gl_renderer.cc revision 5d1f7b1de12d16ceb2c938c56701a3e8bfa558f7
1// Copyright 2010 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "cc/output/gl_renderer.h"
6
7#include <algorithm>
8#include <limits>
9#include <set>
10#include <string>
11#include <vector>
12
13#include "base/debug/trace_event.h"
14#include "base/logging.h"
15#include "base/strings/string_split.h"
16#include "base/strings/string_util.h"
17#include "base/strings/stringprintf.h"
18#include "build/build_config.h"
19#include "cc/base/math_util.h"
20#include "cc/layers/video_layer_impl.h"
21#include "cc/output/compositor_frame.h"
22#include "cc/output/compositor_frame_metadata.h"
23#include "cc/output/context_provider.h"
24#include "cc/output/copy_output_request.h"
25#include "cc/output/geometry_binding.h"
26#include "cc/output/gl_frame_data.h"
27#include "cc/output/output_surface.h"
28#include "cc/output/render_surface_filters.h"
29#include "cc/quads/picture_draw_quad.h"
30#include "cc/quads/render_pass.h"
31#include "cc/quads/stream_video_draw_quad.h"
32#include "cc/quads/texture_draw_quad.h"
33#include "cc/resources/layer_quad.h"
34#include "cc/resources/scoped_resource.h"
35#include "cc/resources/texture_mailbox_deleter.h"
36#include "cc/trees/damage_tracker.h"
37#include "cc/trees/proxy.h"
38#include "cc/trees/single_thread_proxy.h"
39#include "gpu/GLES2/gl2extchromium.h"
40#include "gpu/command_buffer/client/context_support.h"
41#include "gpu/command_buffer/client/gles2_interface.h"
42#include "gpu/command_buffer/common/gpu_memory_allocation.h"
43#include "third_party/khronos/GLES2/gl2.h"
44#include "third_party/khronos/GLES2/gl2ext.h"
45#include "third_party/skia/include/core/SkBitmap.h"
46#include "third_party/skia/include/core/SkColor.h"
47#include "third_party/skia/include/core/SkColorFilter.h"
48#include "third_party/skia/include/core/SkSurface.h"
49#include "third_party/skia/include/gpu/GrContext.h"
50#include "third_party/skia/include/gpu/GrTexture.h"
51#include "third_party/skia/include/gpu/SkGpuDevice.h"
52#include "third_party/skia/include/gpu/SkGrTexturePixelRef.h"
53#include "third_party/skia/include/gpu/gl/GrGLInterface.h"
54#include "ui/gfx/quad_f.h"
55#include "ui/gfx/rect_conversions.h"
56
57using gpu::gles2::GLES2Interface;
58
59namespace cc {
60
61namespace {
62
63// TODO(epenner): This should probably be moved to output surface.
64//
65// This implements a simple fence based on client side swaps.
66// This is to isolate the ResourceProvider from 'frames' which
67// it shouldn't need to care about, while still allowing us to
68// enforce good texture recycling behavior strictly throughout
69// the compositor (don't recycle a texture while it's in use).
70class SimpleSwapFence : public ResourceProvider::Fence {
71 public:
72  SimpleSwapFence() : has_passed_(false) {}
73  virtual bool HasPassed() OVERRIDE { return has_passed_; }
74  void SetHasPassed() { has_passed_ = true; }
75
76 private:
77  virtual ~SimpleSwapFence() {}
78  bool has_passed_;
79};
80
81class OnDemandRasterTaskImpl : public internal::Task {
82 public:
83  OnDemandRasterTaskImpl(PicturePileImpl* picture_pile,
84                         SkBitmap* bitmap,
85                         gfx::Rect content_rect,
86                         float contents_scale)
87      : picture_pile_(picture_pile),
88        bitmap_(bitmap),
89        content_rect_(content_rect),
90        contents_scale_(contents_scale) {
91    DCHECK(picture_pile_);
92    DCHECK(bitmap_);
93  }
94
95  // Overridden from internal::Task:
96  virtual void RunOnWorkerThread(unsigned thread_index) OVERRIDE {
97    TRACE_EVENT0("cc", "OnDemandRasterTaskImpl::RunOnWorkerThread");
98    SkBitmapDevice device(*bitmap_);
99    SkCanvas canvas(&device);
100    picture_pile_->RasterToBitmap(
101        &canvas, content_rect_, contents_scale_, NULL);
102  }
103
104 protected:
105  virtual ~OnDemandRasterTaskImpl() {}
106
107 private:
108  PicturePileImpl* picture_pile_;
109  SkBitmap* bitmap_;
110  const gfx::Rect content_rect_;
111  const float contents_scale_;
112
113  DISALLOW_COPY_AND_ASSIGN(OnDemandRasterTaskImpl);
114};
115
116bool NeedsIOSurfaceReadbackWorkaround() {
117#if defined(OS_MACOSX)
118  // This isn't strictly required in DumpRenderTree-mode when Mesa is used,
119  // but it doesn't seem to hurt.
120  return true;
121#else
122  return false;
123#endif
124}
125
126Float4 UVTransform(const TextureDrawQuad* quad) {
127  gfx::PointF uv0 = quad->uv_top_left;
128  gfx::PointF uv1 = quad->uv_bottom_right;
129  Float4 xform = {{uv0.x(), uv0.y(), uv1.x() - uv0.x(), uv1.y() - uv0.y()}};
130  if (quad->flipped) {
131    xform.data[1] = 1.0f - xform.data[1];
132    xform.data[3] = -xform.data[3];
133  }
134  return xform;
135}
136
137Float4 PremultipliedColor(SkColor color) {
138  const float factor = 1.0f / 255.0f;
139  const float alpha = SkColorGetA(color) * factor;
140
141  Float4 result = {
142      {SkColorGetR(color) * factor * alpha, SkColorGetG(color) * factor * alpha,
143       SkColorGetB(color) * factor * alpha, alpha}};
144  return result;
145}
146
147SamplerType SamplerTypeFromTextureTarget(GLenum target) {
148  switch (target) {
149    case GL_TEXTURE_2D:
150      return SamplerType2D;
151    case GL_TEXTURE_RECTANGLE_ARB:
152      return SamplerType2DRect;
153    case GL_TEXTURE_EXTERNAL_OES:
154      return SamplerTypeExternalOES;
155    default:
156      NOTREACHED();
157      return SamplerType2D;
158  }
159}
160
161// Smallest unit that impact anti-aliasing output. We use this to
162// determine when anti-aliasing is unnecessary.
163const float kAntiAliasingEpsilon = 1.0f / 1024.0f;
164
165}  // anonymous namespace
166
167struct GLRenderer::PendingAsyncReadPixels {
168  PendingAsyncReadPixels() : buffer(0) {}
169
170  scoped_ptr<CopyOutputRequest> copy_request;
171  base::CancelableClosure finished_read_pixels_callback;
172  unsigned buffer;
173
174 private:
175  DISALLOW_COPY_AND_ASSIGN(PendingAsyncReadPixels);
176};
177
178scoped_ptr<GLRenderer> GLRenderer::Create(
179    RendererClient* client,
180    const LayerTreeSettings* settings,
181    OutputSurface* output_surface,
182    ResourceProvider* resource_provider,
183    TextureMailboxDeleter* texture_mailbox_deleter,
184    int highp_threshold_min) {
185  return make_scoped_ptr(new GLRenderer(client,
186                                        settings,
187                                        output_surface,
188                                        resource_provider,
189                                        texture_mailbox_deleter,
190                                        highp_threshold_min));
191}
192
193GLRenderer::GLRenderer(RendererClient* client,
194                       const LayerTreeSettings* settings,
195                       OutputSurface* output_surface,
196                       ResourceProvider* resource_provider,
197                       TextureMailboxDeleter* texture_mailbox_deleter,
198                       int highp_threshold_min)
199    : DirectRenderer(client, settings, output_surface, resource_provider),
200      offscreen_framebuffer_id_(0),
201      shared_geometry_quad_(gfx::RectF(-0.5f, -0.5f, 1.0f, 1.0f)),
202      gl_(output_surface->context_provider()->ContextGL()),
203      context_support_(output_surface->context_provider()->ContextSupport()),
204      texture_mailbox_deleter_(texture_mailbox_deleter),
205      is_backbuffer_discarded_(false),
206      visible_(true),
207      is_scissor_enabled_(false),
208      scissor_rect_needs_reset_(true),
209      stencil_shadow_(false),
210      blend_shadow_(false),
211      highp_threshold_min_(highp_threshold_min),
212      highp_threshold_cache_(0),
213      on_demand_tile_raster_resource_id_(0) {
214  DCHECK(gl_);
215  DCHECK(context_support_);
216
217  ContextProvider::Capabilities context_caps =
218      output_surface_->context_provider()->ContextCapabilities();
219
220  capabilities_.using_partial_swap =
221      settings_->partial_swap_enabled && context_caps.gpu.post_sub_buffer;
222
223  DCHECK(!context_caps.gpu.iosurface || context_caps.gpu.texture_rectangle);
224
225  capabilities_.using_egl_image = context_caps.gpu.egl_image_external;
226
227  capabilities_.max_texture_size = resource_provider_->max_texture_size();
228  capabilities_.best_texture_format = resource_provider_->best_texture_format();
229
230  // The updater can access textures while the GLRenderer is using them.
231  capabilities_.allow_partial_texture_updates = true;
232
233  // Check for texture fast paths. Currently we always use MO8 textures,
234  // so we only need to avoid POT textures if we have an NPOT fast-path.
235  capabilities_.avoid_pow2_textures = context_caps.gpu.fast_npot_mo8_textures;
236
237  capabilities_.using_offscreen_context3d = true;
238
239  capabilities_.using_map_image =
240      settings_->use_map_image && context_caps.gpu.map_image;
241
242  capabilities_.using_discard_framebuffer =
243      context_caps.gpu.discard_framebuffer;
244
245  capabilities_.allow_rasterize_on_demand = true;
246
247  InitializeSharedObjects();
248}
249
250GLRenderer::~GLRenderer() {
251  while (!pending_async_read_pixels_.empty()) {
252    PendingAsyncReadPixels* pending_read = pending_async_read_pixels_.back();
253    pending_read->finished_read_pixels_callback.Cancel();
254    pending_async_read_pixels_.pop_back();
255  }
256
257  CleanupSharedObjects();
258}
259
260const RendererCapabilitiesImpl& GLRenderer::Capabilities() const {
261  return capabilities_;
262}
263
264void GLRenderer::DebugGLCall(GLES2Interface* gl,
265                             const char* command,
266                             const char* file,
267                             int line) {
268  GLuint error = gl->GetError();
269  if (error != GL_NO_ERROR)
270    LOG(ERROR) << "GL command failed: File: " << file << "\n\tLine " << line
271               << "\n\tcommand: " << command << ", error "
272               << static_cast<int>(error) << "\n";
273}
274
275void GLRenderer::SetVisible(bool visible) {
276  if (visible_ == visible)
277    return;
278  visible_ = visible;
279
280  EnforceMemoryPolicy();
281
282  context_support_->SetSurfaceVisible(visible);
283}
284
285void GLRenderer::SendManagedMemoryStats(size_t bytes_visible,
286                                        size_t bytes_visible_and_nearby,
287                                        size_t bytes_allocated) {
288  gpu::ManagedMemoryStats stats;
289  stats.bytes_required = bytes_visible;
290  stats.bytes_nice_to_have = bytes_visible_and_nearby;
291  stats.bytes_allocated = bytes_allocated;
292  stats.backbuffer_requested = !is_backbuffer_discarded_;
293  context_support_->SendManagedMemoryStats(stats);
294}
295
296void GLRenderer::ReleaseRenderPassTextures() { render_pass_textures_.clear(); }
297
298void GLRenderer::DiscardPixels(bool has_external_stencil_test,
299                               bool draw_rect_covers_full_surface) {
300  if (has_external_stencil_test || !draw_rect_covers_full_surface ||
301      !capabilities_.using_discard_framebuffer)
302    return;
303  bool using_default_framebuffer =
304      !current_framebuffer_lock_ &&
305      output_surface_->capabilities().uses_default_gl_framebuffer;
306  GLenum attachments[] = {static_cast<GLenum>(
307      using_default_framebuffer ? GL_COLOR_EXT : GL_COLOR_ATTACHMENT0_EXT)};
308  gl_->DiscardFramebufferEXT(
309      GL_FRAMEBUFFER, arraysize(attachments), attachments);
310}
311
312void GLRenderer::ClearFramebuffer(DrawingFrame* frame,
313                                  bool has_external_stencil_test) {
314  // It's unsafe to clear when we have a stencil test because glClear ignores
315  // stencil.
316  if (has_external_stencil_test) {
317    DCHECK(!frame->current_render_pass->has_transparent_background);
318    return;
319  }
320
321  // On DEBUG builds, opaque render passes are cleared to blue to easily see
322  // regions that were not drawn on the screen.
323  if (frame->current_render_pass->has_transparent_background)
324    GLC(gl_, gl_->ClearColor(0, 0, 0, 0));
325  else
326    GLC(gl_, gl_->ClearColor(0, 0, 1, 1));
327
328  bool always_clear = false;
329#ifndef NDEBUG
330  always_clear = true;
331#endif
332  if (always_clear || frame->current_render_pass->has_transparent_background) {
333    GLbitfield clear_bits = GL_COLOR_BUFFER_BIT;
334    if (always_clear)
335      clear_bits |= GL_STENCIL_BUFFER_BIT;
336    gl_->Clear(clear_bits);
337  }
338}
339
340void GLRenderer::BeginDrawingFrame(DrawingFrame* frame) {
341  if (frame->device_viewport_rect.IsEmpty())
342    return;
343
344  TRACE_EVENT0("cc", "GLRenderer::BeginDrawingFrame");
345
346  // TODO(enne): Do we need to reinitialize all of this state per frame?
347  ReinitializeGLState();
348}
349
350void GLRenderer::DoNoOp() {
351  GLC(gl_, gl_->BindFramebuffer(GL_FRAMEBUFFER, 0));
352  GLC(gl_, gl_->Flush());
353}
354
355void GLRenderer::DoDrawQuad(DrawingFrame* frame, const DrawQuad* quad) {
356  DCHECK(quad->rect.Contains(quad->visible_rect));
357  if (quad->material != DrawQuad::TEXTURE_CONTENT) {
358    FlushTextureQuadCache();
359  }
360
361  switch (quad->material) {
362    case DrawQuad::INVALID:
363      NOTREACHED();
364      break;
365    case DrawQuad::CHECKERBOARD:
366      DrawCheckerboardQuad(frame, CheckerboardDrawQuad::MaterialCast(quad));
367      break;
368    case DrawQuad::DEBUG_BORDER:
369      DrawDebugBorderQuad(frame, DebugBorderDrawQuad::MaterialCast(quad));
370      break;
371    case DrawQuad::IO_SURFACE_CONTENT:
372      DrawIOSurfaceQuad(frame, IOSurfaceDrawQuad::MaterialCast(quad));
373      break;
374    case DrawQuad::PICTURE_CONTENT:
375      DrawPictureQuad(frame, PictureDrawQuad::MaterialCast(quad));
376      break;
377    case DrawQuad::RENDER_PASS:
378      DrawRenderPassQuad(frame, RenderPassDrawQuad::MaterialCast(quad));
379      break;
380    case DrawQuad::SOLID_COLOR:
381      DrawSolidColorQuad(frame, SolidColorDrawQuad::MaterialCast(quad));
382      break;
383    case DrawQuad::STREAM_VIDEO_CONTENT:
384      DrawStreamVideoQuad(frame, StreamVideoDrawQuad::MaterialCast(quad));
385      break;
386    case DrawQuad::SURFACE_CONTENT:
387      // Surface content should be fully resolved to other quad types before
388      // reaching a direct renderer.
389      NOTREACHED();
390      break;
391    case DrawQuad::TEXTURE_CONTENT:
392      EnqueueTextureQuad(frame, TextureDrawQuad::MaterialCast(quad));
393      break;
394    case DrawQuad::TILED_CONTENT:
395      DrawTileQuad(frame, TileDrawQuad::MaterialCast(quad));
396      break;
397    case DrawQuad::YUV_VIDEO_CONTENT:
398      DrawYUVVideoQuad(frame, YUVVideoDrawQuad::MaterialCast(quad));
399      break;
400  }
401}
402
403void GLRenderer::DrawCheckerboardQuad(const DrawingFrame* frame,
404                                      const CheckerboardDrawQuad* quad) {
405  SetBlendEnabled(quad->ShouldDrawWithBlending());
406
407  const TileCheckerboardProgram* program = GetTileCheckerboardProgram();
408  DCHECK(program && (program->initialized() || IsContextLost()));
409  SetUseProgram(program->program());
410
411  SkColor color = quad->color;
412  GLC(gl_,
413      gl_->Uniform4f(program->fragment_shader().color_location(),
414                     SkColorGetR(color) * (1.0f / 255.0f),
415                     SkColorGetG(color) * (1.0f / 255.0f),
416                     SkColorGetB(color) * (1.0f / 255.0f),
417                     1));
418
419  const int checkerboard_width = 16;
420  float frequency = 1.0f / checkerboard_width;
421
422  gfx::Rect tile_rect = quad->rect;
423  float tex_offset_x = tile_rect.x() % checkerboard_width;
424  float tex_offset_y = tile_rect.y() % checkerboard_width;
425  float tex_scale_x = tile_rect.width();
426  float tex_scale_y = tile_rect.height();
427  GLC(gl_,
428      gl_->Uniform4f(program->fragment_shader().tex_transform_location(),
429                     tex_offset_x,
430                     tex_offset_y,
431                     tex_scale_x,
432                     tex_scale_y));
433
434  GLC(gl_,
435      gl_->Uniform1f(program->fragment_shader().frequency_location(),
436                     frequency));
437
438  SetShaderOpacity(quad->opacity(),
439                   program->fragment_shader().alpha_location());
440  DrawQuadGeometry(frame,
441                   quad->quadTransform(),
442                   quad->rect,
443                   program->vertex_shader().matrix_location());
444}
445
446void GLRenderer::DrawDebugBorderQuad(const DrawingFrame* frame,
447                                     const DebugBorderDrawQuad* quad) {
448  SetBlendEnabled(quad->ShouldDrawWithBlending());
449
450  static float gl_matrix[16];
451  const DebugBorderProgram* program = GetDebugBorderProgram();
452  DCHECK(program && (program->initialized() || IsContextLost()));
453  SetUseProgram(program->program());
454
455  // Use the full quad_rect for debug quads to not move the edges based on
456  // partial swaps.
