1236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor// Copyright 2013 The Chromium Authors. All rights reserved.
2236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor// Use of this source code is governed by a BSD-style license that can be
3236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor// found in the LICENSE file.
4236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor
5236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor#include "base/strings/safe_sprintf.h"
6236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor
7236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor#include <limits>
8236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor
9236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor#if !defined(NDEBUG)
10236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor// In debug builds, we use RAW_CHECK() to print useful error messages, if
11236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor// SafeSPrintf() is called with broken arguments.
12236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor// As our contract promises that SafeSPrintf() can be called from any
13236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor// restricted run-time context, it is not actually safe to call logging
14236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor// functions from it; and we only ever do so for debug builds and hope for the
15236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor// best. We should _never_ call any logging function other than RAW_CHECK(),
16236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor// and we should _never_ include any logging code that is active in production
17236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor// builds. Most notably, we should not include these logging functions in
18236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor// unofficial release builds, even though those builds would otherwise have
19236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor// DCHECKS() enabled.
20236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor// In other words; please do not remove the #ifdef around this #include.
21236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor// Instead, in production builds we opt for returning a degraded result,
22236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor// whenever an error is encountered.
23236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor// E.g. The broken function call
24236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor//        SafeSPrintf("errno = %d (%x)", errno, strerror(errno))
25236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor//      will print something like
26236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor//        errno = 13, (%x)
27236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor//      instead of
28236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor//        errno = 13 (Access denied)
29236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor//      In most of the anticipated use cases, that's probably the preferred
30236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor//      behavior.
31236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor#include "base/logging.h"
32236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor#define DEBUG_CHECK RAW_CHECK
33236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor#else
34236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor#define DEBUG_CHECK(x) do { if (x) { } } while (0)
35236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor#endif
36236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor
37236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregornamespace base {
38236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregornamespace strings {
39236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor
40236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor// The code in this file is extremely careful to be async-signal-safe.
41236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor//
42236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor// Most obviously, we avoid calling any code that could dynamically allocate
43236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor// memory. Doing so would almost certainly result in bugs and dead-locks.
44236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor// We also avoid calling any other STL functions that could have unintended
45236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor// side-effects involving memory allocation or access to other shared
46236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor// resources.
47236d9d16c9b42001085611a82d37b9d5a4f39c1fDouglas Gregor//
4809bddcf8c0ce4cc2f2a18e050e971539e8a396f8Eli Friedman// But on top of that, we also avoid calling other library functions, as many
4909bddcf8c0ce4cc2f2a18e050e971539e8a396f8Eli Friedman// of them have the side-effect of calling getenv() (in order to deal with
5009bddcf8c0ce4cc2f2a18e050e971539e8a396f8Eli Friedman// localization) or accessing errno. The latter sounds benign, but there are
5109bddcf8c0ce4cc2f2a18e050e971539e8a396f8Eli Friedman// several execution contexts where it isn't even possible to safely read let
5209bddcf8c0ce4cc2f2a18e050e971539e8a396f8Eli Friedman// alone write errno.
5309bddcf8c0ce4cc2f2a18e050e971539e8a396f8Eli Friedman//
5409bddcf8c0ce4cc2f2a18e050e971539e8a396f8Eli Friedman// The stated design goal of the SafeSPrintf() function is that it can be
5509bddcf8c0ce4cc2f2a18e050e971539e8a396f8Eli Friedman// called from any context that can safely call C or C++ code (i.e. anything
5609bddcf8c0ce4cc2f2a18e050e971539e8a396f8Eli Friedman// that doesn't require assembly code).
5709bddcf8c0ce4cc2f2a18e050e971539e8a396f8Eli Friedman//
5809bddcf8c0ce4cc2f2a18e050e971539e8a396f8Eli Friedman// For a brief overview of some but not all of the issues with async-signal-
5909bddcf8c0ce4cc2f2a18e050e971539e8a396f8Eli Friedman// safety, refer to:
6009bddcf8c0ce4cc2f2a18e050e971539e8a396f8Eli Friedman// http://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html
61
62namespace {
63const size_t kSSizeMaxConst = ((size_t)(ssize_t)-1) >> 1;
64
65const char kUpCaseHexDigits[]   = "0123456789ABCDEF";
66const char kDownCaseHexDigits[] = "0123456789abcdef";
67}
68
69#if defined(NDEBUG)
70// We would like to define kSSizeMax as std::numeric_limits<ssize_t>::max(),
71// but C++ doesn't allow us to do that for constants. Instead, we have to
72// use careful casting and shifting. We later use a COMPILE_ASSERT to
73// verify that this worked correctly.
