launch_posix.cc revision 5d1f7b1de12d16ceb2c938c56701a3e8bfa558f7
1// Copyright (c) 2012 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "base/process/launch.h"
6
7#include <dirent.h>
8#include <errno.h>
9#include <fcntl.h>
10#include <signal.h>
11#include <stdlib.h>
12#include <sys/resource.h>
13#include <sys/time.h>
14#include <sys/types.h>
15#include <sys/wait.h>
16#include <unistd.h>
17
18#include <iterator>
19#include <limits>
20#include <set>
21
22#include "base/allocator/type_profiler_control.h"
23#include "base/command_line.h"
24#include "base/compiler_specific.h"
25#include "base/debug/debugger.h"
26#include "base/debug/stack_trace.h"
27#include "base/file_util.h"
28#include "base/files/dir_reader_posix.h"
29#include "base/logging.h"
30#include "base/memory/scoped_ptr.h"
31#include "base/posix/eintr_wrapper.h"
32#include "base/process/kill.h"
33#include "base/process/process_metrics.h"
34#include "base/strings/stringprintf.h"
35#include "base/synchronization/waitable_event.h"
36#include "base/third_party/dynamic_annotations/dynamic_annotations.h"
37#include "base/threading/platform_thread.h"
38#include "base/threading/thread_restrictions.h"
39
40#if defined(OS_CHROMEOS)
41#include <sys/ioctl.h>
42#endif
43
44#if defined(OS_FREEBSD)
45#include <sys/event.h>
46#include <sys/ucontext.h>
47#endif
48
49#if defined(OS_MACOSX)
50#include <crt_externs.h>
51#include <sys/event.h>
52#else
53extern char** environ;
54#endif
55
56namespace base {
57
58namespace {
59
60// Get the process's "environment" (i.e. the thing that setenv/getenv
61// work with).
62char** GetEnvironment() {
63#if defined(OS_MACOSX)
64  return *_NSGetEnviron();
65#else
66  return environ;
67#endif
68}
69
70// Set the process's "environment" (i.e. the thing that setenv/getenv
71// work with).
72void SetEnvironment(char** env) {
73#if defined(OS_MACOSX)
74  *_NSGetEnviron() = env;
75#else
76  environ = env;
77#endif
78}
79
80// Set the calling thread's signal mask to new_sigmask and return
81// the previous signal mask.
82sigset_t SetSignalMask(const sigset_t& new_sigmask) {
83  sigset_t old_sigmask;
84#if defined(OS_ANDROID)
85  // POSIX says pthread_sigmask() must be used in multi-threaded processes,
86  // but Android's pthread_sigmask() was broken until 4.1:
87  // https://code.google.com/p/android/issues/detail?id=15337
88  // http://stackoverflow.com/questions/13777109/pthread-sigmask-on-android-not-working
89  RAW_CHECK(sigprocmask(SIG_SETMASK, &new_sigmask, &old_sigmask) == 0);
90#else
91  RAW_CHECK(pthread_sigmask(SIG_SETMASK, &new_sigmask, &old_sigmask) == 0);
92#endif
93  return old_sigmask;
94}
95
96#if !defined(OS_LINUX) || \
97    (!defined(__i386__) && !defined(__x86_64__) && !defined(__arm__))
98void ResetChildSignalHandlersToDefaults() {
99  // The previous signal handlers are likely to be meaningless in the child's
100  // context so we reset them to the defaults for now. http://crbug.com/44953
101  // These signal handlers are set up at least in browser_main_posix.cc:
102  // BrowserMainPartsPosix::PreEarlyInitialization and stack_trace_posix.cc:
103  // EnableInProcessStackDumping.
104  signal(SIGHUP, SIG_DFL);
105  signal(SIGINT, SIG_DFL);
106  signal(SIGILL, SIG_DFL);
107  signal(SIGABRT, SIG_DFL);
108  signal(SIGFPE, SIG_DFL);
109  signal(SIGBUS, SIG_DFL);
110  signal(SIGSEGV, SIG_DFL);
111  signal(SIGSYS, SIG_DFL);
112  signal(SIGTERM, SIG_DFL);
113}
114
115#else
116
117// TODO(jln): remove the Linux special case once kernels are fixed.
118
119// Internally the kernel makes sigset_t an array of long large enough to have
120// one bit per signal.