457  gfx::Rect layer_rect = quad->rect;
458  gfx::Transform render_matrix = quad->quadTransform();
459  render_matrix.Translate(0.5f * layer_rect.width() + layer_rect.x(),
460                          0.5f * layer_rect.height() + layer_rect.y());
461  render_matrix.Scale(layer_rect.width(), layer_rect.height());
462  GLRenderer::ToGLMatrix(&gl_matrix[0],
463                         frame->projection_matrix * render_matrix);
464  GLC(gl_,
465      gl_->UniformMatrix4fv(
466          program->vertex_shader().matrix_location(), 1, false, &gl_matrix[0]));
467
468  SkColor color = quad->color;
469  float alpha = SkColorGetA(color) * (1.0f / 255.0f);
470
471  GLC(gl_,
472      gl_->Uniform4f(program->fragment_shader().color_location(),
473                     (SkColorGetR(color) * (1.0f / 255.0f)) * alpha,
474                     (SkColorGetG(color) * (1.0f / 255.0f)) * alpha,
475                     (SkColorGetB(color) * (1.0f / 255.0f)) * alpha,
476                     alpha));
477
478  GLC(gl_, gl_->LineWidth(quad->width));
479
480  // The indices for the line are stored in the same array as the triangle
481  // indices.
482  GLC(gl_, gl_->DrawElements(GL_LINE_LOOP, 4, GL_UNSIGNED_SHORT, 0));
483}
484
485static SkBitmap ApplyImageFilter(GLRenderer* renderer,
486                                 ContextProvider* offscreen_contexts,
487                                 gfx::Point origin,
488                                 SkImageFilter* filter,
489                                 ScopedResource* source_texture_resource) {
490  if (!filter)
491    return SkBitmap();
492
493  if (!offscreen_contexts || !offscreen_contexts->GrContext())
494    return SkBitmap();
495
496  ResourceProvider::ScopedWriteLockGL lock(renderer->resource_provider(),
497                                           source_texture_resource->id());
498
499  // Flush the compositor context to ensure that textures there are available
500  // in the shared context.  Do this after locking/creating the compositor
501  // texture.
502  renderer->resource_provider()->Flush();
503
504  // Wrap the source texture in a Ganesh platform texture.
505  GrBackendTextureDesc backend_texture_description;
506  backend_texture_description.fWidth = source_texture_resource->size().width();
507  backend_texture_description.fHeight =
508      source_texture_resource->size().height();
509  backend_texture_description.fConfig = kSkia8888_GrPixelConfig;
510  backend_texture_description.fTextureHandle = lock.texture_id();
511  backend_texture_description.fOrigin = kBottomLeft_GrSurfaceOrigin;
512  skia::RefPtr<GrTexture> texture =
513      skia::AdoptRef(offscreen_contexts->GrContext()->wrapBackendTexture(
514          backend_texture_description));
515
516  SkImageInfo info = {
517    source_texture_resource->size().width(),
518    source_texture_resource->size().height(),
519    kPMColor_SkColorType,
520    kPremul_SkAlphaType
521  };
522  // Place the platform texture inside an SkBitmap.
523  SkBitmap source;
524  source.setConfig(info);
525  skia::RefPtr<SkGrPixelRef> pixel_ref =
526      skia::AdoptRef(new SkGrPixelRef(info, texture.get()));
527  source.setPixelRef(pixel_ref.get());
528
529  // Create a scratch texture for backing store.
530  GrTextureDesc desc;
531  desc.fFlags = kRenderTarget_GrTextureFlagBit | kNoStencil_GrTextureFlagBit;
532  desc.fSampleCnt = 0;
533  desc.fWidth = source.width();
534  desc.fHeight = source.height();
535  desc.fConfig = kSkia8888_GrPixelConfig;
536  desc.fOrigin = kBottomLeft_GrSurfaceOrigin;
537  GrAutoScratchTexture scratch_texture(
538      offscreen_contexts->GrContext(), desc, GrContext::kExact_ScratchTexMatch);
539  skia::RefPtr<GrTexture> backing_store =
540      skia::AdoptRef(scratch_texture.detach());
541
542  // Create a device and canvas using that backing store.
543  SkGpuDevice device(offscreen_contexts->GrContext(), backing_store.get());
544  SkCanvas canvas(&device);
545
546  // Draw the source bitmap through the filter to the canvas.
547  SkPaint paint;
548  paint.setImageFilter(filter);
549  canvas.clear(SK_ColorTRANSPARENT);
550
551  // TODO(senorblanco): in addition to the origin translation here, the canvas
552  // should also be scaled to accomodate device pixel ratio and pinch zoom. See
553  // crbug.com/281516 and crbug.com/281518.
554  canvas.translate(SkIntToScalar(-origin.x()), SkIntToScalar(-origin.y()));
555  canvas.drawSprite(source, 0, 0, &paint);
556
557  // Flush skia context so that all the rendered stuff appears on the
558  // texture.
559  offscreen_contexts->GrContext()->flush();
560
561  // Flush the GL context so rendering results from this context are
562  // visible in the compositor's context.
563  offscreen_contexts->ContextGL()->Flush();
564
565  return device.accessBitmap(false);
566}
567
568static SkBitmap ApplyBlendModeWithBackdrop(
569    GLRenderer* renderer,
570    ContextProvider* offscreen_contexts,
571    SkBitmap source_bitmap_with_filters,
572    ScopedResource* source_texture_resource,
573    ScopedResource* background_texture_resource,
574    SkXfermode::Mode blend_mode) {
575  if (!offscreen_contexts || !offscreen_contexts->GrContext())
576    return source_bitmap_with_filters;
577
578  DCHECK(background_texture_resource);
579  DCHECK(source_texture_resource);
580
581  gfx::Size source_size = source_texture_resource->size();
582  gfx::Size background_size = background_texture_resource->size();
583
584  DCHECK_LE(background_size.width(), source_size.width());
585  DCHECK_LE(background_size.height(), source_size.height());
586
587  int source_texture_with_filters_id;
588  scoped_ptr<ResourceProvider::ScopedReadLockGL> lock;
589  if (source_bitmap_with_filters.getTexture()) {
590    DCHECK_EQ(source_size.width(), source_bitmap_with_filters.width());
591    DCHECK_EQ(source_size.height(), source_bitmap_with_filters.height());
592    GrTexture* texture =
593        reinterpret_cast<GrTexture*>(source_bitmap_with_filters.getTexture());
594    source_texture_with_filters_id = texture->getTextureHandle();
595  } else {
596    lock.reset(new ResourceProvider::ScopedReadLockGL(
597        renderer->resource_provider(), source_texture_resource->id()));
598    source_texture_with_filters_id = lock->texture_id();
599  }
600
601  ResourceProvider::ScopedReadLockGL lock_background(
602      renderer->resource_provider(), background_texture_resource->id());
603
604  // Flush the compositor context to ensure that textures there are available
605  // in the shared context.  Do this after locking/creating the compositor
606  // texture.
607  renderer->resource_provider()->Flush();
608
609  // Wrap the source texture in a Ganesh platform texture.
610  GrBackendTextureDesc backend_texture_description;
611  backend_texture_description.fConfig = kSkia8888_GrPixelConfig;
612  backend_texture_description.fOrigin = kBottomLeft_GrSurfaceOrigin;
613
614  backend_texture_description.fWidth = source_size.width();
615  backend_texture_description.fHeight = source_size.height();
616  backend_texture_description.fTextureHandle = source_texture_with_filters_id;
617  skia::RefPtr<GrTexture> source_texture =
618      skia::AdoptRef(offscreen_contexts->GrContext()->wrapBackendTexture(
619          backend_texture_description));
620
621  backend_texture_description.fWidth = background_size.width();
622  backend_texture_description.fHeight = background_size.height();
623  backend_texture_description.fTextureHandle = lock_background.texture_id();
624  skia::RefPtr<GrTexture> background_texture =
625      skia::AdoptRef(offscreen_contexts->GrContext()->wrapBackendTexture(
626          backend_texture_description));
627
628  SkImageInfo source_info = {
629    source_size.width(),
630    source_size.height(),
631    kPMColor_SkColorType,
632    kPremul_SkAlphaType
633  };
634  // Place the platform texture inside an SkBitmap.
635  SkBitmap source;
636  source.setConfig(source_info);
637  skia::RefPtr<SkGrPixelRef> source_pixel_ref =
638      skia::AdoptRef(new SkGrPixelRef(source_info, source_texture.get()));
639  source.setPixelRef(source_pixel_ref.get());
640
641  SkImageInfo background_info = {
642    background_size.width(),
643    background_size.height(),
644    kPMColor_SkColorType,
645    kPremul_SkAlphaType
646  };
647
648  SkBitmap background;
649  background.setConfig(background_info);
650  skia::RefPtr<SkGrPixelRef> background_pixel_ref =
651      skia::AdoptRef(new SkGrPixelRef(
652          background_info, background_texture.get()));
653  background.setPixelRef(background_pixel_ref.get());
654
655  // Create a scratch texture for backing store.
656  GrTextureDesc desc;
657  desc.fFlags = kRenderTarget_GrTextureFlagBit | kNoStencil_GrTextureFlagBit;
658  desc.fSampleCnt = 0;
659  desc.fWidth = source.width();
660  desc.fHeight = source.height();
661  desc.fConfig = kSkia8888_GrPixelConfig;
662  desc.fOrigin = kBottomLeft_GrSurfaceOrigin;
663  GrAutoScratchTexture scratch_texture(
664      offscreen_contexts->GrContext(), desc, GrContext::kExact_ScratchTexMatch);
665  skia::RefPtr<GrTexture> backing_store =
666      skia::AdoptRef(scratch_texture.detach());
667
668  // Create a device and canvas using that backing store.
669  SkGpuDevice device(offscreen_contexts->GrContext(), backing_store.get());
670  SkCanvas canvas(&device);
671
672  // Draw the source bitmap through the filter to the canvas.
673  canvas.clear(SK_ColorTRANSPARENT);
674  canvas.drawSprite(background, 0, 0);
675  SkPaint paint;
676  paint.setXfermodeMode(blend_mode);
677  canvas.drawSprite(source, 0, 0, &paint);
678
679  // Flush skia context so that all the rendered stuff appears on the
680  // texture.
681  offscreen_contexts->GrContext()->flush();
682
683  // Flush the GL context so rendering results from this context are
684  // visible in the compositor's context.
685  offscreen_contexts->ContextGL()->Flush();
686
687  return device.accessBitmap(false);
688}
689
690scoped_ptr<ScopedResource> GLRenderer::GetBackgroundWithFilters(
691    DrawingFrame* frame,
692    const RenderPassDrawQuad* quad,
693    const gfx::Transform& contents_device_transform,
694    const gfx::Transform& contents_device_transform_inverse,
695    bool* background_changed) {
696  // This method draws a background filter, which applies a filter to any pixels
697  // behind the quad and seen through its background.  The algorithm works as
698  // follows:
699  // 1. Compute a bounding box around the pixels that will be visible through
700  // the quad.
701  // 2. Read the pixels in the bounding box into a buffer R.
702  // 3. Apply the background filter to R, so that it is applied in the pixels'
703  // coordinate space.
704  // 4. Apply the quad's inverse transform to map the pixels in R into the
705  // quad's content space. This implicitly clips R by the content bounds of the
706  // quad since the destination texture has bounds matching the quad's content.
707  // 5. Draw the background texture for the contents using the same transform as
708  // used to draw the contents itself. This is done without blending to replace
709  // the current background pixels with the new filtered background.
710  // 6. Draw the contents of the quad over drop of the new background with
711  // blending, as per usual. The filtered background pixels will show through
712  // any non-opaque pixels in this draws.
713  //
714  // Pixel copies in this algorithm occur at steps 2, 3, 4, and 5.
715
716  // TODO(danakj): When this algorithm changes, update
717  // LayerTreeHost::PrioritizeTextures() accordingly.
718
719  // TODO(danakj): We only allow background filters on an opaque render surface
720  // because other surfaces may contain translucent pixels, and the contents
721  // behind those translucent pixels wouldn't have the filter applied.
722  bool apply_background_filters =
723      !frame->current_render_pass->has_transparent_background;
724  DCHECK(!frame->current_texture);
725
726  // TODO(ajuma): Add support for reference filters once
727  // FilterOperations::GetOutsets supports reference filters.
728  if (apply_background_filters && quad->background_filters.HasReferenceFilter())
729    apply_background_filters = false;
730
731  // TODO(danakj): Do a single readback for both the surface and replica and
732  // cache the filtered results (once filter textures are not reused).
733  gfx::Rect window_rect = gfx::ToEnclosingRect(MathUtil::MapClippedRect(
734      contents_device_transform, SharedGeometryQuad().BoundingBox()));
735
736  int top, right, bottom, left;
737  quad->background_filters.GetOutsets(&top, &right, &bottom, &left);
738  window_rect.Inset(-left, -top, -right, -bottom);
739
740  window_rect.Intersect(
741      MoveFromDrawToWindowSpace(frame->current_render_pass->output_rect));
742
743  scoped_ptr<ScopedResource> device_background_texture =
744      ScopedResource::Create(resource_provider_);
745  // The TextureUsageFramebuffer hint makes ResourceProvider avoid immutable
746  // storage allocation (texStorage2DEXT) for this texture. copyTexImage2D fails
747  // when called on a texture having immutable storage.
748  device_background_texture->Allocate(
749      window_rect.size(), ResourceProvider::TextureUsageFramebuffer, RGBA_8888);
750  {
751    ResourceProvider::ScopedWriteLockGL lock(resource_provider_,
752                                             device_background_texture->id());
753    GetFramebufferTexture(
754        lock.texture_id(), device_background_texture->format(), window_rect);
755  }
756
757  skia::RefPtr<SkImageFilter> filter = RenderSurfaceFilters::BuildImageFilter(
758      quad->background_filters, device_background_texture->size());
759
760  SkBitmap filtered_device_background;
761  if (apply_background_filters) {
762    filtered_device_background =
763        ApplyImageFilter(this,
764                         frame->offscreen_context_provider,
765                         quad->rect.origin(),
766                         filter.get(),
767                         device_background_texture.get());
768  }
769  *background_changed = (filtered_device_background.getTexture() != NULL);
770
771  int filtered_device_background_texture_id = 0;
772  scoped_ptr<ResourceProvider::ScopedReadLockGL> lock;
773  if (filtered_device_background.getTexture()) {
774    GrTexture* texture =
775        reinterpret_cast<GrTexture*>(filtered_device_background.getTexture());
776    filtered_device_background_texture_id = texture->getTextureHandle();
777  } else {
778    lock.reset(new ResourceProvider::ScopedReadLockGL(
779        resource_provider_, device_background_texture->id()));
780    filtered_device_background_texture_id = lock->texture_id();
781  }
782
783  scoped_ptr<ScopedResource> background_texture =
784      ScopedResource::Create(resource_provider_);
785  background_texture->Allocate(
786      quad->rect.size(), ResourceProvider::TextureUsageFramebuffer, RGBA_8888);
787
788  const RenderPass* target_render_pass = frame->current_render_pass;
789  bool using_background_texture =
790      UseScopedTexture(frame, background_texture.get(), quad->rect);
791
792  if (using_background_texture) {
793    // Copy the readback pixels from device to the background texture for the
794    // surface.
795    gfx::Transform device_to_framebuffer_transform;
796    device_to_framebuffer_transform.Translate(
797        quad->rect.width() * 0.5f + quad->rect.x(),
798        quad->rect.height() * 0.5f + quad->rect.y());
799    device_to_framebuffer_transform.Scale(quad->rect.width(),
800                                          quad->rect.height());
801    device_to_framebuffer_transform.PreconcatTransform(
802        contents_device_transform_inverse);
803
804#ifndef NDEBUG
805    GLC(gl_, gl_->ClearColor(0, 0, 1, 1));
806    gl_->Clear(GL_COLOR_BUFFER_BIT);
807#endif
808
809    // The filtered_deveice_background_texture is oriented the same as the frame
810    // buffer. The transform we are copying with has a vertical flip, as well as
811    // the |device_to_framebuffer_transform|, which cancel each other out. So do
812    // not flip the contents in the shader to maintain orientation.
