1// Copyright 2011 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "cc/trees/layer_sorter.h"
6
7#include <algorithm>
8#include <deque>
9#include <limits>
10#include <vector>
11
12#include "base/logging.h"
13#include "cc/base/math_util.h"
14#include "cc/layers/render_surface_impl.h"
15#include "ui/gfx/transform.h"
16
17namespace cc {
18
19// This epsilon is used to determine if two layers are too close to each other
20// to be able to tell which is in front of the other.  It's a relative epsilon
21// so it is robust to changes in scene scale.  This value was chosen by picking
22// a value near machine epsilon and then increasing it until the flickering on
23// the test scene went away.
24const float k_layer_epsilon = 1e-4f;
25
26inline static float PerpProduct(const gfx::Vector2dF& u,
27                                const gfx::Vector2dF& v) {
28  return u.x() * v.y() - u.y() * v.x();
29}
30
31// Tests if two edges defined by their endpoints (a,b) and (c,d) intersect.
32// Returns true and the point of intersection if they do and false otherwise.
33static bool EdgeEdgeTest(const gfx::PointF& a,
34                         const gfx::PointF& b,
35                         const gfx::PointF& c,
36                         const gfx::PointF& d,
37                         gfx::PointF* r) {
38  gfx::Vector2dF u = b - a;
39  gfx::Vector2dF v = d - c;
40  gfx::Vector2dF w = a - c;
41
42  float denom = PerpProduct(u, v);
43
44  // If denom == 0 then the edges are parallel. While they could be overlapping
45  // we don't bother to check here as the we'll find their intersections from
46  // the corner to quad tests.
47  if (!denom)
48    return false;
49
50  float s = PerpProduct(v, w) / denom;
51  if (s < 0.f || s > 1.f)
52    return false;
53
54  float t = PerpProduct(u, w) / denom;
55  if (t < 0.f || t > 1.f)
56    return false;
57
58  u.Scale(s);
59  *r = a + u;
60  return true;
61}
62
63GraphNode::GraphNode(LayerImpl* layer_impl)
64    : layer(layer_impl),
65      incoming_edge_weight(0.f) {}
66
67GraphNode::~GraphNode() {}
68
69LayerSorter::LayerSorter()
70    : z_range_(0.f) {}
71
72LayerSorter::~LayerSorter() {}
73
74static float CheckFloatingPointNumericAccuracy(float a, float b) {
75  float abs_dif = std::abs(b - a);
76  float abs_max = std::max(std::abs(b), std::abs(a));
77  // Check to see if we've got a result with a reasonable amount of error.
78  return abs_dif / abs_max;
79}
80
81// Checks whether layer "a" draws on top of layer "b". The weight value returned
82// is an indication of the maximum z-depth difference between the layers or zero
83// if the layers are found to be intesecting (some features are in front and
84// some are behind).
85LayerSorter::ABCompareResult LayerSorter::CheckOverlap(LayerShape* a,
86                                                       LayerShape* b,
87                                                       float z_threshold,
88                                                       float* weight) {
89  *weight = 0.f;
90
91  // Early out if the projected bounds don't overlap.
92  if (!a->projected_bounds.Intersects(b->projected_bounds))
93    return None;
94
95  gfx::PointF aPoints[4] = { a->projected_quad.p1(),
96                             a->projected_quad.p2(),
97                             a->projected_quad.p3(),
98                             a->projected_quad.p4() };
99  gfx::PointF bPoints[4] = { b->projected_quad.p1(),
100                             b->projected_quad.p2(),
101                             b->projected_quad.p3(),
102                             b->projected_quad.p4() };
103
104  // Make a list of points that inside both layer quad projections.
105  std::vector<gfx::PointF> overlap_points;
106
107  // Check all four corners of one layer against the other layer's quad.
108  for (int i = 0; i < 4; ++i) {
109    if (a->projected_quad.Contains(bPoints[i]))
110      overlap_points.push_back(bPoints[i]);
111    if (b->projected_quad.Contains(aPoints[i]))
112      overlap_points.push_back(aPoints[i]);
113  }
114
115  // Check all the edges of one layer for intersection with the other layer's
116  // edges.
