RunState {
53    Delegate* delegate;
54    MessagePumpDispatcher* dispatcher;
55
56    // Used to flag that the current Run() invocation should return ASAP.
57    bool should_quit;
58
59    // Used to count how many Run() invocations are on the stack.
60    int run_depth;
61  };
62
63  virtual void DoRunLoop() = 0;
64  int GetCurrentDelay() const;
65
66  ObserverList<MessagePumpObserver> observers_;
67
68  // The time at which delayed work should run.
69  TimeTicks delayed_work_time_;
70
71  // A boolean value used to indicate if there is a kMsgDoWork message pending
72  // in the Windows Message queue.  There is at most one such message, and it
73  // can drive execution of tasks when a native message pump is running.
74  LONG have_work_;
75
76  // State for the current invocation of Run.
77  RunState* state_;
78};
79
80//-----------------------------------------------------------------------------
81// MessagePumpForUI extends MessagePumpWin with methods that are particular to a
82// MessageLoop instantiated with TYPE_UI.
83//
84// MessagePumpForUI implements a "traditional" Windows message pump. It contains
85// a nearly infinite loop that peeks out messages, and then dispatches them.
86// Intermixed with those peeks are callouts to DoWork for pending tasks, and
87// DoDelayedWork for pending timers. When there are no events to be serviced,
88// this pump goes into a wait state. In most cases, this message pump handles
89// all processing.
90//
91// However, when a task, or windows event, invokes on the stack a native dialog
92// box or such, that window typically provides a bare bones (native?) message
93// pump.  That bare-bones message pump generally supports little more than a
94// peek of the Windows message queue, followed by a dispatch of the peeked
95// message.  MessageLoop extends that bare-bones message pump to also service
96// Tasks, at the cost of some complexity.
97//
98// The basic structure of the extension (refered to as a sub-pump) is that a
99// special message, kMsgHaveWork, is repeatedly injected into the Windows
100// Message queue.  Each time the kMsgHaveWork message is peeked, checks are
101// made for an extended set of events, including the availability of Tasks to
102// run.
103//
104// After running a task, the special message kMsgHaveWork is again posted to
105// the Windows Message queue, ensuring a future time slice for processing a
106// future event.  To prevent flooding the Windows Message queue, care is taken
107// to be sure that at most one kMsgHaveWork message is EVER pending in the
108// Window's Message queue.
109//
110// There are a few additional complexities in this system where, when there are
111// no Tasks to run, this otherwise infinite stream of messages which drives the
112// sub-pump is halted.  The pump is automatically re-started when Tasks are
113// queued.
114//
115// A second complexity is that the presence of this stream of posted tasks may
116// prevent a bare-bones message pump from ever peeking a WM_PAINT or WM_TIMER.
117// Such paint and timer events always give priority to a posted message, such as
118// kMsgHaveWork messages.  As a result, care is taken to do some peeking in
119// between the posting of each kMsgHaveWork message (i.e., after kMsgHaveWork
120// is peeked, and before a replacement kMsgHaveWork is posted).
121//
122// NOTE: Although it may seem odd that messages are used to start and stop this
123// flow (as opposed to signaling objects, etc.), it should be understood that
124// the native message pump will *only* respond to messages.  As a result, it is
125// an excellent choice.  It is also helpful that the starter messages that are
126// placed in the queue when new task arrive also awakens DoRunLoop.
127//
128class BASE_EXPORT MessagePumpForUI : public MessagePumpWin {
129 public:
130  // A MessageFilter implements the common Peek/Translate/Dispatch code to deal
131  // with windows messages.
132  // This abstraction is used to inject TSF message peeking. See
133  // TextServicesMessageFilter.
134  class BASE_EXPORT MessageFilter {
135   public:
136    virtual ~MessageFilter() {}
137    // Implements the functionality exposed by the OS through PeekMessage.
138    virtual BOOL DoPeekMessage(MSG* msg,
139                               HWND window_handle,
140                               UINT msg_filter_min,
141                               UINT msg_filter_max,
142                               UINT remove_msg) {
143      return PeekMessage(msg, window_handle, msg_filter_min, msg_filter_max,
144                         remove_msg);
145    }
146    // Returns true if |message| was consumed by the filter and no extra
147    // processing is required. If this method returns false, it is the
148    // responsibility of the caller to ensure that normal processing takes
149    // place.
150    // The priority to consume messages is the following:
151    // - Native Windows' message filter (CallMsgFilter).
152    // - MessageFilter::ProcessMessage.
153    // - MessagePumpDispatcher.
154    // - TranslateMessage / DispatchMessage.