74namespace {
75const size_t kSSizeMax = kSSizeMaxConst;
76}
77#else  // defined(NDEBUG)
78// For efficiency, we really need kSSizeMax to be a constant. But for unit
79// tests, it should be adjustable. This allows us to verify edge cases without
80// having to fill the entire available address space. As a compromise, we make
81// kSSizeMax adjustable in debug builds, and then only compile that particular
82// part of the unit test in debug builds.
83namespace {
84static size_t kSSizeMax = kSSizeMaxConst;
85}
86
87namespace internal {
88void SetSafeSPrintfSSizeMaxForTest(size_t max) {
89  kSSizeMax = max;
90}
91
92size_t GetSafeSPrintfSSizeMaxForTest() {
93  return kSSizeMax;
94}
95}
96#endif  // defined(NDEBUG)
97
98namespace {
99class Buffer {
100 public:
101  // |buffer| is caller-allocated storage that SafeSPrintf() writes to. It
102  // has |size| bytes of writable storage. It is the caller's responsibility
103  // to ensure that the buffer is at least one byte in size, so that it fits
104  // the trailing NUL that will be added by the destructor. The buffer also
105  // must be smaller or equal to kSSizeMax in size.
106  Buffer(char* buffer, size_t size)
107      : buffer_(buffer),
108        size_(size - 1),  // Account for trailing NUL byte
109        count_(0) {
110// The following assertion does not build on Mac and Android. This is because
111// static_assert only works with compile-time constants, but mac uses
112// libstdc++4.2 and android uses stlport, which both don't mark
113// numeric_limits::max() as constexp.  Likewise, MSVS2013's standard library
114// also doesn't mark max() as constexpr yet. cl.exe supports static_cast but
115// doesn't really implement constexpr yet so it doesn't complain, but clang
116// does.
117#if __cplusplus >= 201103 && !defined(OS_ANDROID) && !defined(OS_MACOSX) && \
118    !defined(OS_IOS) && !(defined(__clang__) && defined(OS_WIN))
119    COMPILE_ASSERT(kSSizeMaxConst == \
120                   static_cast<size_t>(std::numeric_limits<ssize_t>::max()),
121                   kSSizeMax_is_the_max_value_of_an_ssize_t);
122#endif
123    DEBUG_CHECK(size > 0);
124    DEBUG_CHECK(size <= kSSizeMax);
125  }
126
127  ~Buffer() {
128    // The code calling the constructor guaranteed that there was enough space
129    // to store a trailing NUL -- and in debug builds, we are actually
130    // verifying this with DEBUG_CHECK()s in the constructor. So, we can
131    // always unconditionally write the NUL byte in the destructor.  We do not
132    // need to adjust the count_, as SafeSPrintf() copies snprintf() in not
133    // including the NUL byte in its return code.
134    *GetInsertionPoint() = '\000';
135  }
136
137  // Returns true, iff the buffer is filled all the way to |kSSizeMax-1|. The
138  // caller can now stop adding more data, as GetCount() has reached its
139  // maximum possible value.
140  inline bool OutOfAddressableSpace() const {
141    return count_ == static_cast<size_t>(kSSizeMax - 1);
142  }
143
144  // Returns the number of bytes that would have been emitted to |buffer_|
145  // if it was sized sufficiently large. This number can be larger than
146  // |size_|, if the caller provided an insufficiently large output buffer.
147  // But it will never be bigger than |kSSizeMax-1|.
148  inline ssize_t GetCount() const {
149    DEBUG_CHECK(count_ < kSSizeMax);
150    return static_cast<ssize_t>(count_);
151  }
152
153  // Emits one |ch| character into the |buffer_| and updates the |count_| of
154  // characters that are currently supposed to be in the buffer.