813    bool flip_vertically = false;
814
815    CopyTextureToFramebuffer(frame,
816                             filtered_device_background_texture_id,
817                             window_rect,
818                             device_to_framebuffer_transform,
819                             flip_vertically);
820  }
821
822  UseRenderPass(frame, target_render_pass);
823
824  if (!using_background_texture)
825    return scoped_ptr<ScopedResource>();
826  return background_texture.Pass();
827}
828
829void GLRenderer::DrawRenderPassQuad(DrawingFrame* frame,
830                                    const RenderPassDrawQuad* quad) {
831  SetBlendEnabled(quad->ShouldDrawWithBlending());
832
833  ScopedResource* contents_texture =
834      render_pass_textures_.get(quad->render_pass_id);
835  if (!contents_texture || !contents_texture->id())
836    return;
837
838  gfx::Transform quad_rect_matrix;
839  QuadRectTransform(&quad_rect_matrix, quad->quadTransform(), quad->rect);
840  gfx::Transform contents_device_transform =
841      frame->window_matrix * frame->projection_matrix * quad_rect_matrix;
842  contents_device_transform.FlattenTo2d();
843
844  // Can only draw surface if device matrix is invertible.
845  gfx::Transform contents_device_transform_inverse(
846      gfx::Transform::kSkipInitialization);
847  if (!contents_device_transform.GetInverse(&contents_device_transform_inverse))
848    return;
849
850  bool need_background_texture =
851      quad->shared_quad_state->blend_mode != SkXfermode::kSrcOver_Mode ||
852      !quad->background_filters.IsEmpty();
853  bool background_changed = false;
854  scoped_ptr<ScopedResource> background_texture;
855  if (need_background_texture) {
856    // The pixels from the filtered background should completely replace the
857    // current pixel values.
858    bool disable_blending = blend_enabled();
859    if (disable_blending)
860      SetBlendEnabled(false);
861
862    background_texture =
863        GetBackgroundWithFilters(frame,
864                                 quad,
865                                 contents_device_transform,
866                                 contents_device_transform_inverse,
867                                 &background_changed);
868
869    if (disable_blending)
870      SetBlendEnabled(true);
871  }
872
873  // TODO(senorblanco): Cache this value so that we don't have to do it for both
874  // the surface and its replica.  Apply filters to the contents texture.
875  SkBitmap filter_bitmap;
876  SkScalar color_matrix[20];
877  bool use_color_matrix = false;
878  // TODO(ajuma): Always use RenderSurfaceFilters::BuildImageFilter, not just
879  // when we have a reference filter.
880  if (!quad->filters.IsEmpty()) {
881    skia::RefPtr<SkImageFilter> filter = RenderSurfaceFilters::BuildImageFilter(
882        quad->filters, contents_texture->size());
883    if (filter) {
884      skia::RefPtr<SkColorFilter> cf;
885
886      {
887        SkColorFilter* colorfilter_rawptr = NULL;
888        filter->asColorFilter(&colorfilter_rawptr);
889        cf = skia::AdoptRef(colorfilter_rawptr);
890      }
891
892      if (cf && cf->asColorMatrix(color_matrix) && !filter->getInput(0)) {
893        // We have a single color matrix as a filter; apply it locally
894        // in the compositor.
895        use_color_matrix = true;
896      } else {
897        filter_bitmap = ApplyImageFilter(this,
898                                         frame->offscreen_context_provider,
899                                         quad->rect.origin(),
900                                         filter.get(),
901                                         contents_texture);
902      }
903    }
904  }
905
906  if (quad->shared_quad_state->blend_mode != SkXfermode::kSrcOver_Mode &&
907      background_texture) {
908    filter_bitmap =
909        ApplyBlendModeWithBackdrop(this,
910                                   frame->offscreen_context_provider,
911                                   filter_bitmap,
912                                   contents_texture,
913                                   background_texture.get(),
914                                   quad->shared_quad_state->blend_mode);
915  }
916
917  // Draw the background texture if it has some filters applied.
918  if (background_texture && background_changed) {
919    DCHECK(background_texture->size() == quad->rect.size());
920    ResourceProvider::ScopedReadLockGL lock(resource_provider_,
921                                            background_texture->id());
922
923    // The background_texture is oriented the same as the frame buffer. The
924    // transform we are copying with has a vertical flip, so flip the contents
925    // in the shader to maintain orientation
926    bool flip_vertically = true;
927
928    CopyTextureToFramebuffer(frame,
929                             lock.texture_id(),
930                             quad->rect,
931                             quad->quadTransform(),
932                             flip_vertically);
933  }
934
935  bool clipped = false;
936  gfx::QuadF device_quad = MathUtil::MapQuad(
937      contents_device_transform, SharedGeometryQuad(), &clipped);
938  LayerQuad device_layer_bounds(gfx::QuadF(device_quad.BoundingBox()));
939  LayerQuad device_layer_edges(device_quad);
940
941  // Use anti-aliasing programs only when necessary.
942  bool use_aa =
943      !clipped && (!device_quad.IsRectilinear() ||
944                   !gfx::IsNearestRectWithinDistance(device_quad.BoundingBox(),
945                                                     kAntiAliasingEpsilon));
946  if (use_aa) {
947    device_layer_bounds.InflateAntiAliasingDistance();
948    device_layer_edges.InflateAntiAliasingDistance();
949  }
950
951  scoped_ptr<ResourceProvider::ScopedReadLockGL> mask_resource_lock;
952  unsigned mask_texture_id = 0;
953  if (quad->mask_resource_id) {
954    mask_resource_lock.reset(new ResourceProvider::ScopedReadLockGL(
955        resource_provider_, quad->mask_resource_id));
956    mask_texture_id = mask_resource_lock->texture_id();
957  }
958
959  // TODO(danakj): use the background_texture and blend the background in with
960  // this draw instead of having a separate copy of the background texture.
961
962  scoped_ptr<ResourceProvider::ScopedSamplerGL> contents_resource_lock;
963  if (filter_bitmap.getTexture()) {
964    GrTexture* texture =
965        reinterpret_cast<GrTexture*>(filter_bitmap.getTexture());
966    DCHECK_EQ(GL_TEXTURE0, ResourceProvider::GetActiveTextureUnit(gl_));
967    gl_->BindTexture(GL_TEXTURE_2D, texture->getTextureHandle());
968  } else {
969    contents_resource_lock =
970        make_scoped_ptr(new ResourceProvider::ScopedSamplerGL(
971            resource_provider_, contents_texture->id(), GL_LINEAR));
972    DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D),
973              contents_resource_lock->target());
974  }
975
976  TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
977      gl_,
978      &highp_threshold_cache_,
979      highp_threshold_min_,
980      quad->shared_quad_state->visible_content_rect.bottom_right());
981
982  int shader_quad_location = -1;
983  int shader_edge_location = -1;
984  int shader_viewport_location = -1;
985  int shader_mask_sampler_location = -1;
986  int shader_mask_tex_coord_scale_location = -1;
987  int shader_mask_tex_coord_offset_location = -1;
988  int shader_matrix_location = -1;
989  int shader_alpha_location = -1;
990  int shader_color_matrix_location = -1;
991  int shader_color_offset_location = -1;
992  int shader_tex_transform_location = -1;
993
994  if (use_aa && mask_texture_id && !use_color_matrix) {
995    const RenderPassMaskProgramAA* program =
996        GetRenderPassMaskProgramAA(tex_coord_precision);
997    SetUseProgram(program->program());
998    GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
999
1000    shader_quad_location = program->vertex_shader().quad_location();
1001    shader_edge_location = program->vertex_shader().edge_location();
1002    shader_viewport_location = program->vertex_shader().viewport_location();
1003    shader_mask_sampler_location =
1004        program->fragment_shader().mask_sampler_location();
1005    shader_mask_tex_coord_scale_location =
1006        program->fragment_shader().mask_tex_coord_scale_location();
1007    shader_mask_tex_coord_offset_location =
1008        program->fragment_shader().mask_tex_coord_offset_location();
1009    shader_matrix_location = program->vertex_shader().matrix_location();
1010    shader_alpha_location = program->fragment_shader().alpha_location();
1011    shader_tex_transform_location =
1012        program->vertex_shader().tex_transform_location();
1013  } else if (!use_aa && mask_texture_id && !use_color_matrix) {
1014    const RenderPassMaskProgram* program =
1015        GetRenderPassMaskProgram(tex_coord_precision);
1016    SetUseProgram(program->program());
1017    GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
1018
1019    shader_mask_sampler_location =
1020        program->fragment_shader().mask_sampler_location();
1021    shader_mask_tex_coord_scale_location =
1022        program->fragment_shader().mask_tex_coord_scale_location();
1023    shader_mask_tex_coord_offset_location =
1024        program->fragment_shader().mask_tex_coord_offset_location();
1025    shader_matrix_location = program->vertex_shader().matrix_location();
1026    shader_alpha_location = program->fragment_shader().alpha_location();
1027    shader_tex_transform_location =
1028        program->vertex_shader().tex_transform_location();
1029  } else if (use_aa && !mask_texture_id && !use_color_matrix) {
1030    const RenderPassProgramAA* program =
1031        GetRenderPassProgramAA(tex_coord_precision);
1032    SetUseProgram(program->program());
1033    GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
1034
1035    shader_quad_location = program->vertex_shader().quad_location();
1036    shader_edge_location = program->vertex_shader().edge_location();
1037    shader_viewport_location = program->vertex_shader().viewport_location();
1038    shader_matrix_location = program->vertex_shader().matrix_location();
1039    shader_alpha_location = program->fragment_shader().alpha_location();
1040    shader_tex_transform_location =
1041        program->vertex_shader().tex_transform_location();
1042  } else if (use_aa && mask_texture_id && use_color_matrix) {
1043    const RenderPassMaskColorMatrixProgramAA* program =
1044        GetRenderPassMaskColorMatrixProgramAA(tex_coord_precision);
1045    SetUseProgram(program->program());
1046    GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
1047
1048    shader_matrix_location = program->vertex_shader().matrix_location();
1049    shader_quad_location = program->vertex_shader().quad_location();
1050    shader_tex_transform_location =
1051        program->vertex_shader().tex_transform_location();
1052    shader_edge_location = program->vertex_shader().edge_location();
1053    shader_viewport_location = program->vertex_shader().viewport_location();
1054    shader_alpha_location = program->fragment_shader().alpha_location();
1055    shader_mask_sampler_location =
1056        program->fragment_shader().mask_sampler_location();
1057    shader_mask_tex_coord_scale_location =
1058        program->fragment_shader().mask_tex_coord_scale_location();
1059    shader_mask_tex_coord_offset_location =
1060        program->fragment_shader().mask_tex_coord_offset_location();
1061    shader_color_matrix_location =
1062        program->fragment_shader().color_matrix_location();
1063    shader_color_offset_location =
1064        program->fragment_shader().color_offset_location();
1065  } else if (use_aa && !mask_texture_id && use_color_matrix) {
1066    const RenderPassColorMatrixProgramAA* program =
1067        GetRenderPassColorMatrixProgramAA(tex_coord_precision);
1068    SetUseProgram(program->program());
1069    GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
1070
1071    shader_matrix_location = program->vertex_shader().matrix_location();
1072    shader_quad_location = program->vertex_shader().quad_location();
1073    shader_tex_transform_location =
1074        program->vertex_shader().tex_transform_location();
1075    shader_edge_location = program->vertex_shader().edge_location();
1076    shader_viewport_location = program->vertex_shader().viewport_location();
1077    shader_alpha_location = program->fragment_shader().alpha_location();
1078    shader_color_matrix_location =
1079        program->fragment_shader().color_matrix_location();
1080    shader_color_offset_location =
1081        program->fragment_shader().color_offset_location();
1082  } else if (!use_aa && mask_texture_id && use_color_matrix) {
1083    const RenderPassMaskColorMatrixProgram* program =
1084        GetRenderPassMaskColorMatrixProgram(tex_coord_precision);
1085    SetUseProgram(program->program());
1086    GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
1087
1088    shader_matrix_location = program->vertex_shader().matrix_location();
1089    shader_tex_transform_location =
1090        program->vertex_shader().tex_transform_location();
1091    shader_mask_sampler_location =
1092        program->fragment_shader().mask_sampler_location();
1093    shader_mask_tex_coord_scale_location =
1094        program->fragment_shader().mask_tex_coord_scale_location();
1095    shader_mask_tex_coord_offset_location =
1096        program->fragment_shader().mask_tex_coord_offset_location();
1097    shader_alpha_location = program->fragment_shader().alpha_location();
1098    shader_color_matrix_location =
1099        program->fragment_shader().color_matrix_location();
1100    shader_color_offset_location =
1101        program->fragment_shader().color_offset_location();
1102  } else if (!use_aa && !mask_texture_id && use_color_matrix) {
1103    const RenderPassColorMatrixProgram* program =
1104        GetRenderPassColorMatrixProgram(tex_coord_precision);
1105    SetUseProgram(program->program());
1106    GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
1107
1108    shader_matrix_location = program->vertex_shader().matrix_location();
1109    shader_tex_transform_location =
1110        program->vertex_shader().tex_transform_location();
1111    shader_alpha_location = program->fragment_shader().alpha_location();
1112    shader_color_matrix_location =
1113        program->fragment_shader().color_matrix_location();
1114    shader_color_offset_location =
1115        program->fragment_shader().color_offset_location();
1116  } else {
1117    const RenderPassProgram* program =
1118        GetRenderPassProgram(tex_coord_precision);
1119    SetUseProgram(program->program());
1120    GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
1121
1122    shader_matrix_location = program->vertex_shader().matrix_location();
1123    shader_alpha_location = program->fragment_shader().alpha_location();
1124    shader_tex_transform_location =
1125        program->vertex_shader().tex_transform_location();
1126  }
1127  float tex_scale_x =
1128      quad->rect.width() / static_cast<float>(contents_texture->size().width());
1129  float tex_scale_y = quad->rect.height() /
1130                      static_cast<float>(contents_texture->size().height());
1131  DCHECK_LE(tex_scale_x, 1.0f);
1132  DCHECK_LE(tex_scale_y, 1.0f);
1133
1134  DCHECK(shader_tex_transform_location != -1 || IsContextLost());
1135  // Flip the content vertically in the shader, as the RenderPass input
1136  // texture is already oriented the same way as the framebuffer, but the
1137  // projection transform does a flip.
1138  GLC(gl_,
1139      gl_->Uniform4f(shader_tex_transform_location,
1140                     0.0f,
1141                     tex_scale_y,
1142                     tex_scale_x,
1143                     -tex_scale_y));
1144
1145  scoped_ptr<ResourceProvider::ScopedSamplerGL> shader_mask_sampler_lock;
1146  if (shader_mask_sampler_location != -1) {
1147    DCHECK_NE(shader_mask_tex_coord_scale_location, 1);
1148    DCHECK_NE(shader_mask_tex_coord_offset_location, 1);
1149    GLC(gl_, gl_->Uniform1i(shader_mask_sampler_location, 1));
1150
1151    float mask_tex_scale_x = quad->mask_uv_rect.width() / tex_scale_x;
1152    float mask_tex_scale_y = quad->mask_uv_rect.height() / tex_scale_y;
1153
1154    // Mask textures are oriented vertically flipped relative to the framebuffer
1155    // and the RenderPass contents texture, so we flip the tex coords from the
1156    // RenderPass texture to find the mask texture coords.
1157    GLC(gl_,
1158        gl_->Uniform2f(shader_mask_tex_coord_offset_location,
1159                       quad->mask_uv_rect.x(),
1160                       quad->mask_uv_rect.y() + quad->mask_uv_rect.height()));
1161    GLC(gl_,
1162        gl_->Uniform2f(shader_mask_tex_coord_scale_location,
1163                       mask_tex_scale_x,
1164                       -mask_tex_scale_y));
1165    shader_mask_sampler_lock = make_scoped_ptr(
1166        new ResourceProvider::ScopedSamplerGL(resource_provider_,
1167                                              quad->mask_resource_id,
1168                                              GL_TEXTURE1,
1169                                              GL_LINEAR));
1170    DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D),
1171              shader_mask_sampler_lock->target());
1172  }
1173
1174  if (shader_edge_location != -1) {
1175    float edge[24];
1176    device_layer_edges.ToFloatArray(edge);
1177    device_layer_bounds.ToFloatArray(&edge[12]);
1178    GLC(gl_, gl_->Uniform3fv(shader_edge_location, 8, edge));
1179  }
1180
1181  if (shader_viewport_location != -1) {
1182    float viewport[4] = {static_cast<float>(viewport_.x()),
1183                         static_cast<float>(viewport_.y()),
1184                         static_cast<float>(viewport_.width()),
1185                         static_cast<float>(viewport_.height()), };
1186    GLC(gl_, gl_->Uniform4fv(shader_viewport_location, 1, viewport));
1187  }
1188
1189  if (shader_color_matrix_location != -1) {
1190    float matrix[16];
1191    for (int i = 0; i < 4; ++i) {
1192      for (int j = 0; j < 4; ++j)
1193        matrix[i * 4 + j] = SkScalarToFloat(color_matrix[j * 5 + i]);
1194    }
1195    GLC(gl_,
1196        gl_->UniformMatrix4fv(shader_color_matrix_location, 1, false, matrix));
1197  }
1198  static const float kScale = 1.0f / 255.0f;
1199  if (shader_color_offset_location != -1) {
1200    float offset[4];
1201    for (int i = 0; i < 4; ++i)
1202      offset[i] = SkScalarToFloat(color_matrix[i * 5 + 4]) * kScale;
1203
1204    GLC(gl_, gl_->Uniform4fv(shader_color_offset_location, 1, offset));
1205  }
1206
1207  // Map device space quad to surface space. contents_device_transform has no 3d
1208  // component since it was flattened, so we don't need to project.