121typedef uint64_t kernel_sigset_t;
122
123// This is what struct sigaction looks like to the kernel at least on X86 and
124// ARM. MIPS, for instance, is very different.
125struct kernel_sigaction {
126  void* k_sa_handler;  // For this usage it only needs to be a generic pointer.
127  unsigned long k_sa_flags;
128  void* k_sa_restorer;  // For this usage it only needs to be a generic pointer.
129  kernel_sigset_t k_sa_mask;
130};
131
132// glibc's sigaction() will prevent access to sa_restorer, so we need to roll
133// our own.
134int sys_rt_sigaction(int sig, const struct kernel_sigaction* act,
135                     struct kernel_sigaction* oact) {
136  return syscall(SYS_rt_sigaction, sig, act, oact, sizeof(kernel_sigset_t));
137}
138
139// This function is intended to be used in between fork() and execve() and will
140// reset all signal handlers to the default.
141// The motivation for going through all of them is that sa_restorer can leak
142// from parents and help defeat ASLR on buggy kernels.  We reset it to NULL.
143// See crbug.com/177956.
144void ResetChildSignalHandlersToDefaults(void) {
145  for (int signum = 1; ; ++signum) {
146    struct kernel_sigaction act = {0};
147    int sigaction_get_ret = sys_rt_sigaction(signum, NULL, &act);
148    if (sigaction_get_ret && errno == EINVAL) {
149#if !defined(NDEBUG)
150      // Linux supports 32 real-time signals from 33 to 64.
151      // If the number of signals in the Linux kernel changes, someone should
152      // look at this code.
153      const int kNumberOfSignals = 64;
154      RAW_CHECK(signum == kNumberOfSignals + 1);
155#endif  // !defined(NDEBUG)
156      break;
157    }
158    // All other failures are fatal.
159    if (sigaction_get_ret) {
160      RAW_LOG(FATAL, "sigaction (get) failed.");
161    }
162
163    // The kernel won't allow to re-set SIGKILL or SIGSTOP.
164    if (signum != SIGSTOP && signum != SIGKILL) {
165      act.k_sa_handler = reinterpret_cast<void*>(SIG_DFL);
166      act.k_sa_restorer = NULL;
167      if (sys_rt_sigaction(signum, &act, NULL)) {
168        RAW_LOG(FATAL, "sigaction (set) failed.");
169      }
170    }
171#if !defined(NDEBUG)
172    // Now ask the kernel again and check that no restorer will leak.
173    if (sys_rt_sigaction(signum, NULL, &act) || act.k_sa_restorer) {
174      RAW_LOG(FATAL, "Cound not fix sa_restorer.");
175    }
176#endif  // !defined(NDEBUG)
177  }
178}
179#endif  // !defined(OS_LINUX) ||
180        // (!defined(__i386__) && !defined(__x86_64__) && !defined(__arm__))
181
182}  // anonymous namespace
183
184// Functor for |ScopedDIR| (below).
185struct ScopedDIRClose {
186  inline void operator()(DIR* x) const {
187    if (x)
188      closedir(x);
189  }
190};
191
192// Automatically closes |DIR*|s.
193typedef scoped_ptr<DIR, ScopedDIRClose> ScopedDIR;
194
195#if defined(OS_LINUX)
196static const char kFDDir[] = "/proc/self/fd";
197#elif defined(OS_MACOSX)
198static const char kFDDir[] = "/dev/fd";
199#elif defined(OS_SOLARIS)
200static const char kFDDir[] = "/dev/fd";
201#elif defined(OS_FREEBSD)
202static const char kFDDir[] = "/dev/fd";
203#elif defined(OS_OPENBSD)
204static const char kFDDir[] = "/dev/fd";
205#elif defined(OS_ANDROID)
206static const char kFDDir[] = "/proc/self/fd";
207#endif
208
209void CloseSuperfluousFds(const base::InjectiveMultimap& saved_mapping) {
210  // DANGER: no calls to malloc or locks are allowed from now on:
211  // http://crbug.com/36678
212
213  // Get the maximum number of FDs possible.
214  size_t max_fds = GetMaxFds();
215
216  DirReaderPosix fd_dir(kFDDir);
217  if (!fd_dir.IsValid()) {
218    // Fallback case: Try every possible fd.