155  // Returns "false", iff the buffer was already full.
156  // N.B. |count_| increases even if no characters have been written. This is
157  // needed so that GetCount() can return the number of bytes that should
158  // have been allocated for the |buffer_|.
159  inline bool Out(char ch) {
160    if (size_ >= 1 && count_ < size_) {
161      buffer_[count_] = ch;
162      return IncrementCountByOne();
163    }
164    // |count_| still needs to be updated, even if the buffer has been
165    // filled completely. This allows SafeSPrintf() to return the number of
166    // bytes that should have been emitted.
167    IncrementCountByOne();
168    return false;
169  }
170
171  // Inserts |padding|-|len| bytes worth of padding into the |buffer_|.
172  // |count_| will also be incremented by the number of bytes that were meant
173  // to be emitted. The |pad| character is typically either a ' ' space
174  // or a '0' zero, but other non-NUL values are legal.
175  // Returns "false", iff the the |buffer_| filled up (i.e. |count_|
176  // overflowed |size_|) at any time during padding.
177  inline bool Pad(char pad, size_t padding, size_t len) {
178    DEBUG_CHECK(pad);
179    DEBUG_CHECK(padding >= 0 && padding <= kSSizeMax);
180    DEBUG_CHECK(len >= 0);
181    for (; padding > len; --padding) {
182      if (!Out(pad)) {
183        if (--padding) {
184          IncrementCount(padding-len);
185        }
186        return false;
187      }
188    }
189    return true;
190  }
191
192  // POSIX doesn't define any async-signal-safe function for converting
193  // an integer to ASCII. Define our own version.
194  //
195  // This also gives us the ability to make the function a little more
196  // powerful and have it deal with |padding|, with truncation, and with
197  // predicting the length of the untruncated output.
198  //
199  // IToASCII() converts an integer |i| to ASCII.
200  //
201  // Unlike similar functions in the standard C library, it never appends a
202  // NUL character. This is left for the caller to do.
203  //
204  // While the function signature takes a signed int64_t, the code decides at
205  // run-time whether to treat the argument as signed (int64_t) or as unsigned
206  // (uint64_t) based on the value of |sign|.
207  //
208  // It supports |base|s 2 through 16. Only a |base| of 10 is allowed to have
209  // a |sign|. Otherwise, |i| is treated as unsigned.
210  //
211  // For bases larger than 10, |upcase| decides whether lower-case or upper-
212  // case letters should be used to designate digits greater than 10.
213  //
214  // Padding can be done with either '0' zeros or ' ' spaces. Padding has to
215  // be positive and will always be applied to the left of the output.
216  //
217  // Prepends a |prefix| to the number (e.g. "0x"). This prefix goes to
218  // the left of |padding|, if |pad| is '0'; and to the right of |padding|
219  // if |pad| is ' '.
220  //
221  // Returns "false", if the |buffer_| overflowed at any time.
222  bool IToASCII(bool sign, bool upcase, int64_t i, int base,
223                char pad, size_t padding, const char* prefix);
224
225 private:
226  // Increments |count_| by |inc| unless this would cause |count_| to
227  // overflow |kSSizeMax-1|. Returns "false", iff an overflow was detected;
228  // it then clamps |count_| to |kSSizeMax-1|.
229  inline bool IncrementCount(size_t inc) {
230    // "inc" is either 1 or a "padding" value. Padding is clamped at
231    // run-time to at most kSSizeMax-1. So, we know that "inc" is always in
232    // the range 1..kSSizeMax-1.
233    // This allows us to compute "kSSizeMax - 1 - inc" without incurring any
234    // integer overflows.
235    DEBUG_CHECK(inc <= kSSizeMax - 1);
236    if (count_ > kSSizeMax - 1 - inc) {
237      count_ = kSSizeMax - 1;
238      return false;
239    } else {
240      count_ += inc;
241      return true;
242    }
243  }
244
245  // Convenience method for the common case of incrementing |count_| by one.