1209  gfx::QuadF surface_quad = MathUtil::MapQuad(contents_device_transform_inverse,
1210                                              device_layer_edges.ToQuadF(),
1211                                              &clipped);
1212
1213  SetShaderOpacity(quad->opacity(), shader_alpha_location);
1214  SetShaderQuadF(surface_quad, shader_quad_location);
1215  DrawQuadGeometry(
1216      frame, quad->quadTransform(), quad->rect, shader_matrix_location);
1217
1218  // Flush the compositor context before the filter bitmap goes out of
1219  // scope, so the draw gets processed before the filter texture gets deleted.
1220  if (filter_bitmap.getTexture())
1221    GLC(gl_, gl_->Flush());
1222}
1223
1224struct SolidColorProgramUniforms {
1225  unsigned program;
1226  unsigned matrix_location;
1227  unsigned viewport_location;
1228  unsigned quad_location;
1229  unsigned edge_location;
1230  unsigned color_location;
1231};
1232
1233template <class T>
1234static void SolidColorUniformLocation(T program,
1235                                      SolidColorProgramUniforms* uniforms) {
1236  uniforms->program = program->program();
1237  uniforms->matrix_location = program->vertex_shader().matrix_location();
1238  uniforms->viewport_location = program->vertex_shader().viewport_location();
1239  uniforms->quad_location = program->vertex_shader().quad_location();
1240  uniforms->edge_location = program->vertex_shader().edge_location();
1241  uniforms->color_location = program->fragment_shader().color_location();
1242}
1243
1244// static
1245bool GLRenderer::SetupQuadForAntialiasing(
1246    const gfx::Transform& device_transform,
1247    const DrawQuad* quad,
1248    gfx::QuadF* local_quad,
1249    float edge[24]) {
1250  gfx::Rect tile_rect = quad->visible_rect;
1251
1252  bool clipped = false;
1253  gfx::QuadF device_layer_quad = MathUtil::MapQuad(
1254      device_transform, gfx::QuadF(quad->visibleContentRect()), &clipped);
1255
1256  bool is_axis_aligned_in_target = device_layer_quad.IsRectilinear();
1257  bool is_nearest_rect_within_epsilon =
1258      is_axis_aligned_in_target &&
1259      gfx::IsNearestRectWithinDistance(device_layer_quad.BoundingBox(),
1260                                       kAntiAliasingEpsilon);
1261  // AAing clipped quads is not supported by the code yet.
1262  bool use_aa = !clipped && !is_nearest_rect_within_epsilon && quad->IsEdge();
1263  if (!use_aa)
1264    return false;
1265
1266  LayerQuad device_layer_bounds(gfx::QuadF(device_layer_quad.BoundingBox()));
1267  device_layer_bounds.InflateAntiAliasingDistance();
1268
1269  LayerQuad device_layer_edges(device_layer_quad);
1270  device_layer_edges.InflateAntiAliasingDistance();
1271
1272  device_layer_edges.ToFloatArray(edge);
1273  device_layer_bounds.ToFloatArray(&edge[12]);
1274
1275  gfx::PointF bottom_right = tile_rect.bottom_right();
1276  gfx::PointF bottom_left = tile_rect.bottom_left();
1277  gfx::PointF top_left = tile_rect.origin();
1278  gfx::PointF top_right = tile_rect.top_right();
1279
1280  // Map points to device space.
1281  bottom_right = MathUtil::MapPoint(device_transform, bottom_right, &clipped);
1282  DCHECK(!clipped);
1283  bottom_left = MathUtil::MapPoint(device_transform, bottom_left, &clipped);
1284  DCHECK(!clipped);
1285  top_left = MathUtil::MapPoint(device_transform, top_left, &clipped);
1286  DCHECK(!clipped);
1287  top_right = MathUtil::MapPoint(device_transform, top_right, &clipped);
1288  DCHECK(!clipped);
1289
1290  LayerQuad::Edge bottom_edge(bottom_right, bottom_left);
1291  LayerQuad::Edge left_edge(bottom_left, top_left);
1292  LayerQuad::Edge top_edge(top_left, top_right);
1293  LayerQuad::Edge right_edge(top_right, bottom_right);
1294
1295  // Only apply anti-aliasing to edges not clipped by culling or scissoring.
1296  if (quad->IsTopEdge() && tile_rect.y() == quad->rect.y())
1297    top_edge = device_layer_edges.top();
1298  if (quad->IsLeftEdge() && tile_rect.x() == quad->rect.x())
1299    left_edge = device_layer_edges.left();
1300  if (quad->IsRightEdge() && tile_rect.right() == quad->rect.right())
1301    right_edge = device_layer_edges.right();
1302  if (quad->IsBottomEdge() && tile_rect.bottom() == quad->rect.bottom())
1303    bottom_edge = device_layer_edges.bottom();
1304
1305  float sign = gfx::QuadF(tile_rect).IsCounterClockwise() ? -1 : 1;
1306  bottom_edge.scale(sign);
1307  left_edge.scale(sign);
1308  top_edge.scale(sign);
1309  right_edge.scale(sign);
1310
1311  // Create device space quad.
1312  LayerQuad device_quad(left_edge, top_edge, right_edge, bottom_edge);
1313
1314  // Map device space quad to local space. device_transform has no 3d
1315  // component since it was flattened, so we don't need to project.  We should
1316  // have already checked that the transform was uninvertible above.
1317  gfx::Transform inverse_device_transform(gfx::Transform::kSkipInitialization);
1318  bool did_invert = device_transform.GetInverse(&inverse_device_transform);
1319  DCHECK(did_invert);
1320  *local_quad = MathUtil::MapQuad(
1321      inverse_device_transform, device_quad.ToQuadF(), &clipped);
1322  // We should not DCHECK(!clipped) here, because anti-aliasing inflation may
1323  // cause device_quad to become clipped. To our knowledge this scenario does
1324  // not need to be handled differently than the unclipped case.
1325
1326  return true;
1327}
1328
1329void GLRenderer::DrawSolidColorQuad(const DrawingFrame* frame,
1330                                    const SolidColorDrawQuad* quad) {
1331  gfx::Rect tile_rect = quad->visible_rect;
1332
1333  SkColor color = quad->color;
1334  float opacity = quad->opacity();
1335  float alpha = (SkColorGetA(color) * (1.0f / 255.0f)) * opacity;
1336
1337  // Early out if alpha is small enough that quad doesn't contribute to output.
1338  if (alpha < std::numeric_limits<float>::epsilon() &&
1339      quad->ShouldDrawWithBlending())
1340    return;
1341
1342  gfx::Transform device_transform =
1343      frame->window_matrix * frame->projection_matrix * quad->quadTransform();
1344  device_transform.FlattenTo2d();
1345  if (!device_transform.IsInvertible())
1346    return;
1347
1348  gfx::QuadF local_quad = gfx::QuadF(gfx::RectF(tile_rect));
1349  float edge[24];
1350  bool use_aa =
1351      settings_->allow_antialiasing && !quad->force_anti_aliasing_off &&
1352      SetupQuadForAntialiasing(device_transform, quad, &local_quad, edge);
1353
1354  SolidColorProgramUniforms uniforms;
1355  if (use_aa)
1356    SolidColorUniformLocation(GetSolidColorProgramAA(), &uniforms);
1357  else
1358    SolidColorUniformLocation(GetSolidColorProgram(), &uniforms);
1359  SetUseProgram(uniforms.program);
1360
1361  GLC(gl_,
1362      gl_->Uniform4f(uniforms.color_location,
1363                     (SkColorGetR(color) * (1.0f / 255.0f)) * alpha,
1364                     (SkColorGetG(color) * (1.0f / 255.0f)) * alpha,
1365                     (SkColorGetB(color) * (1.0f / 255.0f)) * alpha,
1366                     alpha));
1367  if (use_aa) {
1368    float viewport[4] = {static_cast<float>(viewport_.x()),
1369                         static_cast<float>(viewport_.y()),
1370                         static_cast<float>(viewport_.width()),
1371                         static_cast<float>(viewport_.height()), };
1372    GLC(gl_, gl_->Uniform4fv(uniforms.viewport_location, 1, viewport));
1373    GLC(gl_, gl_->Uniform3fv(uniforms.edge_location, 8, edge));
1374  }
1375
1376  // Enable blending when the quad properties require it or if we decided
1377  // to use antialiasing.
1378  SetBlendEnabled(quad->ShouldDrawWithBlending() || use_aa);
1379
1380  // Normalize to tile_rect.
1381  local_quad.Scale(1.0f / tile_rect.width(), 1.0f / tile_rect.height());
1382
1383  SetShaderQuadF(local_quad, uniforms.quad_location);
1384
1385  // The transform and vertex data are used to figure out the extents that the
1386  // un-antialiased quad should have and which vertex this is and the float
1387  // quad passed in via uniform is the actual geometry that gets used to draw
1388  // it. This is why this centered rect is used and not the original quad_rect.
1389  gfx::RectF centered_rect(
1390      gfx::PointF(-0.5f * tile_rect.width(), -0.5f * tile_rect.height()),
1391      tile_rect.size());
1392  DrawQuadGeometry(
1393      frame, quad->quadTransform(), centered_rect, uniforms.matrix_location);
1394}
1395
1396struct TileProgramUniforms {
1397  unsigned program;
1398  unsigned matrix_location;
1399  unsigned viewport_location;
1400  unsigned quad_location;
1401  unsigned edge_location;
1402  unsigned vertex_tex_transform_location;
1403  unsigned sampler_location;
1404  unsigned fragment_tex_transform_location;
1405  unsigned alpha_location;
1406};
1407
1408template <class T>
1409static void TileUniformLocation(T program, TileProgramUniforms* uniforms) {
1410  uniforms->program = program->program();
1411  uniforms->matrix_location = program->vertex_shader().matrix_location();
1412  uniforms->viewport_location = program->vertex_shader().viewport_location();
1413  uniforms->quad_location = program->vertex_shader().quad_location();
1414  uniforms->edge_location = program->vertex_shader().edge_location();
1415  uniforms->vertex_tex_transform_location =
1416      program->vertex_shader().vertex_tex_transform_location();
1417
1418  uniforms->sampler_location = program->fragment_shader().sampler_location();
1419  uniforms->alpha_location = program->fragment_shader().alpha_location();
1420  uniforms->fragment_tex_transform_location =
1421      program->fragment_shader().fragment_tex_transform_location();
1422}
1423
1424void GLRenderer::DrawTileQuad(const DrawingFrame* frame,
1425                              const TileDrawQuad* quad) {
1426  DrawContentQuad(frame, quad, quad->resource_id);
1427}
1428
1429void GLRenderer::DrawContentQuad(const DrawingFrame* frame,
1430                                 const ContentDrawQuadBase* quad,
1431                                 ResourceProvider::ResourceId resource_id) {
1432  gfx::Rect tile_rect = quad->visible_rect;
1433
1434  gfx::RectF tex_coord_rect = MathUtil::ScaleRectProportional(
1435      quad->tex_coord_rect, quad->rect, tile_rect);
1436  float tex_to_geom_scale_x = quad->rect.width() / quad->tex_coord_rect.width();
1437  float tex_to_geom_scale_y =
1438      quad->rect.height() / quad->tex_coord_rect.height();
1439
1440  gfx::RectF clamp_geom_rect(tile_rect);
1441  gfx::RectF clamp_tex_rect(tex_coord_rect);
1442  // Clamp texture coordinates to avoid sampling outside the layer
1443  // by deflating the tile region half a texel or half a texel
1444  // minus epsilon for one pixel layers. The resulting clamp region
1445  // is mapped to the unit square by the vertex shader and mapped
1446  // back to normalized texture coordinates by the fragment shader
1447  // after being clamped to 0-1 range.
1448  float tex_clamp_x =
1449      std::min(0.5f, 0.5f * clamp_tex_rect.width() - kAntiAliasingEpsilon);
1450  float tex_clamp_y =
1451      std::min(0.5f, 0.5f * clamp_tex_rect.height() - kAntiAliasingEpsilon);
1452  float geom_clamp_x =
1453      std::min(tex_clamp_x * tex_to_geom_scale_x,
1454               0.5f * clamp_geom_rect.width() - kAntiAliasingEpsilon);
1455  float geom_clamp_y =
1456      std::min(tex_clamp_y * tex_to_geom_scale_y,
1457               0.5f * clamp_geom_rect.height() - kAntiAliasingEpsilon);
1458  clamp_geom_rect.Inset(geom_clamp_x, geom_clamp_y, geom_clamp_x, geom_clamp_y);
1459  clamp_tex_rect.Inset(tex_clamp_x, tex_clamp_y, tex_clamp_x, tex_clamp_y);
1460
1461  // Map clamping rectangle to unit square.
1462  float vertex_tex_translate_x = -clamp_geom_rect.x() / clamp_geom_rect.width();
1463  float vertex_tex_translate_y =
1464      -clamp_geom_rect.y() / clamp_geom_rect.height();
1465  float vertex_tex_scale_x = tile_rect.width() / clamp_geom_rect.width();
1466  float vertex_tex_scale_y = tile_rect.height() / clamp_geom_rect.height();
1467
1468  TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
1469      gl_, &highp_threshold_cache_, highp_threshold_min_, quad->texture_size);
1470
1471  gfx::Transform device_transform =
1472      frame->window_matrix * frame->projection_matrix * quad->quadTransform();
1473  device_transform.FlattenTo2d();
1474  if (!device_transform.IsInvertible())
1475    return;
1476
1477  gfx::QuadF local_quad = gfx::QuadF(gfx::RectF(tile_rect));
1478  float edge[24];
1479  bool use_aa =
1480      settings_->allow_antialiasing &&
1481      SetupQuadForAntialiasing(device_transform, quad, &local_quad, edge);
1482
1483  bool scaled = (tex_to_geom_scale_x != 1.f || tex_to_geom_scale_y != 1.f);
1484  GLenum filter = (use_aa || scaled ||
1485                   !quad->quadTransform().IsIdentityOrIntegerTranslation())
1486                      ? GL_LINEAR
1487                      : GL_NEAREST;
1488  ResourceProvider::ScopedSamplerGL quad_resource_lock(
1489      resource_provider_, resource_id, filter);
1490  SamplerType sampler =
1491      SamplerTypeFromTextureTarget(quad_resource_lock.target());
1492
1493  float fragment_tex_translate_x = clamp_tex_rect.x();
1494  float fragment_tex_translate_y = clamp_tex_rect.y();
1495  float fragment_tex_scale_x = clamp_tex_rect.width();
1496  float fragment_tex_scale_y = clamp_tex_rect.height();
1497
1498  // Map to normalized texture coordinates.
1499  if (sampler != SamplerType2DRect) {
1500    gfx::Size texture_size = quad->texture_size;
1501    DCHECK(!texture_size.IsEmpty());
1502    fragment_tex_translate_x /= texture_size.width();
1503    fragment_tex_translate_y /= texture_size.height();
1504    fragment_tex_scale_x /= texture_size.width();
1505    fragment_tex_scale_y /= texture_size.height();
1506  }
1507
1508  TileProgramUniforms uniforms;
1509  if (use_aa) {
1510    if (quad->swizzle_contents) {
1511      TileUniformLocation(GetTileProgramSwizzleAA(tex_coord_precision, sampler),
1512                          &uniforms);
1513    } else {
1514      TileUniformLocation(GetTileProgramAA(tex_coord_precision, sampler),
1515                          &uniforms);
1516    }
1517  } else {
1518    if (quad->ShouldDrawWithBlending()) {
1519      if (quad->swizzle_contents) {
1520        TileUniformLocation(GetTileProgramSwizzle(tex_coord_precision, sampler),
1521                            &uniforms);
1522      } else {
1523        TileUniformLocation(GetTileProgram(tex_coord_precision, sampler),
1524                            &uniforms);
1525      }
1526    } else {
1527      if (quad->swizzle_contents) {
1528        TileUniformLocation(
1529            GetTileProgramSwizzleOpaque(tex_coord_precision, sampler),
1530            &uniforms);
1531      } else {
1532        TileUniformLocation(GetTileProgramOpaque(tex_coord_precision, sampler),
1533                            &uniforms);
1534      }
1535    }
1536  }
1537
1538  SetUseProgram(uniforms.program);
1539  GLC(gl_, gl_->Uniform1i(uniforms.sampler_location, 0));
1540
1541  if (use_aa) {
1542    float viewport[4] = {static_cast<float>(viewport_.x()),
1543                         static_cast<float>(viewport_.y()),
1544                         static_cast<float>(viewport_.width()),
1545                         static_cast<float>(viewport_.height()), };
1546    GLC(gl_, gl_->Uniform4fv(uniforms.viewport_location, 1, viewport));
1547    GLC(gl_, gl_->Uniform3fv(uniforms.edge_location, 8, edge));
1548
1549    GLC(gl_,
1550        gl_->Uniform4f(uniforms.vertex_tex_transform_location,
1551                       vertex_tex_translate_x,
1552                       vertex_tex_translate_y,
1553                       vertex_tex_scale_x,
1554                       vertex_tex_scale_y));
1555    GLC(gl_,
1556        gl_->Uniform4f(uniforms.fragment_tex_transform_location,
1557                       fragment_tex_translate_x,
1558                       fragment_tex_translate_y,
1559                       fragment_tex_scale_x,
1560                       fragment_tex_scale_y));
1561  } else {
1562    // Move fragment shader transform to vertex shader. We can do this while
1563    // still producing correct results as fragment_tex_transform_location
1564    // should always be non-negative when tiles are transformed in a way
1565    // that could result in sampling outside the layer.