117  gfx::PointF r;
118  for (int ea = 0; ea < 4; ++ea)
119    for (int eb = 0; eb < 4; ++eb)
120      if (EdgeEdgeTest(aPoints[ea], aPoints[(ea + 1) % 4],
121                       bPoints[eb], bPoints[(eb + 1) % 4],
122                       &r))
123        overlap_points.push_back(r);
124
125  if (overlap_points.empty())
126    return None;
127
128  // Check the corresponding layer depth value for all overlap points to
129  // determine which layer is in front.
130  float max_positive = 0.f;
131  float max_negative = 0.f;
132
133  // This flag tracks the existance of a numerically accurate seperation
134  // between two layers.  If there is no accurate seperation, the layers
135  // cannot be effectively sorted.
136  bool accurate = false;
137
138  for (size_t o = 0; o < overlap_points.size(); o++) {
139    float za = a->LayerZFromProjectedPoint(overlap_points[o]);
140    float zb = b->LayerZFromProjectedPoint(overlap_points[o]);
141
142    // Here we attempt to avoid numeric issues with layers that are too
143    // close together.  If we have 2-sided quads that are very close
144    // together then we will draw them in document order to avoid
145    // flickering.  The correct solution is for the content maker to turn
146    // on back-face culling or move the quads apart (if they're not two
147    // sides of one object).
148    if (CheckFloatingPointNumericAccuracy(za, zb) > k_layer_epsilon)
149      accurate = true;
150
151    float diff = za - zb;
152    if (diff > max_positive)
153      max_positive = diff;
154    if (diff < max_negative)
155      max_negative = diff;
156  }
157
158  // If we can't tell which should come first, we use document order.
159  if (!accurate)
160    return ABeforeB;
161
162  float max_diff =
163      std::abs(max_positive) > std::abs(max_negative) ?
164          max_positive : max_negative;
165
166  // If the results are inconsistent (and the z difference substantial to rule
167  // out numerical errors) then the layers are intersecting. We will still
168  // return an order based on the maximum depth difference but with an edge
169  // weight of zero these layers will get priority if a graph cycle is present
170  // and needs to be broken.
171  if (max_positive > z_threshold && max_negative < -z_threshold)
172    *weight = 0.f;
173  else
174    *weight = std::abs(max_diff);
175
176  // Maintain relative order if the layers have the same depth at all
177  // intersection points.
178  if (max_diff <= 0.f)
179    return ABeforeB;
180
181  return BBeforeA;
182}
183
184LayerShape::LayerShape() {}
185
186LayerShape::LayerShape(float width,
187                       float height,
188                       const gfx::Transform& draw_transform) {
189  gfx::QuadF layer_quad(gfx::RectF(0.f, 0.f, width, height));
190
191  // Compute the projection of the layer quad onto the z = 0 plane.
192
193  gfx::PointF clipped_quad[8];
194  int num_vertices_in_clipped_quad;
195  MathUtil::MapClippedQuad(draw_transform,
196                           layer_quad,
197                           clipped_quad,
198                           &num_vertices_in_clipped_quad);
199
200  if (num_vertices_in_clipped_quad < 3) {
201    projected_bounds = gfx::RectF();
202    return;
203  }
204
205  projected_bounds =
206      MathUtil::ComputeEnclosingRectOfVertices(clipped_quad,
207                                               num_vertices_in_clipped_quad);
208
209  // NOTE: it will require very significant refactoring and overhead to deal
210  // with generalized polygons or multiple quads per layer here. For the sake of
211  // layer sorting it is equally correct to take a subsection of the polygon
212  // that can be made into a quad. This will only be incorrect in the case of
213  // intersecting layers, which are not supported yet anyway.
214  projected_quad.set_p1(clipped_quad[0]);
215  projected_quad.set_p2(clipped_quad[1]);
216  projected_quad.set_p3(clipped_quad[2]);
217  if (num_vertices_in_clipped_quad >= 4) {
218    projected_quad.set_p4(clipped_quad[3]);
219  } else {
220    // This will be a degenerate quad that is actually a triangle.