155    virtual bool ProcessMessage(const MSG& msg) { return false;}
156  };
157  // The application-defined code passed to the hook procedure.
158  static const int kMessageFilterCode = 0x5001;
159
160  MessagePumpForUI();
161  virtual ~MessagePumpForUI();
162
163  // Sets a new MessageFilter. MessagePumpForUI takes ownership of
164  // |message_filter|. When SetMessageFilter is called, old MessageFilter is
165  // deleted.
166  void SetMessageFilter(scoped_ptr<MessageFilter> message_filter);
167
168  // MessagePump methods:
169  virtual void ScheduleWork();
170  virtual void ScheduleDelayedWork(const TimeTicks& delayed_work_time);
171
172  // Applications can call this to encourage us to process all pending WM_PAINT
173  // messages.  This method will process all paint messages the Windows Message
174  // queue can provide, up to some fixed number (to avoid any infinite loops).
175  void PumpOutPendingPaintMessages();
176
177 private:
178  static LRESULT CALLBACK WndProcThunk(HWND window_handle,
179                                       UINT message,
180                                       WPARAM wparam,
181                                       LPARAM lparam);
182  virtual void DoRunLoop();
183  void InitMessageWnd();
184  void WaitForWork();
185  void HandleWorkMessage();
186  void HandleTimerMessage();
187  bool ProcessNextWindowsMessage();
188  bool ProcessMessageHelper(const MSG& msg);
189  bool ProcessPumpReplacementMessage();
190
191  // Atom representing the registered window class.
192  ATOM atom_;
193
194  // A hidden message-only window.
195  HWND message_hwnd_;
196
197  scoped_ptr<MessageFilter> message_filter_;
198};
199
200//-----------------------------------------------------------------------------
201// MessagePumpForIO extends MessagePumpWin with methods that are particular to a
202// MessageLoop instantiated with TYPE_IO. This version of MessagePump does not
203// deal with Windows mesagges, and instead has a Run loop based on Completion
204// Ports so it is better suited for IO operations.
205//
206class BASE_EXPORT MessagePumpForIO : public MessagePumpWin {
207 public:
208  struct IOContext;
209
210  // Clients interested in receiving OS notifications when asynchronous IO
211  // operations complete should implement this interface and register themselves
212  // with the message pump.
213  //
214  // Typical use #1:
215  //   // Use only when there are no user's buffers involved on the actual IO,
216  //   // so that all the cleanup can be done by the message pump.
217  //   class MyFile : public IOHandler {
218  //     MyFile() {
219  //       ...
220  //       context_ = new IOContext;
221  //       context_->handler = this;
222  //       message_pump->RegisterIOHandler(file_, this);
223  //     }
224  //     ~MyFile() {
225  //       if (pending_) {
226  //         // By setting the handler to NULL, we're asking for this context
227  //         // to be deleted when received, without calling back to us.
228  //         context_->handler = NULL;
229  //       } else {
230  //         delete context_;
231  //      }
232  //     }
233  //     virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
234  //                                DWORD error) {
235  //         pending_ = false;
236  //     }
237  //     void DoSomeIo() {
238  //       ...
239  //       // The only buffer required for this operation is the overlapped
240  //       // structure.
241  //       ConnectNamedPipe(file_, &context_->overlapped);
242  //       pending_ = true;
243  //     }
244  //     bool pending_;
245  //     IOContext* context_;
246  //     HANDLE file_;
247  //   };
248  //
249  // Typical use #2:
250  //   class MyFile : public IOHandler {
251  //     MyFile() {
252  //       ...
253  //       message_pump->RegisterIOHandler(file_, this);
254  //     }
255  //     // Plus some code to make sure that this destructor is not called
256  //     // while there are pending IO operations.
257  //     ~MyFile() {
258  //     }
259  //     virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
260  //                                DWORD error) {
261  //       ...
262  //       delete context;
263  //     }
264  //     void DoSomeIo() {
265  //       ...
266  //       IOContext* context = new IOContext;
267  //       // This is not used for anything. It just prevents the context from
268  //       // being considered "abandoned".
269  //       context->handler = this;
270  //       ReadFile(file_, buffer, num_bytes, &read, &context->overlapped);
271  //     }
272  //     HANDLE file_;
273  //   };
274  //
275  // Typical use #3:
276  // Same as the previous example, except that in order to deal with the
277  // requirement stated for the destructor, the class calls WaitForIOCompletion
278  // from the destructor to block until all IO finishes.