1566    vertex_tex_scale_x *= fragment_tex_scale_x;
1567    vertex_tex_scale_y *= fragment_tex_scale_y;
1568    vertex_tex_translate_x *= fragment_tex_scale_x;
1569    vertex_tex_translate_y *= fragment_tex_scale_y;
1570    vertex_tex_translate_x += fragment_tex_translate_x;
1571    vertex_tex_translate_y += fragment_tex_translate_y;
1572
1573    GLC(gl_,
1574        gl_->Uniform4f(uniforms.vertex_tex_transform_location,
1575                       vertex_tex_translate_x,
1576                       vertex_tex_translate_y,
1577                       vertex_tex_scale_x,
1578                       vertex_tex_scale_y));
1579  }
1580
1581  // Enable blending when the quad properties require it or if we decided
1582  // to use antialiasing.
1583  SetBlendEnabled(quad->ShouldDrawWithBlending() || use_aa);
1584
1585  // Normalize to tile_rect.
1586  local_quad.Scale(1.0f / tile_rect.width(), 1.0f / tile_rect.height());
1587
1588  SetShaderOpacity(quad->opacity(), uniforms.alpha_location);
1589  SetShaderQuadF(local_quad, uniforms.quad_location);
1590
1591  // The transform and vertex data are used to figure out the extents that the
1592  // un-antialiased quad should have and which vertex this is and the float
1593  // quad passed in via uniform is the actual geometry that gets used to draw
1594  // it. This is why this centered rect is used and not the original quad_rect.
1595  gfx::RectF centered_rect(
1596      gfx::PointF(-0.5f * tile_rect.width(), -0.5f * tile_rect.height()),
1597      tile_rect.size());
1598  DrawQuadGeometry(
1599      frame, quad->quadTransform(), centered_rect, uniforms.matrix_location);
1600}
1601
1602void GLRenderer::DrawYUVVideoQuad(const DrawingFrame* frame,
1603                                  const YUVVideoDrawQuad* quad) {
1604  SetBlendEnabled(quad->ShouldDrawWithBlending());
1605
1606  TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
1607      gl_,
1608      &highp_threshold_cache_,
1609      highp_threshold_min_,
1610      quad->shared_quad_state->visible_content_rect.bottom_right());
1611
1612  bool use_alpha_plane = quad->a_plane_resource_id != 0;
1613
1614  ResourceProvider::ScopedSamplerGL y_plane_lock(
1615      resource_provider_, quad->y_plane_resource_id, GL_TEXTURE1, GL_LINEAR);
1616  DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D), y_plane_lock.target());
1617  ResourceProvider::ScopedSamplerGL u_plane_lock(
1618      resource_provider_, quad->u_plane_resource_id, GL_TEXTURE2, GL_LINEAR);
1619  DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D), u_plane_lock.target());
1620  ResourceProvider::ScopedSamplerGL v_plane_lock(
1621      resource_provider_, quad->v_plane_resource_id, GL_TEXTURE3, GL_LINEAR);
1622  DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D), v_plane_lock.target());
1623  scoped_ptr<ResourceProvider::ScopedSamplerGL> a_plane_lock;
1624  if (use_alpha_plane) {
1625    a_plane_lock.reset(new ResourceProvider::ScopedSamplerGL(
1626        resource_provider_, quad->a_plane_resource_id, GL_TEXTURE4, GL_LINEAR));
1627    DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D), a_plane_lock->target());
1628  }
1629
1630  int tex_scale_location = -1;
1631  int matrix_location = -1;
1632  int y_texture_location = -1;
1633  int u_texture_location = -1;
1634  int v_texture_location = -1;
1635  int a_texture_location = -1;
1636  int yuv_matrix_location = -1;
1637  int yuv_adj_location = -1;
1638  int alpha_location = -1;
1639  if (use_alpha_plane) {
1640    const VideoYUVAProgram* program = GetVideoYUVAProgram(tex_coord_precision);
1641    DCHECK(program && (program->initialized() || IsContextLost()));
1642    SetUseProgram(program->program());
1643    tex_scale_location = program->vertex_shader().tex_scale_location();
1644    matrix_location = program->vertex_shader().matrix_location();
1645    y_texture_location = program->fragment_shader().y_texture_location();
1646    u_texture_location = program->fragment_shader().u_texture_location();
1647    v_texture_location = program->fragment_shader().v_texture_location();
1648    a_texture_location = program->fragment_shader().a_texture_location();
1649    yuv_matrix_location = program->fragment_shader().yuv_matrix_location();
1650    yuv_adj_location = program->fragment_shader().yuv_adj_location();
1651    alpha_location = program->fragment_shader().alpha_location();
1652  } else {
1653    const VideoYUVProgram* program = GetVideoYUVProgram(tex_coord_precision);
1654    DCHECK(program && (program->initialized() || IsContextLost()));
1655    SetUseProgram(program->program());
1656    tex_scale_location = program->vertex_shader().tex_scale_location();
1657    matrix_location = program->vertex_shader().matrix_location();
1658    y_texture_location = program->fragment_shader().y_texture_location();
1659    u_texture_location = program->fragment_shader().u_texture_location();
1660    v_texture_location = program->fragment_shader().v_texture_location();
1661    yuv_matrix_location = program->fragment_shader().yuv_matrix_location();
1662    yuv_adj_location = program->fragment_shader().yuv_adj_location();
1663    alpha_location = program->fragment_shader().alpha_location();
1664  }
1665
1666  GLC(gl_,
1667      gl_->Uniform2f(tex_scale_location,
1668                     quad->tex_scale.width(),
1669                     quad->tex_scale.height()));
1670  GLC(gl_, gl_->Uniform1i(y_texture_location, 1));
1671  GLC(gl_, gl_->Uniform1i(u_texture_location, 2));
1672  GLC(gl_, gl_->Uniform1i(v_texture_location, 3));
1673  if (use_alpha_plane)
1674    GLC(gl_, gl_->Uniform1i(a_texture_location, 4));
1675
1676  // These values are magic numbers that are used in the transformation from YUV
1677  // to RGB color values.  They are taken from the following webpage:
1678  // http://www.fourcc.org/fccyvrgb.php
1679  float yuv_to_rgb[9] = {1.164f, 1.164f, 1.164f, 0.0f, -.391f,
1680                         2.018f, 1.596f, -.813f, 0.0f, };
1681  GLC(gl_, gl_->UniformMatrix3fv(yuv_matrix_location, 1, 0, yuv_to_rgb));
1682
1683  // These values map to 16, 128, and 128 respectively, and are computed
1684  // as a fraction over 256 (e.g. 16 / 256 = 0.0625).
1685  // They are used in the YUV to RGBA conversion formula:
1686  //   Y - 16   : Gives 16 values of head and footroom for overshooting
1687  //   U - 128  : Turns unsigned U into signed U [-128,127]
1688  //   V - 128  : Turns unsigned V into signed V [-128,127]
1689  float yuv_adjust[3] = {-0.0625f, -0.5f, -0.5f, };
1690  GLC(gl_, gl_->Uniform3fv(yuv_adj_location, 1, yuv_adjust));
1691
1692  SetShaderOpacity(quad->opacity(), alpha_location);
1693  DrawQuadGeometry(frame, quad->quadTransform(), quad->rect, matrix_location);
1694}
1695
1696void GLRenderer::DrawStreamVideoQuad(const DrawingFrame* frame,
1697                                     const StreamVideoDrawQuad* quad) {
1698  SetBlendEnabled(quad->ShouldDrawWithBlending());
1699
1700  static float gl_matrix[16];
1701
1702  DCHECK(capabilities_.using_egl_image);
1703
1704  TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
1705      gl_,
1706      &highp_threshold_cache_,
1707      highp_threshold_min_,
1708      quad->shared_quad_state->visible_content_rect.bottom_right());
1709
1710  const VideoStreamTextureProgram* program =
1711      GetVideoStreamTextureProgram(tex_coord_precision);
1712  SetUseProgram(program->program());
1713
1714  ToGLMatrix(&gl_matrix[0], quad->matrix);
1715  GLC(gl_,
1716      gl_->UniformMatrix4fv(
1717          program->vertex_shader().tex_matrix_location(), 1, false, gl_matrix));
1718
1719  ResourceProvider::ScopedReadLockGL lock(resource_provider_,
1720                                          quad->resource_id);
1721  DCHECK_EQ(GL_TEXTURE0, ResourceProvider::GetActiveTextureUnit(gl_));
1722  GLC(gl_, gl_->BindTexture(GL_TEXTURE_EXTERNAL_OES, lock.texture_id()));
1723
1724  GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
1725
1726  SetShaderOpacity(quad->opacity(),
1727                   program->fragment_shader().alpha_location());
1728  DrawQuadGeometry(frame,
1729                   quad->quadTransform(),
1730                   quad->rect,
1731                   program->vertex_shader().matrix_location());
1732}
1733
1734void GLRenderer::DrawPictureQuad(const DrawingFrame* frame,
1735                                 const PictureDrawQuad* quad) {
1736  if (on_demand_tile_raster_bitmap_.width() != quad->texture_size.width() ||
1737      on_demand_tile_raster_bitmap_.height() != quad->texture_size.height()) {
1738    on_demand_tile_raster_bitmap_.setConfig(SkBitmap::kARGB_8888_Config,
1739                                            quad->texture_size.width(),
1740                                            quad->texture_size.height());
1741    on_demand_tile_raster_bitmap_.allocPixels();
1742
1743    if (on_demand_tile_raster_resource_id_)
1744      resource_provider_->DeleteResource(on_demand_tile_raster_resource_id_);
1745
1746    on_demand_tile_raster_resource_id_ =
1747        resource_provider_->CreateGLTexture(quad->texture_size,
1748                                            GL_TEXTURE_2D,
1749                                            GL_TEXTURE_POOL_UNMANAGED_CHROMIUM,
1750                                            GL_CLAMP_TO_EDGE,
1751                                            ResourceProvider::TextureUsageAny,
1752                                            quad->texture_format);
1753  }
1754
1755  // Create and run on-demand raster task for tile.
1756  scoped_refptr<internal::Task> on_demand_raster_task(
1757      new OnDemandRasterTaskImpl(quad->picture_pile,
1758                                 &on_demand_tile_raster_bitmap_,
1759                                 quad->content_rect,
1760                                 quad->contents_scale));
1761  RunOnDemandRasterTask(on_demand_raster_task.get());
1762
1763  uint8_t* bitmap_pixels = NULL;
1764  SkBitmap on_demand_tile_raster_bitmap_dest;
1765  SkBitmap::Config config = SkBitmapConfig(quad->texture_format);
1766  if (on_demand_tile_raster_bitmap_.getConfig() != config) {
1767    on_demand_tile_raster_bitmap_.copyTo(&on_demand_tile_raster_bitmap_dest,
1768                                         config);
1769    // TODO(kaanb): The GL pipeline assumes a 4-byte alignment for the
1770    // bitmap data. This check will be removed once crbug.com/293728 is fixed.
1771    CHECK_EQ(0u, on_demand_tile_raster_bitmap_dest.rowBytes() % 4);
1772    bitmap_pixels = reinterpret_cast<uint8_t*>(
1773        on_demand_tile_raster_bitmap_dest.getPixels());
1774  } else {
1775    bitmap_pixels =
1776        reinterpret_cast<uint8_t*>(on_demand_tile_raster_bitmap_.getPixels());
1777  }
1778
1779  resource_provider_->SetPixels(on_demand_tile_raster_resource_id_,
1780                                bitmap_pixels,
1781                                gfx::Rect(quad->texture_size),
1782                                gfx::Rect(quad->texture_size),
1783                                gfx::Vector2d());
1784
1785  DrawContentQuad(frame, quad, on_demand_tile_raster_resource_id_);
1786}
1787
1788struct TextureProgramBinding {
1789  template <class Program>
1790  void Set(Program* program) {
1791    DCHECK(program);
1792    program_id = program->program();
1793    sampler_location = program->fragment_shader().sampler_location();
1794    matrix_location = program->vertex_shader().matrix_location();
1795    background_color_location =
1796        program->fragment_shader().background_color_location();
1797  }
1798  int program_id;
1799  int sampler_location;
1800  int matrix_location;
1801  int background_color_location;
1802};
1803
1804struct TexTransformTextureProgramBinding : TextureProgramBinding {
1805  template <class Program>
1806  void Set(Program* program) {
1807    TextureProgramBinding::Set(program);
1808    tex_transform_location = program->vertex_shader().tex_transform_location();
1809    vertex_opacity_location =
1810        program->vertex_shader().vertex_opacity_location();
1811  }
1812  int tex_transform_location;
1813  int vertex_opacity_location;
1814};
1815
1816void GLRenderer::FlushTextureQuadCache() {
1817  // Check to see if we have anything to draw.
1818  if (draw_cache_.program_id == 0)
1819    return;
1820
1821  // Set the correct blending mode.
1822  SetBlendEnabled(draw_cache_.needs_blending);
1823
1824  // Bind the program to the GL state.
1825  SetUseProgram(draw_cache_.program_id);
1826
1827  // Bind the correct texture sampler location.
1828  GLC(gl_, gl_->Uniform1i(draw_cache_.sampler_location, 0));
1829
1830  // Assume the current active textures is 0.
1831  ResourceProvider::ScopedReadLockGL locked_quad(resource_provider_,
1832                                                 draw_cache_.resource_id);
1833  DCHECK_EQ(GL_TEXTURE0, ResourceProvider::GetActiveTextureUnit(gl_));
1834  GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, locked_quad.texture_id()));
1835
1836  COMPILE_ASSERT(sizeof(Float4) == 4 * sizeof(float),  // NOLINT(runtime/sizeof)
1837                 struct_is_densely_packed);
1838  COMPILE_ASSERT(
1839      sizeof(Float16) == 16 * sizeof(float),  // NOLINT(runtime/sizeof)
1840      struct_is_densely_packed);
1841
1842  // Upload the tranforms for both points and uvs.
1843  GLC(gl_,
1844      gl_->UniformMatrix4fv(
1845          static_cast<int>(draw_cache_.matrix_location),
1846          static_cast<int>(draw_cache_.matrix_data.size()),
1847          false,
1848          reinterpret_cast<float*>(&draw_cache_.matrix_data.front())));
1849  GLC(gl_,
1850      gl_->Uniform4fv(
1851          static_cast<int>(draw_cache_.uv_xform_location),
1852          static_cast<int>(draw_cache_.uv_xform_data.size()),
1853          reinterpret_cast<float*>(&draw_cache_.uv_xform_data.front())));
1854
1855  if (draw_cache_.background_color != SK_ColorTRANSPARENT) {
1856    Float4 background_color = PremultipliedColor(draw_cache_.background_color);
1857    GLC(gl_,
1858        gl_->Uniform4fv(
1859            draw_cache_.background_color_location, 1, background_color.data));
1860  }
1861
1862  GLC(gl_,
1863      gl_->Uniform1fv(
1864          static_cast<int>(draw_cache_.vertex_opacity_location),
1865          static_cast<int>(draw_cache_.vertex_opacity_data.size()),
1866          static_cast<float*>(&draw_cache_.vertex_opacity_data.front())));
1867
1868  // Draw the quads!
1869  GLC(gl_,
1870      gl_->DrawElements(GL_TRIANGLES,
1871                        6 * draw_cache_.matrix_data.size(),
1872                        GL_UNSIGNED_SHORT,
1873                        0));
1874
1875  // Clear the cache.