246  inline bool IncrementCountByOne() {
247    return IncrementCount(1);
248  }
249
250  // Return the current insertion point into the buffer. This is typically
251  // at |buffer_| + |count_|, but could be before that if truncation
252  // happened. It always points to one byte past the last byte that was
253  // successfully placed into the |buffer_|.
254  inline char* GetInsertionPoint() const {
255    size_t idx = count_;
256    if (idx > size_) {
257      idx = size_;
258    }
259    return buffer_ + idx;
260  }
261
262  // User-provided buffer that will receive the fully formatted output string.
263  char* buffer_;
264
265  // Number of bytes that are available in the buffer excluding the trailing
266  // NUL byte that will be added by the destructor.
267  const size_t size_;
268
269  // Number of bytes that would have been emitted to the buffer, if the buffer
270  // was sufficiently big. This number always excludes the trailing NUL byte
271  // and it is guaranteed to never grow bigger than kSSizeMax-1.
272  size_t count_;
273
274  DISALLOW_COPY_AND_ASSIGN(Buffer);
275};
276
277
278bool Buffer::IToASCII(bool sign, bool upcase, int64_t i, int base,
279                      char pad, size_t padding, const char* prefix) {
280  // Sanity check for parameters. None of these should ever fail, but see
281  // above for the rationale why we can't call CHECK().
282  DEBUG_CHECK(base >= 2);
283  DEBUG_CHECK(base <= 16);
284  DEBUG_CHECK(!sign || base == 10);
285  DEBUG_CHECK(pad == '0' || pad == ' ');
286  DEBUG_CHECK(padding >= 0);
287  DEBUG_CHECK(padding <= kSSizeMax);
288  DEBUG_CHECK(!(sign && prefix && *prefix));
289
290  // Handle negative numbers, if the caller indicated that |i| should be
291  // treated as a signed number; otherwise treat |i| as unsigned (even if the
292  // MSB is set!)
293  // Details are tricky, because of limited data-types, but equivalent pseudo-
294  // code would look like:
295  //   if (sign && i < 0)
296  //     prefix = "-";
297  //   num = abs(i);
298  int minint = 0;
299  uint64_t num;
300  if (sign && i < 0) {
301    prefix = "-";
302
303    // Turn our number positive.
304    if (i == std::numeric_limits<int64_t>::min()) {
305      // The most negative integer needs special treatment.
306      minint = 1;
307      num = static_cast<uint64_t>(-(i + 1));
308    } else {
309      // "Normal" negative numbers are easy.
310      num = static_cast<uint64_t>(-i);
311    }
312  } else {
313    num = static_cast<uint64_t>(i);
314  }
315
316  // If padding with '0' zero, emit the prefix or '-' character now. Otherwise,
317  // make the prefix accessible in reverse order, so that we can later output
318  // it right between padding and the number.
319  // We cannot choose the easier approach of just reversing the number, as that
320  // fails in situations where we need to truncate numbers that have padding
321  // and/or prefixes.
322  const char* reverse_prefix = NULL;
323  if (prefix && *prefix) {
324    if (pad == '0') {
325      while (*prefix) {
326        if (padding) {
327          --padding;
328        }
329        Out(*prefix++);
330      }
331      prefix = NULL;
332    } else {
333      for (reverse_prefix = prefix; *reverse_prefix; ++reverse_prefix) {
334      }
335    }
336  } else
337    prefix = NULL;
338  const size_t prefix_length = reverse_prefix - prefix;
339
340  // Loop until we have converted the entire number. Output at least one
341  // character (i.e. '0').
342  size_t start = count_;
343  size_t discarded = 0;
344  bool started = false;
345  do {
346    // Make sure there is still enough space left in our output buffer.
347    if (count_ >= size_) {
348      if (start < size_) {
349        // It is rare that we need to output a partial number. But if asked
350        // to do so, we will still make sure we output the correct number of
351        // leading digits.
352        // Since we are generating the digits in reverse order, we actually
353        // have to discard digits in the order that we have already emitted
354        // them. This is essentially equivalent to:
355        //   memmove(buffer_ + start, buffer_ + start + 1, size_ - start - 1)
356        for (char* move = buffer_ + start, *end = buffer_ + size_ - 1;
357             move < end;
358             ++move) {
359          *move = move[1];
360        }
361        ++discarded;
362        --count_;
363      } else if (count_ - size_ > 1) {
364        // Need to increment either |count_| or |discarded| to make progress.