219    for (size_t i = 0; i < max_fds; ++i) {
220      const int fd = static_cast<int>(i);
221      if (fd == STDIN_FILENO || fd == STDOUT_FILENO || fd == STDERR_FILENO)
222        continue;
223      // Cannot use STL iterators here, since debug iterators use locks.
224      size_t j;
225      for (j = 0; j < saved_mapping.size(); j++) {
226        if (fd == saved_mapping[j].dest)
227          break;
228      }
229      if (j < saved_mapping.size())
230        continue;
231
232      // Since we're just trying to close anything we can find,
233      // ignore any error return values of close().
234      close(fd);
235    }
236    return;
237  }
238
239  const int dir_fd = fd_dir.fd();
240
241  for ( ; fd_dir.Next(); ) {
242    // Skip . and .. entries.
243    if (fd_dir.name()[0] == '.')
244      continue;
245
246    char *endptr;
247    errno = 0;
248    const long int fd = strtol(fd_dir.name(), &endptr, 10);
249    if (fd_dir.name()[0] == 0 || *endptr || fd < 0 || errno)
250      continue;
251    if (fd == STDIN_FILENO || fd == STDOUT_FILENO || fd == STDERR_FILENO)
252      continue;
253    // Cannot use STL iterators here, since debug iterators use locks.
254    size_t i;
255    for (i = 0; i < saved_mapping.size(); i++) {
256      if (fd == saved_mapping[i].dest)
257        break;
258    }
259    if (i < saved_mapping.size())
260      continue;
261    if (fd == dir_fd)
262      continue;
263
264    // When running under Valgrind, Valgrind opens several FDs for its
265    // own use and will complain if we try to close them.  All of
266    // these FDs are >= |max_fds|, so we can check against that here
267    // before closing.  See https://bugs.kde.org/show_bug.cgi?id=191758
268    if (fd < static_cast<int>(max_fds)) {
269      int ret = IGNORE_EINTR(close(fd));
270      DPCHECK(ret == 0);
271    }
272  }
273}
274
275bool LaunchProcess(const std::vector<std::string>& argv,
276                   const LaunchOptions& options,
277                   ProcessHandle* process_handle) {
278  size_t fd_shuffle_size = 0;
279  if (options.fds_to_remap) {
280    fd_shuffle_size = options.fds_to_remap->size();
281  }
282
283  InjectiveMultimap fd_shuffle1;
284  InjectiveMultimap fd_shuffle2;
285  fd_shuffle1.reserve(fd_shuffle_size);
286  fd_shuffle2.reserve(fd_shuffle_size);
287
288  scoped_ptr<char*[]> argv_cstr(new char*[argv.size() + 1]);
289  scoped_ptr<char*[]> new_environ;
290  if (!options.environ.empty())
291    new_environ = AlterEnvironment(GetEnvironment(), options.environ);
292
293  sigset_t full_sigset;
294  sigfillset(&full_sigset);
295  const sigset_t orig_sigmask = SetSignalMask(full_sigset);
296
297  pid_t pid;
298#if defined(OS_LINUX)
299  if (options.clone_flags) {
300    // Signal handling in this function assumes the creation of a new
301    // process, so we check that a thread is not being created by mistake
302    // and that signal handling follows the process-creation rules.
303    RAW_CHECK(
304        !(options.clone_flags & (CLONE_SIGHAND | CLONE_THREAD | CLONE_VM)));
305    pid = syscall(__NR_clone, options.clone_flags, 0, 0, 0);
306  } else
307#endif
308  {
309    pid = fork();
310  }
311
312  // Always restore the original signal mask in the parent.
313  if (pid != 0) {
314    SetSignalMask(orig_sigmask);
315  }
316
317  if (pid < 0) {
318    DPLOG(ERROR) << "fork";
319    return false;
320  } else if (pid == 0) {
321    // Child process
322
323    // DANGER: no calls to malloc or locks are allowed from now on:
324    // http://crbug.com/36678
325
326    // DANGER: fork() rule: in the child, if you don't end up doing exec*(),
327    // you call _exit() instead of exit(). This is because _exit() does not
328    // call any previously-registered (in the parent) exit handlers, which
329    // might do things like block waiting for threads that don't even exist
330    // in the child.
331
332    // If a child process uses the readline library, the process block forever.
333    // In BSD like OSes including OS X it is safe to assign /dev/null as stdin.