1876  draw_cache_.program_id = 0;
1877  draw_cache_.uv_xform_data.resize(0);
1878  draw_cache_.vertex_opacity_data.resize(0);
1879  draw_cache_.matrix_data.resize(0);
1880}
1881
1882void GLRenderer::EnqueueTextureQuad(const DrawingFrame* frame,
1883                                    const TextureDrawQuad* quad) {
1884  TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
1885      gl_,
1886      &highp_threshold_cache_,
1887      highp_threshold_min_,
1888      quad->shared_quad_state->visible_content_rect.bottom_right());
1889
1890  // Choose the correct texture program binding
1891  TexTransformTextureProgramBinding binding;
1892  if (quad->premultiplied_alpha) {
1893    if (quad->background_color == SK_ColorTRANSPARENT) {
1894      binding.Set(GetTextureProgram(tex_coord_precision));
1895    } else {
1896      binding.Set(GetTextureBackgroundProgram(tex_coord_precision));
1897    }
1898  } else {
1899    if (quad->background_color == SK_ColorTRANSPARENT) {
1900      binding.Set(GetNonPremultipliedTextureProgram(tex_coord_precision));
1901    } else {
1902      binding.Set(
1903          GetNonPremultipliedTextureBackgroundProgram(tex_coord_precision));
1904    }
1905  }
1906
1907  int resource_id = quad->resource_id;
1908
1909  if (draw_cache_.program_id != binding.program_id ||
1910      draw_cache_.resource_id != resource_id ||
1911      draw_cache_.needs_blending != quad->ShouldDrawWithBlending() ||
1912      draw_cache_.background_color != quad->background_color ||
1913      draw_cache_.matrix_data.size() >= 8) {
1914    FlushTextureQuadCache();
1915    draw_cache_.program_id = binding.program_id;
1916    draw_cache_.resource_id = resource_id;
1917    draw_cache_.needs_blending = quad->ShouldDrawWithBlending();
1918    draw_cache_.background_color = quad->background_color;
1919
1920    draw_cache_.uv_xform_location = binding.tex_transform_location;
1921    draw_cache_.background_color_location = binding.background_color_location;
1922    draw_cache_.vertex_opacity_location = binding.vertex_opacity_location;
1923    draw_cache_.matrix_location = binding.matrix_location;
1924    draw_cache_.sampler_location = binding.sampler_location;
1925  }
1926
1927  // Generate the uv-transform
1928  draw_cache_.uv_xform_data.push_back(UVTransform(quad));
1929
1930  // Generate the vertex opacity
1931  const float opacity = quad->opacity();
1932  draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[0] * opacity);
1933  draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[1] * opacity);
1934  draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[2] * opacity);
1935  draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[3] * opacity);
1936
1937  // Generate the transform matrix
1938  gfx::Transform quad_rect_matrix;
1939  QuadRectTransform(&quad_rect_matrix, quad->quadTransform(), quad->rect);
1940  quad_rect_matrix = frame->projection_matrix * quad_rect_matrix;
1941
1942  Float16 m;
1943  quad_rect_matrix.matrix().asColMajorf(m.data);
1944  draw_cache_.matrix_data.push_back(m);
1945}
1946
1947void GLRenderer::DrawIOSurfaceQuad(const DrawingFrame* frame,
1948                                   const IOSurfaceDrawQuad* quad) {
1949  SetBlendEnabled(quad->ShouldDrawWithBlending());
1950
1951  TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
1952      gl_,
1953      &highp_threshold_cache_,
1954      highp_threshold_min_,
1955      quad->shared_quad_state->visible_content_rect.bottom_right());
1956
1957  TexTransformTextureProgramBinding binding;
1958  binding.Set(GetTextureIOSurfaceProgram(tex_coord_precision));
1959
1960  SetUseProgram(binding.program_id);
1961  GLC(gl_, gl_->Uniform1i(binding.sampler_location, 0));
1962  if (quad->orientation == IOSurfaceDrawQuad::FLIPPED) {
1963    GLC(gl_,
1964        gl_->Uniform4f(binding.tex_transform_location,
1965                       0,
1966                       quad->io_surface_size.height(),
1967                       quad->io_surface_size.width(),
1968                       quad->io_surface_size.height() * -1.0f));
1969  } else {
1970    GLC(gl_,
1971        gl_->Uniform4f(binding.tex_transform_location,
1972                       0,
1973                       0,
1974                       quad->io_surface_size.width(),
1975                       quad->io_surface_size.height()));
1976  }
1977
1978  const float vertex_opacity[] = {quad->opacity(), quad->opacity(),
1979                                  quad->opacity(), quad->opacity()};
1980  GLC(gl_, gl_->Uniform1fv(binding.vertex_opacity_location, 4, vertex_opacity));
1981
1982  ResourceProvider::ScopedReadLockGL lock(resource_provider_,
1983                                          quad->io_surface_resource_id);
1984  DCHECK_EQ(GL_TEXTURE0, ResourceProvider::GetActiveTextureUnit(gl_));
1985  GLC(gl_, gl_->BindTexture(GL_TEXTURE_RECTANGLE_ARB, lock.texture_id()));
1986
1987  DrawQuadGeometry(
1988      frame, quad->quadTransform(), quad->rect, binding.matrix_location);
1989
1990  GLC(gl_, gl_->BindTexture(GL_TEXTURE_RECTANGLE_ARB, 0));
1991}
1992
1993void GLRenderer::FinishDrawingFrame(DrawingFrame* frame) {
1994  current_framebuffer_lock_.reset();
1995  swap_buffer_rect_.Union(gfx::ToEnclosingRect(frame->root_damage_rect));
1996
1997  GLC(gl_, gl_->Disable(GL_BLEND));
1998  blend_shadow_ = false;
1999}
2000
2001void GLRenderer::FinishDrawingQuadList() { FlushTextureQuadCache(); }
2002
2003bool GLRenderer::FlippedFramebuffer() const { return true; }
2004
2005void GLRenderer::EnsureScissorTestEnabled() {
2006  if (is_scissor_enabled_)
2007    return;
2008
2009  FlushTextureQuadCache();
2010  GLC(gl_, gl_->Enable(GL_SCISSOR_TEST));
2011  is_scissor_enabled_ = true;
2012}
2013
2014void GLRenderer::EnsureScissorTestDisabled() {
2015  if (!is_scissor_enabled_)
2016    return;
2017
2018  FlushTextureQuadCache();
2019  GLC(gl_, gl_->Disable(GL_SCISSOR_TEST));
2020  is_scissor_enabled_ = false;
2021}
2022
2023void GLRenderer::CopyCurrentRenderPassToBitmap(
2024    DrawingFrame* frame,
2025    scoped_ptr<CopyOutputRequest> request) {
2026  gfx::Rect copy_rect = frame->current_render_pass->output_rect;
2027  if (request->has_area())
2028    copy_rect.Intersect(request->area());
2029  GetFramebufferPixelsAsync(copy_rect, request.Pass());
2030}
2031
2032void GLRenderer::ToGLMatrix(float* gl_matrix, const gfx::Transform& transform) {
2033  transform.matrix().asColMajorf(gl_matrix);
2034}
2035
2036void GLRenderer::SetShaderQuadF(const gfx::QuadF& quad, int quad_location) {
2037  if (quad_location == -1)
2038    return;
2039
2040  float gl_quad[8];
2041  gl_quad[0] = quad.p1().x();
2042  gl_quad[1] = quad.p1().y();
2043  gl_quad[2] = quad.p2().x();
2044  gl_quad[3] = quad.p2().y();
2045  gl_quad[4] = quad.p3().x();
2046  gl_quad[5] = quad.p3().y();
2047  gl_quad[6] = quad.p4().x();
2048  gl_quad[7] = quad.p4().y();
2049  GLC(gl_, gl_->Uniform2fv(quad_location, 4, gl_quad));
2050}
2051
2052void GLRenderer::SetShaderOpacity(float opacity, int alpha_location) {
2053  if (alpha_location != -1)
2054    GLC(gl_, gl_->Uniform1f(alpha_location, opacity));
2055}
2056
2057void GLRenderer::SetStencilEnabled(bool enabled) {
2058  if (enabled == stencil_shadow_)
2059    return;
2060
2061  if (enabled)
2062    GLC(gl_, gl_->Enable(GL_STENCIL_TEST));
2063  else
2064    GLC(gl_, gl_->Disable(GL_STENCIL_TEST));
2065  stencil_shadow_ = enabled;
2066}
2067
2068void GLRenderer::SetBlendEnabled(bool enabled) {
2069  if (enabled == blend_shadow_)
2070    return;
2071
2072  if (enabled)
2073    GLC(gl_, gl_->Enable(GL_BLEND));
2074  else
2075    GLC(gl_, gl_->Disable(GL_BLEND));
2076  blend_shadow_ = enabled;
2077}
2078
2079void GLRenderer::SetUseProgram(unsigned program) {
2080  if (program == program_shadow_)
2081    return;
2082  gl_->UseProgram(program);
2083  program_shadow_ = program;
2084}
2085
2086void GLRenderer::DrawQuadGeometry(const DrawingFrame* frame,
2087                                  const gfx::Transform& draw_transform,
2088                                  const gfx::RectF& quad_rect,
2089                                  int matrix_location) {
2090  gfx::Transform quad_rect_matrix;
2091  QuadRectTransform(&quad_rect_matrix, draw_transform, quad_rect);
2092  static float gl_matrix[16];
2093  ToGLMatrix(&gl_matrix[0], frame->projection_matrix * quad_rect_matrix);
2094  GLC(gl_, gl_->UniformMatrix4fv(matrix_location, 1, false, &gl_matrix[0]));
2095
2096  GLC(gl_, gl_->DrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, 0));
2097}
2098
2099void GLRenderer::CopyTextureToFramebuffer(const DrawingFrame* frame,
2100                                          int texture_id,
2101                                          const gfx::Rect& rect,
2102                                          const gfx::Transform& draw_matrix,
2103                                          bool flip_vertically) {
2104  TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
2105      gl_, &highp_threshold_cache_, highp_threshold_min_, rect.bottom_right());
2106
2107  const RenderPassProgram* program = GetRenderPassProgram(tex_coord_precision);
2108  SetUseProgram(program->program());
2109
2110  GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
2111
2112  if (flip_vertically) {
2113    GLC(gl_,
2114        gl_->Uniform4f(program->vertex_shader().tex_transform_location(),
2115                       0.f,
2116                       1.f,
2117                       1.f,
2118                       -1.f));
2119  } else {
2120    GLC(gl_,
2121        gl_->Uniform4f(program->vertex_shader().tex_transform_location(),
2122                       0.f,
2123                       0.f,
2124                       1.f,
2125                       1.f));
2126  }
2127
2128  SetShaderOpacity(1.f, program->fragment_shader().alpha_location());
2129  DCHECK_EQ(GL_TEXTURE0, ResourceProvider::GetActiveTextureUnit(gl_));
2130  GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, texture_id));
2131  DrawQuadGeometry(
2132      frame, draw_matrix, rect, program->vertex_shader().matrix_location());
2133}
2134
2135void GLRenderer::Finish() {
2136  TRACE_EVENT0("cc", "GLRenderer::Finish");
2137  GLC(gl_, gl_->Finish());
2138}
2139
2140void GLRenderer::SwapBuffers(const CompositorFrameMetadata& metadata) {
2141  DCHECK(!is_backbuffer_discarded_);
2142
2143  TRACE_EVENT0("cc,benchmark", "GLRenderer::SwapBuffers");
2144  // We're done! Time to swapbuffers!
2145
2146  gfx::Size surface_size = output_surface_->SurfaceSize();
2147
2148  CompositorFrame compositor_frame;
2149  compositor_frame.metadata = metadata;
2150  compositor_frame.gl_frame_data = make_scoped_ptr(new GLFrameData);
2151  compositor_frame.gl_frame_data->size = surface_size;
2152  if (capabilities_.using_partial_swap) {
2153    // If supported, we can save significant bandwidth by only swapping the
2154    // damaged/scissored region (clamped to the viewport).
2155    swap_buffer_rect_.Intersect(gfx::Rect(surface_size));
2156    int flipped_y_pos_of_rect_bottom = surface_size.height() -
2157                                       swap_buffer_rect_.y() -
2158                                       swap_buffer_rect_.height();
2159    compositor_frame.gl_frame_data->sub_buffer_rect =
2160        gfx::Rect(swap_buffer_rect_.x(),
2161                  flipped_y_pos_of_rect_bottom,
2162                  swap_buffer_rect_.width(),
2163                  swap_buffer_rect_.height());
2164  } else {
2165    compositor_frame.gl_frame_data->sub_buffer_rect =
2166        gfx::Rect(output_surface_->SurfaceSize());
2167  }
2168  output_surface_->SwapBuffers(&compositor_frame);
2169
2170  swap_buffer_rect_ = gfx::Rect();
2171
2172  // We don't have real fences, so we mark read fences as passed
2173  // assuming a double-buffered GPU pipeline. A texture can be
2174  // written to after one full frame has past since it was last read.
2175  if (last_swap_fence_.get())
2176    static_cast<SimpleSwapFence*>(last_swap_fence_.get())->SetHasPassed();
2177  last_swap_fence_ = resource_provider_->GetReadLockFence();
2178  resource_provider_->SetReadLockFence(new SimpleSwapFence());
2179}
2180
2181void GLRenderer::EnforceMemoryPolicy() {
2182  if (!visible_) {
2183    TRACE_EVENT0("cc", "GLRenderer::EnforceMemoryPolicy dropping resources");
2184    ReleaseRenderPassTextures();
2185    DiscardBackbuffer();
2186    resource_provider_->ReleaseCachedData();
2187    GLC(gl_, gl_->Flush());
2188  }
2189}
2190
2191void GLRenderer::DiscardBackbuffer() {
2192  if (is_backbuffer_discarded_)
2193    return;
2194
2195  output_surface_->DiscardBackbuffer();
2196
2197  is_backbuffer_discarded_ = true;
2198
2199  // Damage tracker needs a full reset every time framebuffer is discarded.
2200  client_->SetFullRootLayerDamage();
2201}
2202
2203void GLRenderer::EnsureBackbuffer() {
2204  if (!is_backbuffer_discarded_)
2205    return;
2206
2207  output_surface_->EnsureBackbuffer();
2208  is_backbuffer_discarded_ = false;
2209}
2210
2211void GLRenderer::GetFramebufferPixels(void* pixels, const gfx::Rect& rect) {
2212  if (!pixels || rect.IsEmpty())
2213    return;
2214
2215  // This function assumes that it is reading the root frame buffer.
2216  DCHECK(!current_framebuffer_lock_);
2217
2218  scoped_ptr<PendingAsyncReadPixels> pending_read(new PendingAsyncReadPixels);
2219  pending_async_read_pixels_.insert(pending_async_read_pixels_.begin(),
2220                                    pending_read.Pass());
2221
2222  // This is a syncronous call since the callback is null.
2223  gfx::Rect window_rect = MoveFromDrawToWindowSpace(rect);
2224  DoGetFramebufferPixels(static_cast<uint8*>(pixels),
2225                         window_rect,
2226                         AsyncGetFramebufferPixelsCleanupCallback());
2227}
2228
2229void GLRenderer::GetFramebufferPixelsAsync(
2230    const gfx::Rect& rect,
2231    scoped_ptr<CopyOutputRequest> request) {
2232  DCHECK(!request->IsEmpty());
2233  if (request->IsEmpty())
2234    return;
2235  if (rect.IsEmpty())
2236    return;
2237
2238  gfx::Rect window_rect = MoveFromDrawToWindowSpace(rect);
2239
2240  if (!request->force_bitmap_result()) {
2241    bool own_mailbox = !request->has_texture_mailbox();
2242
2243    GLuint texture_id = 0;
2244    gl_->GenTextures(1, &texture_id);
2245
2246    gpu::Mailbox mailbox;
2247    if (own_mailbox) {
2248      GLC(gl_, gl_->GenMailboxCHROMIUM(mailbox.name));
2249    } else {
2250      mailbox = request->texture_mailbox().mailbox();
2251      DCHECK_EQ(static_cast<unsigned>(GL_TEXTURE_2D),
2252                request->texture_mailbox().target());
2253      DCHECK(!mailbox.IsZero());
2254      unsigned incoming_sync_point = request->texture_mailbox().sync_point();
2255      if (incoming_sync_point)
2256        GLC(gl_, gl_->WaitSyncPointCHROMIUM(incoming_sync_point));
2257    }
2258
2259    GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, texture_id));
2260    if (own_mailbox) {
2261      GLC(gl_,
2262          gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR));
2263      GLC(gl_,
2264          gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
2265      GLC(gl_,
2266          gl_->TexParameteri(
2267              GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE));
2268      GLC(gl_,
2269          gl_->TexParameteri(
2270              GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE));
2271      GLC(gl_, gl_->ProduceTextureCHROMIUM(GL_TEXTURE_2D, mailbox.name));
2272    } else {
2273      GLC(gl_, gl_->ConsumeTextureCHROMIUM(GL_TEXTURE_2D, mailbox.name));
2274    }
2275    GetFramebufferTexture(texture_id, RGBA_8888, window_rect);
2276    GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, 0));
2277
2278    unsigned sync_point = gl_->InsertSyncPointCHROMIUM();
2279    TextureMailbox texture_mailbox(mailbox, GL_TEXTURE_2D, sync_point);
2280
2281    scoped_ptr<SingleReleaseCallback> release_callback;
2282    if (own_mailbox) {
2283      release_callback = texture_mailbox_deleter_->GetReleaseCallback(
2284          output_surface_->context_provider(), texture_id);
2285    } else {
2286      gl_->DeleteTextures(1, &texture_id);
2287    }
2288
2289    request->SendTextureResult(
2290        window_rect.size(), texture_mailbox, release_callback.Pass());
2291    return;
2292  }
2293
2294  DCHECK(request->force_bitmap_result());
2295
2296  scoped_ptr<SkBitmap> bitmap(new SkBitmap);
2297  bitmap->setConfig(
2298      SkBitmap::kARGB_8888_Config, window_rect.width(), window_rect.height());
2299  bitmap->allocPixels();
2300
2301  scoped_ptr<SkAutoLockPixels> lock(new SkAutoLockPixels(*bitmap));
2302
2303  // Save a pointer to the pixels, the bitmap is owned by the cleanup_callback.