365        // The latter is more efficient, as it eventually triggers fast
366        // handling of padding. But we have to ensure we don't accidentally
367        // change the overall state (i.e. switch the state-machine from
368        // discarding to non-discarding). |count_| needs to always stay
369        // bigger than |size_|.
370        --count_;
371        ++discarded;
372      }
373    }
374
375    // Output the next digit and (if necessary) compensate for the most
376    // negative integer needing special treatment. This works because,
377    // no matter the bit width of the integer, the lowest-most decimal
378    // integer always ends in 2, 4, 6, or 8.
379    if (!num && started) {
380      if (reverse_prefix > prefix) {
381        Out(*--reverse_prefix);
382      } else {
383        Out(pad);
384      }
385    } else {
386      started = true;
387      Out((upcase ? kUpCaseHexDigits : kDownCaseHexDigits)[num%base + minint]);
388    }
389
390    minint = 0;
391    num /= base;
392
393    // Add padding, if requested.
394    if (padding > 0) {
395      --padding;
396
397      // Performance optimization for when we are asked to output excessive
398      // padding, but our output buffer is limited in size.  Even if we output
399      // a 64bit number in binary, we would never write more than 64 plus
400      // prefix non-padding characters. So, once this limit has been passed,
401      // any further state change can be computed arithmetically; we know that
402      // by this time, our entire final output consists of padding characters
403      // that have all already been output.
404      if (discarded > 8*sizeof(num) + prefix_length) {
405        IncrementCount(padding);
406        padding = 0;
407      }
408    }
409  } while (num || padding || (reverse_prefix > prefix));
410
411  // Conversion to ASCII actually resulted in the digits being in reverse
412  // order. We can't easily generate them in forward order, as we can't tell
413  // the number of characters needed until we are done converting.
414  // So, now, we reverse the string (except for the possible '-' sign).
415  char* front = buffer_ + start;
416  char* back = GetInsertionPoint();
417  while (--back > front) {
418    char ch = *back;
419    *back = *front;
420    *front++ = ch;
421  }
422
423  IncrementCount(discarded);
424  return !discarded;
425}
426
427}  // anonymous namespace
428
429namespace internal {
430
431ssize_t SafeSNPrintf(char* buf, size_t sz, const char* fmt, const Arg* args,
432                     const size_t max_args) {
433  // Make sure that at least one NUL byte can be written, and that the buffer
434  // never overflows kSSizeMax. Not only does that use up most or all of the
435  // address space, it also would result in a return code that cannot be
436  // represented.
437  if (static_cast<ssize_t>(sz) < 1) {
438    return -1;
439  } else if (sz > kSSizeMax) {
440    sz = kSSizeMax;
441  }
442
443  // Iterate over format string and interpret '%' arguments as they are
444  // encountered.
445  Buffer buffer(buf, sz);
446  size_t padding;
447  char pad;
448  for (unsigned int cur_arg = 0; *fmt && !buffer.OutOfAddressableSpace(); ) {
449    if (*fmt++ == '%') {
450      padding = 0;
451      pad = ' ';
452      char ch = *fmt++;
453    format_character_found:
454      switch (ch) {
455      case '0': case '1': case '2': case '3': case '4':
456      case '5': case '6': case '7': case '8': case '9':
457        // Found a width parameter. Convert to an integer value and store in
458        // "padding". If the leading digit is a zero, change the padding
459        // character from a space ' ' to a zero '0'.
460        pad = ch == '0' ? '0' : ' ';
461        for (;;) {
462          // The maximum allowed padding fills all the available address
463          // space and leaves just enough space to insert the trailing NUL.
464          const size_t max_padding = kSSizeMax - 1;
465          if (padding > max_padding/10 ||
466              10*padding > max_padding - (ch - '0')) {
467            DEBUG_CHECK(padding <= max_padding/10 &&
468                        10*padding <= max_padding - (ch - '0'));
469            // Integer overflow detected. Skip the rest of the width until
470            // we find the format character, then do the normal error handling.