334    // See http://crbug.com/56596.
335    int null_fd = HANDLE_EINTR(open("/dev/null", O_RDONLY));
336    if (null_fd < 0) {
337      RAW_LOG(ERROR, "Failed to open /dev/null");
338      _exit(127);
339    }
340
341    file_util::ScopedFD null_fd_closer(&null_fd);
342    int new_fd = HANDLE_EINTR(dup2(null_fd, STDIN_FILENO));
343    if (new_fd != STDIN_FILENO) {
344      RAW_LOG(ERROR, "Failed to dup /dev/null for stdin");
345      _exit(127);
346    }
347
348    if (options.new_process_group) {
349      // Instead of inheriting the process group ID of the parent, the child
350      // starts off a new process group with pgid equal to its process ID.
351      if (setpgid(0, 0) < 0) {
352        RAW_LOG(ERROR, "setpgid failed");
353        _exit(127);
354      }
355    }
356
357    // Stop type-profiler.
358    // The profiler should be stopped between fork and exec since it inserts
359    // locks at new/delete expressions.  See http://crbug.com/36678.
360    base::type_profiler::Controller::Stop();
361
362    if (options.maximize_rlimits) {
363      // Some resource limits need to be maximal in this child.
364      for (size_t i = 0; i < options.maximize_rlimits->size(); ++i) {
365        const int resource = (*options.maximize_rlimits)[i];
366        struct rlimit limit;
367        if (getrlimit(resource, &limit) < 0) {
368          RAW_LOG(WARNING, "getrlimit failed");
369        } else if (limit.rlim_cur < limit.rlim_max) {
370          limit.rlim_cur = limit.rlim_max;
371          if (setrlimit(resource, &limit) < 0) {
372            RAW_LOG(WARNING, "setrlimit failed");
373          }
374        }
375      }
376    }
377
378#if defined(OS_MACOSX)
379    RestoreDefaultExceptionHandler();
380#endif  // defined(OS_MACOSX)
381
382    ResetChildSignalHandlersToDefaults();
383    SetSignalMask(orig_sigmask);
384
385#if 0
386    // When debugging it can be helpful to check that we really aren't making
387    // any hidden calls to malloc.
388    void *malloc_thunk =
389        reinterpret_cast<void*>(reinterpret_cast<intptr_t>(malloc) & ~4095);
390    mprotect(malloc_thunk, 4096, PROT_READ | PROT_WRITE | PROT_EXEC);
391    memset(reinterpret_cast<void*>(malloc), 0xff, 8);
392#endif  // 0
393
394#if defined(OS_CHROMEOS)
395    if (options.ctrl_terminal_fd >= 0) {
396      // Set process' controlling terminal.
397      if (HANDLE_EINTR(setsid()) != -1) {
398        if (HANDLE_EINTR(
399                ioctl(options.ctrl_terminal_fd, TIOCSCTTY, NULL)) == -1) {
400          RAW_LOG(WARNING, "ioctl(TIOCSCTTY), ctrl terminal not set");
401        }
402      } else {
403        RAW_LOG(WARNING, "setsid failed, ctrl terminal not set");
404      }
405    }
406#endif  // defined(OS_CHROMEOS)
407
408    if (options.fds_to_remap) {
409      // Cannot use STL iterators here, since debug iterators use locks.
410      for (size_t i = 0; i < options.fds_to_remap->size(); ++i) {
411        const FileHandleMappingVector::value_type& value =
412            (*options.fds_to_remap)[i];
413        fd_shuffle1.push_back(InjectionArc(value.first, value.second, false));
414        fd_shuffle2.push_back(InjectionArc(value.first, value.second, false));
415      }
416    }
417
418    if (!options.environ.empty())
419      SetEnvironment(new_environ.get());
420
421    // fd_shuffle1 is mutated by this call because it cannot malloc.
422    if (!ShuffleFileDescriptors(&fd_shuffle1))
423      _exit(127);
424
425    CloseSuperfluousFds(fd_shuffle2);
426
427    for (size_t i = 0; i < argv.size(); i++)
428      argv_cstr[i] = const_cast<char*>(argv[i].c_str());
429    argv_cstr[argv.size()] = NULL;
430    execvp(argv_cstr[0], argv_cstr.get());
431
432    RAW_LOG(ERROR, "LaunchProcess: failed to execvp:");
433    RAW_LOG(ERROR, argv_cstr[0]);
434    _exit(127);
435  } else {
436    // Parent process
437    if (options.wait) {
438      // While this isn't strictly disk IO, waiting for another process to
439      // finish is the sort of thing ThreadRestrictions is trying to prevent.