2304  uint8* pixels = static_cast<uint8*>(bitmap->getPixels());
2305
2306  AsyncGetFramebufferPixelsCleanupCallback cleanup_callback =
2307      base::Bind(&GLRenderer::PassOnSkBitmap,
2308                 base::Unretained(this),
2309                 base::Passed(&bitmap),
2310                 base::Passed(&lock));
2311
2312  scoped_ptr<PendingAsyncReadPixels> pending_read(new PendingAsyncReadPixels);
2313  pending_read->copy_request = request.Pass();
2314  pending_async_read_pixels_.insert(pending_async_read_pixels_.begin(),
2315                                    pending_read.Pass());
2316
2317  // This is an asyncronous call since the callback is not null.
2318  DoGetFramebufferPixels(pixels, window_rect, cleanup_callback);
2319}
2320
2321void GLRenderer::DoGetFramebufferPixels(
2322    uint8* dest_pixels,
2323    const gfx::Rect& window_rect,
2324    const AsyncGetFramebufferPixelsCleanupCallback& cleanup_callback) {
2325  DCHECK_GE(window_rect.x(), 0);
2326  DCHECK_GE(window_rect.y(), 0);
2327  DCHECK_LE(window_rect.right(), current_surface_size_.width());
2328  DCHECK_LE(window_rect.bottom(), current_surface_size_.height());
2329
2330  bool is_async = !cleanup_callback.is_null();
2331
2332  bool do_workaround = NeedsIOSurfaceReadbackWorkaround();
2333
2334  unsigned temporary_texture = 0;
2335  unsigned temporary_fbo = 0;
2336
2337  if (do_workaround) {
2338    // On Mac OS X, calling glReadPixels() against an FBO whose color attachment
2339    // is an IOSurface-backed texture causes corruption of future glReadPixels()
2340    // calls, even those on different OpenGL contexts. It is believed that this
2341    // is the root cause of top crasher
2342    // http://crbug.com/99393. <rdar://problem/10949687>
2343
2344    gl_->GenTextures(1, &temporary_texture);
2345    GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, temporary_texture));
2346    GLC(gl_,
2347        gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR));
2348    GLC(gl_,
2349        gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
2350    GLC(gl_,
2351        gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE));
2352    GLC(gl_,
2353        gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE));
2354    // Copy the contents of the current (IOSurface-backed) framebuffer into a
2355    // temporary texture.
2356    GetFramebufferTexture(
2357        temporary_texture, RGBA_8888, gfx::Rect(current_surface_size_));
2358    gl_->GenFramebuffers(1, &temporary_fbo);
2359    // Attach this texture to an FBO, and perform the readback from that FBO.
2360    GLC(gl_, gl_->BindFramebuffer(GL_FRAMEBUFFER, temporary_fbo));
2361    GLC(gl_,
2362        gl_->FramebufferTexture2D(GL_FRAMEBUFFER,
2363                                  GL_COLOR_ATTACHMENT0,
2364                                  GL_TEXTURE_2D,
2365                                  temporary_texture,
2366                                  0));
2367
2368    DCHECK_EQ(static_cast<unsigned>(GL_FRAMEBUFFER_COMPLETE),
2369              gl_->CheckFramebufferStatus(GL_FRAMEBUFFER));
2370  }
2371
2372  GLuint buffer = 0;
2373  gl_->GenBuffers(1, &buffer);
2374  GLC(gl_, gl_->BindBuffer(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, buffer));
2375  GLC(gl_,
2376      gl_->BufferData(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM,
2377                      4 * window_rect.size().GetArea(),
2378                      NULL,
2379                      GL_STREAM_READ));
2380
2381  GLuint query = 0;
2382  if (is_async) {
2383    gl_->GenQueriesEXT(1, &query);
2384    GLC(gl_, gl_->BeginQueryEXT(GL_ASYNC_PIXEL_PACK_COMPLETED_CHROMIUM, query));
2385  }
2386
2387  GLC(gl_,
2388      gl_->ReadPixels(window_rect.x(),
2389                      window_rect.y(),
2390                      window_rect.width(),
2391                      window_rect.height(),
2392                      GL_RGBA,
2393                      GL_UNSIGNED_BYTE,
2394                      NULL));
2395
2396  GLC(gl_, gl_->BindBuffer(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, 0));
2397
2398  if (do_workaround) {
2399    // Clean up.
2400    GLC(gl_, gl_->BindFramebuffer(GL_FRAMEBUFFER, 0));
2401    GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, 0));
2402    GLC(gl_, gl_->DeleteFramebuffers(1, &temporary_fbo));
2403    GLC(gl_, gl_->DeleteTextures(1, &temporary_texture));
2404  }
2405
2406  base::Closure finished_callback = base::Bind(&GLRenderer::FinishedReadback,
2407                                               base::Unretained(this),
2408                                               cleanup_callback,
2409                                               buffer,
2410                                               query,
2411                                               dest_pixels,
2412                                               window_rect.size());
2413  // Save the finished_callback so it can be cancelled.
2414  pending_async_read_pixels_.front()->finished_read_pixels_callback.Reset(
2415      finished_callback);
2416  base::Closure cancelable_callback =
2417      pending_async_read_pixels_.front()->
2418          finished_read_pixels_callback.callback();
2419
2420  // Save the buffer to verify the callbacks happen in the expected order.
2421  pending_async_read_pixels_.front()->buffer = buffer;
2422
2423  if (is_async) {
2424    GLC(gl_, gl_->EndQueryEXT(GL_ASYNC_PIXEL_PACK_COMPLETED_CHROMIUM));
2425    context_support_->SignalQuery(query, cancelable_callback);
2426  } else {
2427    resource_provider_->Finish();
2428    finished_callback.Run();
2429  }
2430
2431  EnforceMemoryPolicy();
2432}
2433
2434void GLRenderer::FinishedReadback(
2435    const AsyncGetFramebufferPixelsCleanupCallback& cleanup_callback,
2436    unsigned source_buffer,
2437    unsigned query,
2438    uint8* dest_pixels,
2439    const gfx::Size& size) {
2440  DCHECK(!pending_async_read_pixels_.empty());
2441
2442  if (query != 0) {
2443    GLC(gl_, gl_->DeleteQueriesEXT(1, &query));
2444  }
2445
2446  PendingAsyncReadPixels* current_read = pending_async_read_pixels_.back();
2447  // Make sure we service the readbacks in order.
2448  DCHECK_EQ(source_buffer, current_read->buffer);
2449
2450  uint8* src_pixels = NULL;
2451
2452  if (source_buffer != 0) {
2453    GLC(gl_,
2454        gl_->BindBuffer(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, source_buffer));
2455    src_pixels = static_cast<uint8*>(gl_->MapBufferCHROMIUM(
2456        GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, GL_READ_ONLY));
2457
2458    if (src_pixels) {
2459      size_t row_bytes = size.width() * 4;
2460      int num_rows = size.height();
2461      size_t total_bytes = num_rows * row_bytes;
2462      for (size_t dest_y = 0; dest_y < total_bytes; dest_y += row_bytes) {
2463        // Flip Y axis.
2464        size_t src_y = total_bytes - dest_y - row_bytes;
2465        // Swizzle OpenGL -> Skia byte order.
2466        for (size_t x = 0; x < row_bytes; x += 4) {
2467          dest_pixels[dest_y + x + SK_R32_SHIFT / 8] =
2468              src_pixels[src_y + x + 0];
2469          dest_pixels[dest_y + x + SK_G32_SHIFT / 8] =
2470              src_pixels[src_y + x + 1];
2471          dest_pixels[dest_y + x + SK_B32_SHIFT / 8] =
2472              src_pixels[src_y + x + 2];
2473          dest_pixels[dest_y + x + SK_A32_SHIFT / 8] =
2474              src_pixels[src_y + x + 3];
2475        }
2476      }
2477
2478      GLC(gl_,
2479          gl_->UnmapBufferCHROMIUM(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM));
2480    }
2481    GLC(gl_, gl_->BindBuffer(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, 0));
2482    GLC(gl_, gl_->DeleteBuffers(1, &source_buffer));
2483  }
2484
2485  // TODO(danakj): This can go away when synchronous readback is no more and its
2486  // contents can just move here.
2487  if (!cleanup_callback.is_null())
2488    cleanup_callback.Run(current_read->copy_request.Pass(), src_pixels != NULL);
2489
2490  pending_async_read_pixels_.pop_back();
2491}
2492
2493void GLRenderer::PassOnSkBitmap(scoped_ptr<SkBitmap> bitmap,
2494                                scoped_ptr<SkAutoLockPixels> lock,
2495                                scoped_ptr<CopyOutputRequest> request,
2496                                bool success) {
2497  DCHECK(request->force_bitmap_result());
2498
2499  lock.reset();
2500  if (success)
2501    request->SendBitmapResult(bitmap.Pass());
2502}
2503
2504void GLRenderer::GetFramebufferTexture(unsigned texture_id,
2505                                       ResourceFormat texture_format,
2506                                       const gfx::Rect& window_rect) {
2507  DCHECK(texture_id);
2508  DCHECK_GE(window_rect.x(), 0);
2509  DCHECK_GE(window_rect.y(), 0);
2510  DCHECK_LE(window_rect.right(), current_surface_size_.width());
2511  DCHECK_LE(window_rect.bottom(), current_surface_size_.height());
2512
2513  GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, texture_id));
2514  GLC(gl_,
2515      gl_->CopyTexImage2D(GL_TEXTURE_2D,
2516                          0,
2517                          GLDataFormat(texture_format),
2518                          window_rect.x(),
2519                          window_rect.y(),
2520                          window_rect.width(),
2521                          window_rect.height(),
2522                          0));
2523  GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, 0));
2524}
2525
2526bool GLRenderer::UseScopedTexture(DrawingFrame* frame,
2527                                  const ScopedResource* texture,
2528                                  const gfx::Rect& viewport_rect) {
2529  DCHECK(texture->id());
2530  frame->current_render_pass = NULL;
2531  frame->current_texture = texture;
2532
2533  return BindFramebufferToTexture(frame, texture, viewport_rect);
2534}
2535
2536void GLRenderer::BindFramebufferToOutputSurface(DrawingFrame* frame) {
2537  current_framebuffer_lock_.reset();
2538  output_surface_->BindFramebuffer();
2539
2540  if (output_surface_->HasExternalStencilTest()) {
2541    SetStencilEnabled(true);
2542    GLC(gl_, gl_->StencilFunc(GL_EQUAL, 1, 1));
2543  } else {
2544    SetStencilEnabled(false);
2545  }
2546}
2547
2548bool GLRenderer::BindFramebufferToTexture(DrawingFrame* frame,
2549                                          const ScopedResource* texture,
2550                                          const gfx::Rect& target_rect) {
2551  DCHECK(texture->id());
2552
2553  current_framebuffer_lock_.reset();
2554
2555  SetStencilEnabled(false);
2556  GLC(gl_, gl_->BindFramebuffer(GL_FRAMEBUFFER, offscreen_framebuffer_id_));
2557  current_framebuffer_lock_ =
2558      make_scoped_ptr(new ResourceProvider::ScopedWriteLockGL(
2559          resource_provider_, texture->id()));
2560  unsigned texture_id = current_framebuffer_lock_->texture_id();
2561  GLC(gl_,
2562      gl_->FramebufferTexture2D(
2563          GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, texture_id, 0));
2564
2565  DCHECK(gl_->CheckFramebufferStatus(GL_FRAMEBUFFER) ==
2566             GL_FRAMEBUFFER_COMPLETE ||
2567         IsContextLost());
2568
2569  InitializeViewport(
2570      frame, target_rect, gfx::Rect(target_rect.size()), target_rect.size());
2571  return true;
2572}
2573
2574void GLRenderer::SetScissorTestRect(const gfx::Rect& scissor_rect) {
2575  EnsureScissorTestEnabled();
2576
2577  // Don't unnecessarily ask the context to change the scissor, because it
2578  // may cause undesired GPU pipeline flushes.
2579  if (scissor_rect == scissor_rect_ && !scissor_rect_needs_reset_)
2580    return;
2581
2582  scissor_rect_ = scissor_rect;
2583  FlushTextureQuadCache();
2584  GLC(gl_,
2585      gl_->Scissor(scissor_rect.x(),
2586                   scissor_rect.y(),
2587                   scissor_rect.width(),
2588                   scissor_rect.height()));
2589
2590  scissor_rect_needs_reset_ = false;
2591}
2592
2593void GLRenderer::SetDrawViewport(const gfx::Rect& window_space_viewport) {
2594  viewport_ = window_space_viewport;
2595  GLC(gl_,
2596      gl_->Viewport(window_space_viewport.x(),
2597                    window_space_viewport.y(),
2598                    window_space_viewport.width(),
2599                    window_space_viewport.height()));
2600}
2601
2602void GLRenderer::InitializeSharedObjects() {
2603  TRACE_EVENT0("cc", "GLRenderer::InitializeSharedObjects");
2604
2605  // Create an FBO for doing offscreen rendering.