471          padding_overflow:
472            padding = max_padding;
473            while ((ch = *fmt++) >= '0' && ch <= '9') {
474            }
475            if (cur_arg < max_args) {
476              ++cur_arg;
477            }
478            goto fail_to_expand;
479          }
480          padding = 10*padding + ch - '0';
481          if (padding > max_padding) {
482            // This doesn't happen for "sane" values of kSSizeMax. But once
483            // kSSizeMax gets smaller than about 10, our earlier range checks
484            // are incomplete. Unittests do trigger this artificial corner
485            // case.
486            DEBUG_CHECK(padding <= max_padding);
487            goto padding_overflow;
488          }
489          ch = *fmt++;
490          if (ch < '0' || ch > '9') {
491            // Reached the end of the width parameter. This is where the format
492            // character is found.
493            goto format_character_found;
494          }
495        }
496        break;
497      case 'c': {  // Output an ASCII character.
498        // Check that there are arguments left to be inserted.
499        if (cur_arg >= max_args) {
500          DEBUG_CHECK(cur_arg < max_args);
501          goto fail_to_expand;
502        }
503
504        // Check that the argument has the expected type.
505        const Arg& arg = args[cur_arg++];
506        if (arg.type != Arg::INT && arg.type != Arg::UINT) {
507          DEBUG_CHECK(arg.type == Arg::INT || arg.type == Arg::UINT);
508          goto fail_to_expand;
509        }
510
511        // Apply padding, if needed.
512        buffer.Pad(' ', padding, 1);
513
514        // Convert the argument to an ASCII character and output it.
515        char ch = static_cast<char>(arg.integer.i);
516        if (!ch) {
517          goto end_of_output_buffer;
518        }
519        buffer.Out(ch);
520        break; }
521      case 'd':    // Output a possibly signed decimal value.
522      case 'o':    // Output an unsigned octal value.
523      case 'x':    // Output an unsigned hexadecimal value.
524      case 'X':
525      case 'p': {  // Output a pointer value.
526        // Check that there are arguments left to be inserted.
527        if (cur_arg >= max_args) {
528          DEBUG_CHECK(cur_arg < max_args);
529          goto fail_to_expand;
530        }
531
532        const Arg& arg = args[cur_arg++];
533        int64_t i;
534        const char* prefix = NULL;
535        if (ch != 'p') {
536          // Check that the argument has the expected type.
537          if (arg.type != Arg::INT && arg.type != Arg::UINT) {
538            DEBUG_CHECK(arg.type == Arg::INT || arg.type == Arg::UINT);
539            goto fail_to_expand;
540          }
541          i = arg.integer.i;
542
543          if (ch != 'd') {
544            // The Arg() constructor automatically performed sign expansion on
545            // signed parameters. This is great when outputting a %d decimal
546            // number, but can result in unexpected leading 0xFF bytes when
547            // outputting a %x hexadecimal number. Mask bits, if necessary.
548            // We have to do this here, instead of in the Arg() constructor, as
549            // the Arg() constructor cannot tell whether we will output a %d
550            // or a %x. Only the latter should experience masking.
551            if (arg.integer.width < sizeof(int64_t)) {
552              i &= (1LL << (8*arg.integer.width)) - 1;
553            }
554          }
555        } else {
556          // Pointer values require an actual pointer or a string.
557          if (arg.type == Arg::POINTER) {
558            i = reinterpret_cast<uintptr_t>(arg.ptr);
559          } else if (arg.type == Arg::STRING) {
560            i = reinterpret_cast<uintptr_t>(arg.str);
561          } else if (arg.type == Arg::INT &&
562                     arg.integer.width == sizeof(NULL) &&
563                     arg.integer.i == 0) {  // Allow C++'s version of NULL
564            i = 0;
565          } else {
566            DEBUG_CHECK(arg.type == Arg::POINTER || arg.type == Arg::STRING);
567            goto fail_to_expand;
568          }
569
570          // Pointers always include the "0x" prefix.