440      base::ThreadRestrictions::AssertIOAllowed();
441      pid_t ret = HANDLE_EINTR(waitpid(pid, 0, 0));
442      DPCHECK(ret > 0);
443    }
444
445    if (process_handle)
446      *process_handle = pid;
447  }
448
449  return true;
450}
451
452
453bool LaunchProcess(const CommandLine& cmdline,
454                   const LaunchOptions& options,
455                   ProcessHandle* process_handle) {
456  return LaunchProcess(cmdline.argv(), options, process_handle);
457}
458
459void RaiseProcessToHighPriority() {
460  // On POSIX, we don't actually do anything here.  We could try to nice() or
461  // setpriority() or sched_getscheduler, but these all require extra rights.
462}
463
464// Return value used by GetAppOutputInternal to encapsulate the various exit
465// scenarios from the function.
466enum GetAppOutputInternalResult {
467  EXECUTE_FAILURE,
468  EXECUTE_SUCCESS,
469  GOT_MAX_OUTPUT,
470};
471
472// Executes the application specified by |argv| and wait for it to exit. Stores
473// the output (stdout) in |output|. If |do_search_path| is set, it searches the
474// path for the application; in that case, |envp| must be null, and it will use
475// the current environment. If |do_search_path| is false, |argv[0]| should fully
476// specify the path of the application, and |envp| will be used as the
477// environment. Redirects stderr to /dev/null.
478// If we successfully start the application and get all requested output, we
479// return GOT_MAX_OUTPUT, or if there is a problem starting or exiting
480// the application we return RUN_FAILURE. Otherwise we return EXECUTE_SUCCESS.
481// The GOT_MAX_OUTPUT return value exists so a caller that asks for limited
482// output can treat this as a success, despite having an exit code of SIG_PIPE
483// due to us closing the output pipe.
484// In the case of EXECUTE_SUCCESS, the application exit code will be returned
485// in |*exit_code|, which should be checked to determine if the application
486// ran successfully.
487static GetAppOutputInternalResult GetAppOutputInternal(
488    const std::vector<std::string>& argv,
489    char* const envp[],
490    std::string* output,
491    size_t max_output,
492    bool do_search_path,
493    int* exit_code) {
494  // Doing a blocking wait for another command to finish counts as IO.
495  base::ThreadRestrictions::AssertIOAllowed();
496  // exit_code must be supplied so calling function can determine success.
497  DCHECK(exit_code);
498  *exit_code = EXIT_FAILURE;
499
500  int pipe_fd[2];
501  pid_t pid;
502  InjectiveMultimap fd_shuffle1, fd_shuffle2;
503  scoped_ptr<char*[]> argv_cstr(new char*[argv.size() + 1]);
504
505  fd_shuffle1.reserve(3);
506  fd_shuffle2.reserve(3);
507
508  // Either |do_search_path| should be false or |envp| should be null, but not
509  // both.
510  DCHECK(!do_search_path ^ !envp);
511
512  if (pipe(pipe_fd) < 0)
513    return EXECUTE_FAILURE;
514
515  switch (pid = fork()) {
516    case -1:  // error
517      close(pipe_fd[0]);
518      close(pipe_fd[1]);
519      return EXECUTE_FAILURE;
520    case 0:  // child
521      {
522        // DANGER: no calls to malloc or locks are allowed from now on:
523        // http://crbug.com/36678
524
525#if defined(OS_MACOSX)
526        RestoreDefaultExceptionHandler();
527#endif
528
529        // Obscure fork() rule: in the child, if you don't end up doing exec*(),
530        // you call _exit() instead of exit(). This is because _exit() does not
531        // call any previously-registered (in the parent) exit handlers, which
532        // might do things like block waiting for threads that don't even exist
533        // in the child.
534        int dev_null = open("/dev/null", O_WRONLY);
535        if (dev_null < 0)
536          _exit(127);
537
538        // Stop type-profiler.
539        // The profiler should be stopped between fork and exec since it inserts
540        // locks at new/delete expressions.  See http://crbug.com/36678.