279  //     ~MyFile() {
280  //       while(pending_)
281  //         message_pump->WaitForIOCompletion(INFINITE, this);
282  //     }
283  //
284  class IOHandler {
285   public:
286    virtual ~IOHandler() {}
287    // This will be called once the pending IO operation associated with
288    // |context| completes. |error| is the Win32 error code of the IO operation
289    // (ERROR_SUCCESS if there was no error). |bytes_transfered| will be zero
290    // on error.
291    virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
292                               DWORD error) = 0;
293  };
294
295  // An IOObserver is an object that receives IO notifications from the
296  // MessagePump.
297  //
298  // NOTE: An IOObserver implementation should be extremely fast!
299  class IOObserver {
300   public:
301    IOObserver() {}
302
303    virtual void WillProcessIOEvent() = 0;
304    virtual void DidProcessIOEvent() = 0;
305
306   protected:
307    virtual ~IOObserver() {}
308  };
309
310  // The extended context that should be used as the base structure on every
311  // overlapped IO operation. |handler| must be set to the registered IOHandler
312  // for the given file when the operation is started, and it can be set to NULL
313  // before the operation completes to indicate that the handler should not be
314  // called anymore, and instead, the IOContext should be deleted when the OS
315  // notifies the completion of this operation. Please remember that any buffers
316  // involved with an IO operation should be around until the callback is
317  // received, so this technique can only be used for IO that do not involve
318  // additional buffers (other than the overlapped structure itself).
319  struct IOContext {
320    OVERLAPPED overlapped;
321    IOHandler* handler;
322  };
323
324  MessagePumpForIO();
325  virtual ~MessagePumpForIO() {}
326
327  // MessagePump methods:
328  virtual void ScheduleWork();
329  virtual void ScheduleDelayedWork(const TimeTicks& delayed_work_time);
330
331  // Register the handler to be used when asynchronous IO for the given file
332  // completes. The registration persists as long as |file_handle| is valid, so
333  // |handler| must be valid as long as there is pending IO for the given file.
334  void RegisterIOHandler(HANDLE file_handle, IOHandler* handler);
335
336  // Register the handler to be used to process job events. The registration
337  // persists as long as the job object is live, so |handler| must be valid
338  // until the job object is destroyed. Returns true if the registration
339  // succeeded, and false otherwise.
340  bool RegisterJobObject(HANDLE job_handle, IOHandler* handler);
341
342  // Waits for the next IO completion that should be processed by |filter|, for
343  // up to |timeout| milliseconds. Return true if any IO operation completed,
344  // regardless of the involved handler, and false if the timeout expired. If
345  // the completion port received any message and the involved IO handler
346  // matches |filter|, the callback is called before returning from this code;
347  // if the handler is not the one that we are looking for, the callback will
348  // be postponed for another time, so reentrancy problems can be avoided.
349  // External use of this method should be reserved for the rare case when the
350  // caller is willing to allow pausing regular task dispatching on this thread.
351  bool WaitForIOCompletion(DWORD timeout, IOHandler* filter);
352
353  void AddIOObserver(IOObserver* obs);
354  void RemoveIOObserver(IOObserver* obs);
355
356 private:
357  struct IOItem {
358    IOHandler* handler;
359    IOContext* context;
360    DWORD bytes_transfered;
361    DWORD error;
362
363    // In some cases |context| can be a non-pointer value casted to a pointer.
364    // |has_valid_io_context| is true if |context| is a valid IOContext
365    // pointer, and false otherwise.
366    bool has_valid_io_context;
367  };
368
369  virtual void DoRunLoop();
370  void WaitForWork();
371  bool MatchCompletedIOItem(IOHandler* filter, IOItem* item);
372  bool GetIOItem(DWORD timeout, IOItem* item);
373  bool ProcessInternalIOItem(const IOItem& item);
374  void WillProcessIOEvent();
375  void DidProcessIOEvent();
376
377  // Converts an IOHandler pointer to a completion port key.
378  // |has_valid_io_context| specifies whether completion packets posted to
379  // |handler| will have valid OVERLAPPED pointers.
380  static ULONG_PTR HandlerToKey(IOHandler* handler, bool has_valid_io_context);
381
382  // Converts a completion port key to an IOHandler pointer.
383  static IOHandler* KeyToHandler(ULONG_PTR key, bool* has_valid_io_context);
384
385  // The completion port associated with this thread.
386  win::ScopedHandle port_;
387  // This list will be empty almost always. It stores IO completions that have
388  // not been delivered yet because somebody was doing cleanup.
389  std::list<IOItem> completed_io_;
390
391  ObserverList<IOObserver> io_observers_;
392};
393
394}  // namespace base
395
396#endif  // BASE_MESSAGE_PUMP_WIN_H_
397