571          prefix = "0x";
572        }
573
574        // Use IToASCII() to convert to ASCII representation. For decimal
575        // numbers, optionally print a sign. For hexadecimal numbers,
576        // distinguish between upper and lower case. %p addresses are always
577        // printed as upcase. Supports base 8, 10, and 16. Prints padding
578        // and/or prefixes, if so requested.
579        buffer.IToASCII(ch == 'd' && arg.type == Arg::INT,
580                        ch != 'x', i,
581                        ch == 'o' ? 8 : ch == 'd' ? 10 : 16,
582                        pad, padding, prefix);
583        break; }
584      case 's': {
585        // Check that there are arguments left to be inserted.
586        if (cur_arg >= max_args) {
587          DEBUG_CHECK(cur_arg < max_args);
588          goto fail_to_expand;
589        }
590
591        // Check that the argument has the expected type.
592        const Arg& arg = args[cur_arg++];
593        const char *s;
594        if (arg.type == Arg::STRING) {
595          s = arg.str ? arg.str : "<NULL>";
596        } else if (arg.type == Arg::INT && arg.integer.width == sizeof(NULL) &&
597                   arg.integer.i == 0) {  // Allow C++'s version of NULL
598          s = "<NULL>";
599        } else {
600          DEBUG_CHECK(arg.type == Arg::STRING);
601          goto fail_to_expand;
602        }
603
604        // Apply padding, if needed. This requires us to first check the
605        // length of the string that we are outputting.
606        if (padding) {
607          size_t len = 0;
608          for (const char* src = s; *src++; ) {
609            ++len;
610          }
611          buffer.Pad(' ', padding, len);
612        }
613
614        // Printing a string involves nothing more than copying it into the
615        // output buffer and making sure we don't output more bytes than
616        // available space; Out() takes care of doing that.
617        for (const char* src = s; *src; ) {
618          buffer.Out(*src++);
619        }
620        break; }
621      case '%':
622        // Quoted percent '%' character.
623        goto copy_verbatim;
624      fail_to_expand:
625        // C++ gives us tools to do type checking -- something that snprintf()
626        // could never really do. So, whenever we see arguments that don't
627        // match up with the format string, we refuse to output them. But
628        // since we have to be extremely conservative about being async-
629        // signal-safe, we are limited in the type of error handling that we
630        // can do in production builds (in debug builds we can use
631        // DEBUG_CHECK() and hope for the best). So, all we do is pass the
632        // format string unchanged. That should eventually get the user's
633        // attention; and in the meantime, it hopefully doesn't lose too much
634        // data.
635      default:
636        // Unknown or unsupported format character. Just copy verbatim to
637        // output.
638        buffer.Out('%');
639        DEBUG_CHECK(ch);
640        if (!ch) {
641          goto end_of_format_string;
642        }
643        buffer.Out(ch);
644        break;
645      }
646    } else {
647  copy_verbatim:
648    buffer.Out(fmt[-1]);
649    }
650  }
651 end_of_format_string:
652 end_of_output_buffer:
653  return buffer.GetCount();
654}
655
656}  // namespace internal
657
658ssize_t SafeSNPrintf(char* buf, size_t sz, const char* fmt) {
659  // Make sure that at least one NUL byte can be written, and that the buffer
660  // never overflows kSSizeMax. Not only does that use up most or all of the
661  // address space, it also would result in a return code that cannot be
662  // represented.
663  if (static_cast<ssize_t>(sz) < 1) {
664    return -1;
665  } else if (sz > kSSizeMax) {
666    sz = kSSizeMax;
667  }
668
669  Buffer buffer(buf, sz);
670
671  // In the slow-path, we deal with errors by copying the contents of
672  // "fmt" unexpanded. This means, if there are no arguments passed, the
673  // SafeSPrintf() function always degenerates to a version of strncpy() that
674  // de-duplicates '%' characters.
675  const char* src = fmt;
676  for (; *src; ++src) {
677    buffer.Out(*src);
678    DEBUG_CHECK(src[0] != '%' || src[1] == '%');
679    if (src[0] == '%' && src[1] == '%') {
680      ++src;
681    }
682  }
683  return buffer.GetCount();
684}
685
686}  // namespace strings
687}  // namespace base
688