221    projected_quad.set_p4(clipped_quad[2]);
222  }
223
224  // Compute the normal of the layer's plane.
225  bool clipped = false;
226  gfx::Point3F c1 =
227      MathUtil::MapPoint(draw_transform, gfx::Point3F(0.f, 0.f, 0.f), &clipped);
228  gfx::Point3F c2 =
229      MathUtil::MapPoint(draw_transform, gfx::Point3F(0.f, 1.f, 0.f), &clipped);
230  gfx::Point3F c3 =
231      MathUtil::MapPoint(draw_transform, gfx::Point3F(1.f, 0.f, 0.f), &clipped);
232  // TODO(shawnsingh): Deal with clipping.
233  gfx::Vector3dF c12 = c2 - c1;
234  gfx::Vector3dF c13 = c3 - c1;
235  layer_normal = gfx::CrossProduct(c13, c12);
236
237  transform_origin = c1;
238}
239
240LayerShape::~LayerShape() {}
241
242// Returns the Z coordinate of a point on the layer that projects
243// to point p which lies on the z = 0 plane. It does it by computing the
244// intersection of a line starting from p along the Z axis and the plane
245// of the layer.
246float LayerShape::LayerZFromProjectedPoint(const gfx::PointF& p) const {
247  gfx::Vector3dF z_axis(0.f, 0.f, 1.f);
248  gfx::Vector3dF w = gfx::Point3F(p) - transform_origin;
249
250  float d = gfx::DotProduct(layer_normal, z_axis);
251  float n = -gfx::DotProduct(layer_normal, w);
252
253  // Check if layer is parallel to the z = 0 axis which will make it
254  // invisible and hence returning zero is fine.
255  if (!d)
256    return 0.f;
257
258  // The intersection point would be given by:
259  // p + (n / d) * u  but since we are only interested in the
260  // z coordinate and p's z coord is zero, all we need is the value of n/d.
261  return n / d;
262}
263
264void LayerSorter::CreateGraphNodes(LayerImplList::iterator first,
265                                   LayerImplList::iterator last) {
266  DVLOG(2) << "Creating graph nodes:";
267  float min_z = FLT_MAX;
268  float max_z = -FLT_MAX;
269  for (LayerImplList::const_iterator it = first; it < last; it++) {
270    nodes_.push_back(GraphNode(*it));
271    GraphNode& node = nodes_.at(nodes_.size() - 1);
272    RenderSurfaceImpl* render_surface = node.layer->render_surface();
273    if (!node.layer->DrawsContent() && !render_surface)
274      continue;
275
276    DVLOG(2) << "Layer " << node.layer->id() <<
277        " (" << node.layer->bounds().width() <<
278        " x " << node.layer->bounds().height() << ")";
279
280    gfx::Transform draw_transform;
281    float layer_width, layer_height;
282    if (render_surface) {
283      draw_transform = render_surface->draw_transform();
284      layer_width = render_surface->content_rect().width();
285      layer_height = render_surface->content_rect().height();
286    } else {
287      draw_transform = node.layer->draw_transform();
288      layer_width = node.layer->content_bounds().width();
289      layer_height = node.layer->content_bounds().height();
290    }
291
292    node.shape = LayerShape(layer_width, layer_height, draw_transform);
293
294    max_z = std::max(max_z, node.shape.transform_origin.z());
295    min_z = std::min(min_z, node.shape.transform_origin.z());
296  }
297
298  z_range_ = std::abs(max_z - min_z);
299}
300
301void LayerSorter::CreateGraphEdges() {
302  DVLOG(2) << "Edges:";
303  // Fraction of the total z_range below which z differences
304  // are not considered reliable.