2606  GLC(gl_, gl_->GenFramebuffers(1, &offscreen_framebuffer_id_));
2607
2608  shared_geometry_ = make_scoped_ptr(
2609      new GeometryBinding(gl_, QuadVertexRect()));
2610}
2611
2612const GLRenderer::TileCheckerboardProgram*
2613GLRenderer::GetTileCheckerboardProgram() {
2614  if (!tile_checkerboard_program_.initialized()) {
2615    TRACE_EVENT0("cc", "GLRenderer::checkerboardProgram::initalize");
2616    tile_checkerboard_program_.Initialize(output_surface_->context_provider(),
2617                                          TexCoordPrecisionNA,
2618                                          SamplerTypeNA);
2619  }
2620  return &tile_checkerboard_program_;
2621}
2622
2623const GLRenderer::DebugBorderProgram* GLRenderer::GetDebugBorderProgram() {
2624  if (!debug_border_program_.initialized()) {
2625    TRACE_EVENT0("cc", "GLRenderer::debugBorderProgram::initialize");
2626    debug_border_program_.Initialize(output_surface_->context_provider(),
2627                                     TexCoordPrecisionNA,
2628                                     SamplerTypeNA);
2629  }
2630  return &debug_border_program_;
2631}
2632
2633const GLRenderer::SolidColorProgram* GLRenderer::GetSolidColorProgram() {
2634  if (!solid_color_program_.initialized()) {
2635    TRACE_EVENT0("cc", "GLRenderer::solidColorProgram::initialize");
2636    solid_color_program_.Initialize(output_surface_->context_provider(),
2637                                    TexCoordPrecisionNA,
2638                                    SamplerTypeNA);
2639  }
2640  return &solid_color_program_;
2641}
2642
2643const GLRenderer::SolidColorProgramAA* GLRenderer::GetSolidColorProgramAA() {
2644  if (!solid_color_program_aa_.initialized()) {
2645    TRACE_EVENT0("cc", "GLRenderer::solidColorProgramAA::initialize");
2646    solid_color_program_aa_.Initialize(output_surface_->context_provider(),
2647                                       TexCoordPrecisionNA,
2648                                       SamplerTypeNA);
2649  }
2650  return &solid_color_program_aa_;
2651}
2652
2653const GLRenderer::RenderPassProgram* GLRenderer::GetRenderPassProgram(
2654    TexCoordPrecision precision) {
2655  DCHECK_GE(precision, 0);
2656  DCHECK_LT(precision, NumTexCoordPrecisions);
2657  RenderPassProgram* program = &render_pass_program_[precision];
2658  if (!program->initialized()) {
2659    TRACE_EVENT0("cc", "GLRenderer::renderPassProgram::initialize");
2660    program->Initialize(
2661        output_surface_->context_provider(), precision, SamplerType2D);
2662  }
2663  return program;
2664}
2665
2666const GLRenderer::RenderPassProgramAA* GLRenderer::GetRenderPassProgramAA(
2667    TexCoordPrecision precision) {
2668  DCHECK_GE(precision, 0);
2669  DCHECK_LT(precision, NumTexCoordPrecisions);
2670  RenderPassProgramAA* program = &render_pass_program_aa_[precision];
2671  if (!program->initialized()) {
2672    TRACE_EVENT0("cc", "GLRenderer::renderPassProgramAA::initialize");
2673    program->Initialize(
2674        output_surface_->context_provider(), precision, SamplerType2D);
2675  }
2676  return program;
2677}
2678
2679const GLRenderer::RenderPassMaskProgram* GLRenderer::GetRenderPassMaskProgram(
2680    TexCoordPrecision precision) {
2681  DCHECK_GE(precision, 0);
2682  DCHECK_LT(precision, NumTexCoordPrecisions);
2683  RenderPassMaskProgram* program = &render_pass_mask_program_[precision];
2684  if (!program->initialized()) {
2685    TRACE_EVENT0("cc", "GLRenderer::renderPassMaskProgram::initialize");
2686    program->Initialize(
2687        output_surface_->context_provider(), precision, SamplerType2D);
2688  }
2689  return program;
2690}
2691
2692const GLRenderer::RenderPassMaskProgramAA*
2693GLRenderer::GetRenderPassMaskProgramAA(TexCoordPrecision precision) {
2694  DCHECK_GE(precision, 0);
2695  DCHECK_LT(precision, NumTexCoordPrecisions);
2696  RenderPassMaskProgramAA* program = &render_pass_mask_program_aa_[precision];
2697  if (!program->initialized()) {
2698    TRACE_EVENT0("cc", "GLRenderer::renderPassMaskProgramAA::initialize");
2699    program->Initialize(
2700        output_surface_->context_provider(), precision, SamplerType2D);
2701  }
2702  return program;
2703}
2704
2705const GLRenderer::RenderPassColorMatrixProgram*
2706GLRenderer::GetRenderPassColorMatrixProgram(TexCoordPrecision precision) {
2707  DCHECK_GE(precision, 0);
2708  DCHECK_LT(precision, NumTexCoordPrecisions);
2709  RenderPassColorMatrixProgram* program =
2710      &render_pass_color_matrix_program_[precision];
2711  if (!program->initialized()) {
2712    TRACE_EVENT0("cc", "GLRenderer::renderPassColorMatrixProgram::initialize");
2713    program->Initialize(
2714        output_surface_->context_provider(), precision, SamplerType2D);
2715  }
2716  return program;
2717}
2718
2719const GLRenderer::RenderPassColorMatrixProgramAA*
2720GLRenderer::GetRenderPassColorMatrixProgramAA(TexCoordPrecision precision) {
2721  DCHECK_GE(precision, 0);
2722  DCHECK_LT(precision, NumTexCoordPrecisions);
2723  RenderPassColorMatrixProgramAA* program =
2724      &render_pass_color_matrix_program_aa_[precision];
2725  if (!program->initialized()) {
2726    TRACE_EVENT0("cc",
2727                 "GLRenderer::renderPassColorMatrixProgramAA::initialize");
2728    program->Initialize(
2729        output_surface_->context_provider(), precision, SamplerType2D);
2730  }
2731  return program;
2732}
2733
2734const GLRenderer::RenderPassMaskColorMatrixProgram*
2735GLRenderer::GetRenderPassMaskColorMatrixProgram(TexCoordPrecision precision) {
2736  DCHECK_GE(precision, 0);
2737  DCHECK_LT(precision, NumTexCoordPrecisions);
2738  RenderPassMaskColorMatrixProgram* program =
2739      &render_pass_mask_color_matrix_program_[precision];
2740  if (!program->initialized()) {
2741    TRACE_EVENT0("cc",
2742                 "GLRenderer::renderPassMaskColorMatrixProgram::initialize");
2743    program->Initialize(
2744        output_surface_->context_provider(), precision, SamplerType2D);
2745  }
2746  return program;
2747}
2748
2749const GLRenderer::RenderPassMaskColorMatrixProgramAA*
2750GLRenderer::GetRenderPassMaskColorMatrixProgramAA(TexCoordPrecision precision) {
2751  DCHECK_GE(precision, 0);
2752  DCHECK_LT(precision, NumTexCoordPrecisions);
2753  RenderPassMaskColorMatrixProgramAA* program =
2754      &render_pass_mask_color_matrix_program_aa_[precision];
2755  if (!program->initialized()) {
2756    TRACE_EVENT0("cc",
2757                 "GLRenderer::renderPassMaskColorMatrixProgramAA::initialize");
2758    program->Initialize(
2759        output_surface_->context_provider(), precision, SamplerType2D);
2760  }
2761  return program;
2762}
2763
2764const GLRenderer::TileProgram* GLRenderer::GetTileProgram(
2765    TexCoordPrecision precision,
2766    SamplerType sampler) {
2767  DCHECK_GE(precision, 0);
2768  DCHECK_LT(precision, NumTexCoordPrecisions);
2769  DCHECK_GE(sampler, 0);
2770  DCHECK_LT(sampler, NumSamplerTypes);
2771  TileProgram* program = &tile_program_[precision][sampler];
2772  if (!program->initialized()) {
2773    TRACE_EVENT0("cc", "GLRenderer::tileProgram::initialize");
2774    program->Initialize(
2775        output_surface_->context_provider(), precision, sampler);
2776  }
2777  return program;
2778}
2779
2780const GLRenderer::TileProgramOpaque* GLRenderer::GetTileProgramOpaque(
2781    TexCoordPrecision precision,
2782    SamplerType sampler) {
2783  DCHECK_GE(precision, 0);
2784  DCHECK_LT(precision, NumTexCoordPrecisions);
2785  DCHECK_GE(sampler, 0);
2786  DCHECK_LT(sampler, NumSamplerTypes);
2787  TileProgramOpaque* program = &tile_program_opaque_[precision][sampler];
2788  if (!program->initialized()) {
2789    TRACE_EVENT0("cc", "GLRenderer::tileProgramOpaque::initialize");
2790    program->Initialize(
2791        output_surface_->context_provider(), precision, sampler);
2792  }
2793  return program;
2794}
2795
2796const GLRenderer::TileProgramAA* GLRenderer::GetTileProgramAA(
2797    TexCoordPrecision precision,
2798    SamplerType sampler) {
2799  DCHECK_GE(precision, 0);
2800  DCHECK_LT(precision, NumTexCoordPrecisions);
2801  DCHECK_GE(sampler, 0);
2802  DCHECK_LT(sampler, NumSamplerTypes);
2803  TileProgramAA* program = &tile_program_aa_[precision][sampler];
2804  if (!program->initialized()) {
2805    TRACE_EVENT0("cc", "GLRenderer::tileProgramAA::initialize");
2806    program->Initialize(
2807        output_surface_->context_provider(), precision, sampler);
2808  }
2809  return program;
2810}
2811
2812const GLRenderer::TileProgramSwizzle* GLRenderer::GetTileProgramSwizzle(
2813    TexCoordPrecision precision,
2814    SamplerType sampler) {
2815  DCHECK_GE(precision, 0);
2816  DCHECK_LT(precision, NumTexCoordPrecisions);
2817  DCHECK_GE(sampler, 0);
2818  DCHECK_LT(sampler, NumSamplerTypes);
2819  TileProgramSwizzle* program = &tile_program_swizzle_[precision][sampler];
2820  if (!program->initialized()) {
2821    TRACE_EVENT0("cc", "GLRenderer::tileProgramSwizzle::initialize");
2822    program->Initialize(
2823        output_surface_->context_provider(), precision, sampler);
2824  }
2825  return program;
2826}
2827
2828const GLRenderer::TileProgramSwizzleOpaque*
2829GLRenderer::GetTileProgramSwizzleOpaque(TexCoordPrecision precision,
2830                                        SamplerType sampler) {
2831  DCHECK_GE(precision, 0);
2832  DCHECK_LT(precision, NumTexCoordPrecisions);
2833  DCHECK_GE(sampler, 0);
2834  DCHECK_LT(sampler, NumSamplerTypes);
2835  TileProgramSwizzleOpaque* program =
2836      &tile_program_swizzle_opaque_[precision][sampler];
2837  if (!program->initialized()) {
2838    TRACE_EVENT0("cc", "GLRenderer::tileProgramSwizzleOpaque::initialize");
2839    program->Initialize(
2840        output_surface_->context_provider(), precision, sampler);
2841  }
2842  return program;
2843}
2844
2845const GLRenderer::TileProgramSwizzleAA* GLRenderer::GetTileProgramSwizzleAA(
2846    TexCoordPrecision precision,
2847    SamplerType sampler) {
2848  DCHECK_GE(precision, 0);
2849  DCHECK_LT(precision, NumTexCoordPrecisions);
2850  DCHECK_GE(sampler, 0);
2851  DCHECK_LT(sampler, NumSamplerTypes);
2852  TileProgramSwizzleAA* program = &tile_program_swizzle_aa_[precision][sampler];
2853  if (!program->initialized()) {
2854    TRACE_EVENT0("cc", "GLRenderer::tileProgramSwizzleAA::initialize");
2855    program->Initialize(
2856        output_surface_->context_provider(), precision, sampler);
2857  }
2858  return program;
2859}
2860
2861const GLRenderer::TextureProgram* GLRenderer::GetTextureProgram(
2862    TexCoordPrecision precision) {
2863  DCHECK_GE(precision, 0);
2864  DCHECK_LT(precision, NumTexCoordPrecisions);
2865  TextureProgram* program = &texture_program_[precision];
2866  if (!program->initialized()) {
2867    TRACE_EVENT0("cc", "GLRenderer::textureProgram::initialize");
2868    program->Initialize(
2869        output_surface_->context_provider(), precision, SamplerType2D);
2870  }
2871  return program;
2872}
2873
2874const GLRenderer::NonPremultipliedTextureProgram*
2875GLRenderer::GetNonPremultipliedTextureProgram(TexCoordPrecision precision) {
2876  DCHECK_GE(precision, 0);
2877  DCHECK_LT(precision, NumTexCoordPrecisions);
2878  NonPremultipliedTextureProgram* program =
2879      &nonpremultiplied_texture_program_[precision];
2880  if (!program->initialized()) {
2881    TRACE_EVENT0("cc",
2882                 "GLRenderer::NonPremultipliedTextureProgram::Initialize");
2883    program->Initialize(
2884        output_surface_->context_provider(), precision, SamplerType2D);
2885  }
2886  return program;
2887}
2888
2889const GLRenderer::TextureBackgroundProgram*
2890GLRenderer::GetTextureBackgroundProgram(TexCoordPrecision precision) {
2891  DCHECK_GE(precision, 0);
2892  DCHECK_LT(precision, NumTexCoordPrecisions);
2893  TextureBackgroundProgram* program = &texture_background_program_[precision];
2894  if (!program->initialized()) {
2895    TRACE_EVENT0("cc", "GLRenderer::textureProgram::initialize");
2896    program->Initialize(
2897        output_surface_->context_provider(), precision, SamplerType2D);
2898  }
2899  return program;
2900}
2901
2902const GLRenderer::NonPremultipliedTextureBackgroundProgram*
2903GLRenderer::GetNonPremultipliedTextureBackgroundProgram(
2904    TexCoordPrecision precision) {
2905  DCHECK_GE(precision, 0);
2906  DCHECK_LT(precision, NumTexCoordPrecisions);
2907  NonPremultipliedTextureBackgroundProgram* program =
2908      &nonpremultiplied_texture_background_program_[precision];
2909  if (!program->initialized()) {
2910    TRACE_EVENT0("cc",
2911                 "GLRenderer::NonPremultipliedTextureProgram::Initialize");
2912    program->Initialize(
2913        output_surface_->context_provider(), precision, SamplerType2D);
2914  }
2915  return program;
2916}
2917
2918const GLRenderer::TextureProgram* GLRenderer::GetTextureIOSurfaceProgram(
2919    TexCoordPrecision precision) {
2920  DCHECK_GE(precision, 0);
2921  DCHECK_LT(precision, NumTexCoordPrecisions);
2922  TextureProgram* program = &texture_io_surface_program_[precision];
2923  if (!program->initialized()) {
2924    TRACE_EVENT0("cc", "GLRenderer::textureIOSurfaceProgram::initialize");
2925    program->Initialize(
2926        output_surface_->context_provider(), precision, SamplerType2DRect);
2927  }
2928  return program;
2929}
2930
2931const GLRenderer::VideoYUVProgram* GLRenderer::GetVideoYUVProgram(
2932    TexCoordPrecision precision) {
2933  DCHECK_GE(precision, 0);
2934  DCHECK_LT(precision, NumTexCoordPrecisions);
2935  VideoYUVProgram* program = &video_yuv_program_[precision];
2936  if (!program->initialized()) {
2937    TRACE_EVENT0("cc", "GLRenderer::videoYUVProgram::initialize");
2938    program->Initialize(
2939        output_surface_->context_provider(), precision, SamplerType2D);
2940  }
2941  return program;
2942}
2943
2944const GLRenderer::VideoYUVAProgram* GLRenderer::GetVideoYUVAProgram(
2945    TexCoordPrecision precision) {
2946  DCHECK_GE(precision, 0);
2947  DCHECK_LT(precision, NumTexCoordPrecisions);
2948  VideoYUVAProgram* program = &video_yuva_program_[precision];
2949  if (!program->initialized()) {
2950    TRACE_EVENT0("cc", "GLRenderer::videoYUVAProgram::initialize");
2951    program->Initialize(
2952        output_surface_->context_provider(), precision, SamplerType2D);
2953  }
2954  return program;
2955}
2956
2957const GLRenderer::VideoStreamTextureProgram*
2958GLRenderer::GetVideoStreamTextureProgram(TexCoordPrecision precision) {
2959  if (!Capabilities().using_egl_image)
2960    return NULL;
2961  DCHECK_GE(precision, 0);
2962  DCHECK_LT(precision, NumTexCoordPrecisions);
2963  VideoStreamTextureProgram* program =
2964      &video_stream_texture_program_[precision];
2965  if (!program->initialized()) {
2966    TRACE_EVENT0("cc", "GLRenderer::streamTextureProgram::initialize");
2967    program->Initialize(
2968        output_surface_->context_provider(), precision, SamplerTypeExternalOES);
2969  }
2970  return program;
2971}
2972
2973void GLRenderer::CleanupSharedObjects() {
2974  shared_geometry_.reset();
2975
2976  for (int i = 0; i < NumTexCoordPrecisions; ++i) {
2977    for (int j = 0; j < NumSamplerTypes; ++j) {
2978      tile_program_[i][j].Cleanup(gl_);
2979      tile_program_opaque_[i][j].Cleanup(gl_);
2980      tile_program_swizzle_[i][j].Cleanup(gl_);
2981      tile_program_swizzle_opaque_[i][j].Cleanup(gl_);
2982      tile_program_aa_[i][j].Cleanup(gl_);
2983      tile_program_swizzle_aa_[i][j].Cleanup(gl_);
2984    }
2985
2986    render_pass_mask_program_[i].Cleanup(gl_);
2987    render_pass_program_[i].Cleanup(gl_);
2988    render_pass_mask_program_aa_[i].Cleanup(gl_);
2989    render_pass_program_aa_[i].Cleanup(gl_);
2990    render_pass_color_matrix_program_[i].Cleanup(gl_);
2991    render_pass_mask_color_matrix_program_aa_[i].Cleanup(gl_);
2992    render_pass_color_matrix_program_aa_[i].Cleanup(gl_);
2993    render_pass_mask_color_matrix_program_[i].Cleanup(gl_);
2994
2995    texture_program_[i].Cleanup(gl_);
2996    nonpremultiplied_texture_program_[i].Cleanup(gl_);
2997    texture_background_program_[i].Cleanup(gl_);
2998    nonpremultiplied_texture_background_program_[i].Cleanup(gl_);
2999    texture_io_surface_program_[i].Cleanup(gl_);
3000
3001    video_yuv_program_[i].Cleanup(gl_);
3002    video_yuva_program_[i].Cleanup(gl_);
3003    video_stream_texture_program_[i].Cleanup(gl_);
3004  }
3005
3006  tile_checkerboard_program_.Cleanup(gl_);
3007
3008  debug_border_program_.Cleanup(gl_);
3009  solid_color_program_.Cleanup(gl_);
3010  solid_color_program_aa_.Cleanup(gl_);
3011
3012  if (offscreen_framebuffer_id_)
3013    GLC(gl_, gl_->DeleteFramebuffers(1, &offscreen_framebuffer_id_));
3014
3015  if (on_demand_tile_raster_resource_id_)
3016    resource_provider_->DeleteResource(on_demand_tile_raster_resource_id_);
3017
3018  ReleaseRenderPassTextures();
3019}
3020
3021void GLRenderer::ReinitializeGLState() {
3022  // Bind the common vertex attributes used for drawing all the layers.
3023  shared_geometry_->PrepareForDraw();
3024
3025  GLC(gl_, gl_->Disable(GL_DEPTH_TEST));
3026  GLC(gl_, gl_->Disable(GL_CULL_FACE));
3027  GLC(gl_, gl_->ColorMask(true, true, true, true));
3028  GLC(gl_, gl_->Disable(GL_STENCIL_TEST));
3029  stencil_shadow_ = false;
3030  GLC(gl_, gl_->Enable(GL_BLEND));
3031  blend_shadow_ = true;
3032  GLC(gl_, gl_->BlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA));
3033  GLC(gl_, gl_->ActiveTexture(GL_TEXTURE0));
3034  program_shadow_ = 0;
3035
3036  // Make sure scissoring starts as disabled.
3037  is_scissor_enabled_ = false;
3038  GLC(gl_, gl_->Disable(GL_SCISSOR_TEST));
3039  scissor_rect_needs_reset_ = true;
3040}
3041
3042bool GLRenderer::IsContextLost() {
3043  return output_surface_->context_provider()->IsContextLost();
3044}
3045
3046}  // namespace cc
3047