541        base::type_profiler::Controller::Stop();
542
543        fd_shuffle1.push_back(InjectionArc(pipe_fd[1], STDOUT_FILENO, true));
544        fd_shuffle1.push_back(InjectionArc(dev_null, STDERR_FILENO, true));
545        fd_shuffle1.push_back(InjectionArc(dev_null, STDIN_FILENO, true));
546        // Adding another element here? Remeber to increase the argument to
547        // reserve(), above.
548
549        for (size_t i = 0; i < fd_shuffle1.size(); ++i)
550          fd_shuffle2.push_back(fd_shuffle1[i]);
551
552        if (!ShuffleFileDescriptors(&fd_shuffle1))
553          _exit(127);
554
555        CloseSuperfluousFds(fd_shuffle2);
556
557        for (size_t i = 0; i < argv.size(); i++)
558          argv_cstr[i] = const_cast<char*>(argv[i].c_str());
559        argv_cstr[argv.size()] = NULL;
560        if (do_search_path)
561          execvp(argv_cstr[0], argv_cstr.get());
562        else
563          execve(argv_cstr[0], argv_cstr.get(), envp);
564        _exit(127);
565      }
566    default:  // parent
567      {
568        // Close our writing end of pipe now. Otherwise later read would not
569        // be able to detect end of child's output (in theory we could still
570        // write to the pipe).
571        close(pipe_fd[1]);
572
573        output->clear();
574        char buffer[256];
575        size_t output_buf_left = max_output;
576        ssize_t bytes_read = 1;  // A lie to properly handle |max_output == 0|
577                                 // case in the logic below.
578
579        while (output_buf_left > 0) {
580          bytes_read = HANDLE_EINTR(read(pipe_fd[0], buffer,
581                                    std::min(output_buf_left, sizeof(buffer))));
582          if (bytes_read <= 0)
583            break;
584          output->append(buffer, bytes_read);
585          output_buf_left -= static_cast<size_t>(bytes_read);
586        }
587        close(pipe_fd[0]);
588
589        // Always wait for exit code (even if we know we'll declare
590        // GOT_MAX_OUTPUT).
591        bool success = WaitForExitCode(pid, exit_code);
592
593        // If we stopped because we read as much as we wanted, we return
594        // GOT_MAX_OUTPUT (because the child may exit due to |SIGPIPE|).
595        if (!output_buf_left && bytes_read > 0)
596          return GOT_MAX_OUTPUT;
597        else if (success)
598          return EXECUTE_SUCCESS;
599        return EXECUTE_FAILURE;
600      }
601  }
602}
603
604bool GetAppOutput(const CommandLine& cl, std::string* output) {
605  return GetAppOutput(cl.argv(), output);
606}
607
608bool GetAppOutput(const std::vector<std::string>& argv, std::string* output) {
609  // Run |execve()| with the current environment and store "unlimited" data.
610  int exit_code;
611  GetAppOutputInternalResult result = GetAppOutputInternal(
612      argv, NULL, output, std::numeric_limits<std::size_t>::max(), true,
613      &exit_code);
614  return result == EXECUTE_SUCCESS && exit_code == EXIT_SUCCESS;
615}
616
617// TODO(viettrungluu): Conceivably, we should have a timeout as well, so we
618// don't hang if what we're calling hangs.
619bool GetAppOutputRestricted(const CommandLine& cl,
620                            std::string* output, size_t max_output) {
621  // Run |execve()| with the empty environment.
622  char* const empty_environ = NULL;
623  int exit_code;
624  GetAppOutputInternalResult result = GetAppOutputInternal(
625      cl.argv(), &empty_environ, output, max_output, false, &exit_code);
626  return result == GOT_MAX_OUTPUT || (result == EXECUTE_SUCCESS &&
627                                      exit_code == EXIT_SUCCESS);
628}
629
630bool GetAppOutputWithExitCode(const CommandLine& cl,
631                              std::string* output,
632                              int* exit_code) {
633  // Run |execve()| with the current environment and store "unlimited" data.
634  GetAppOutputInternalResult result = GetAppOutputInternal(
635      cl.argv(), NULL, output, std::numeric_limits<std::size_t>::max(), true,
636      exit_code);
637  return result == EXECUTE_SUCCESS;
638}
639
640}  // namespace base
641