305  const float z_threshold_factor = 0.01f;
306  float z_threshold = z_range_ * z_threshold_factor;
307
308  for (size_t na = 0; na < nodes_.size(); na++) {
309    GraphNode& node_a = nodes_[na];
310    if (!node_a.layer->DrawsContent() && !node_a.layer->render_surface())
311      continue;
312    for (size_t nb = na + 1; nb < nodes_.size(); nb++) {
313      GraphNode& node_b = nodes_[nb];
314      if (!node_b.layer->DrawsContent() && !node_b.layer->render_surface())
315        continue;
316      float weight = 0.f;
317      ABCompareResult overlap_result = CheckOverlap(&node_a.shape,
318                                                    &node_b.shape,
319                                                    z_threshold,
320                                                    &weight);
321      GraphNode* start_node = NULL;
322      GraphNode* end_node = NULL;
323      if (overlap_result == ABeforeB) {
324        start_node = &node_a;
325        end_node = &node_b;
326      } else if (overlap_result == BBeforeA) {
327        start_node = &node_b;
328        end_node = &node_a;
329      }
330
331      if (start_node) {
332        DVLOG(2) << start_node->layer->id() << " -> " << end_node->layer->id();
333        edges_.push_back(GraphEdge(start_node, end_node, weight));
334      }
335    }
336  }
337
338  for (size_t i = 0; i < edges_.size(); i++) {
339    GraphEdge& edge = edges_[i];
340    active_edges_[&edge] = &edge;
341    edge.from->outgoing.push_back(&edge);
342    edge.to->incoming.push_back(&edge);
343    edge.to->incoming_edge_weight += edge.weight;
344  }
345}
346
347// Finds and removes an edge from the list by doing a swap with the
348// last element of the list.
349void LayerSorter::RemoveEdgeFromList(GraphEdge* edge,
350                                     std::vector<GraphEdge*>* list) {
351  std::vector<GraphEdge*>::iterator iter =
352      std::find(list->begin(), list->end(), edge);
353  DCHECK(iter != list->end());
354  list->erase(iter);
355}
356
357// Sorts the given list of layers such that they can be painted in a
358// back-to-front order. Sorting produces correct results for non-intersecting
359// layers that don't have cyclical order dependencies. Cycles and intersections
360// are broken (somewhat) aribtrarily. Sorting of layers is done via a
361// topological sort of a directed graph whose nodes are the layers themselves.
362// An edge from node A to node B signifies that layer A needs to be drawn before
363// layer B. If A and B have no dependency between each other, then we preserve
364// the ordering of those layers as they were in the original list.
365//
366// The draw order between two layers is determined by projecting the two
367// triangles making up each layer quad to the Z = 0 plane, finding points of
368// intersection between the triangles and backprojecting those points to the
369// plane of the layer to determine the corresponding Z coordinate. The layer
370// with the lower Z coordinate (farther from the eye) needs to be rendered
371// first.
372//
373// If the layer projections don't intersect, then no edges (dependencies) are
374// created between them in the graph. HOWEVER, in this case we still need to
375// preserve the ordering of the original list of layers, since that list should
376// already have proper z-index ordering of layers.
377//
378void LayerSorter::Sort(LayerImplList::iterator first,
379                       LayerImplList::iterator last) {
380  DVLOG(2) << "Sorting start ----";
381  CreateGraphNodes(first, last);
382
383  CreateGraphEdges();
384
385  std::vector<GraphNode*> sorted_list;
386  std::deque<GraphNode*> no_incoming_edge_node_list;
387
388  // Find all the nodes that don't have incoming edges.
389  for (NodeList::iterator la = nodes_.begin(); la < nodes_.end(); la++) {
390    if (!la->incoming.size())
391      no_incoming_edge_node_list.push_back(&(*la));
392  }
393
394  DVLOG(2) << "Sorted list: ";
395  while (active_edges_.size() || no_incoming_edge_node_list.size()) {
396    while (no_incoming_edge_node_list.size()) {
397      // It is necessary to preserve the existing ordering of layers, when there
398      // are no explicit dependencies (because this existing ordering has
399      // correct z-index/layout ordering). To preserve this ordering, we process
400      // Nodes in the same order that they were added to the list.
401      GraphNode* from_node = no_incoming_edge_node_list.front();
402      no_incoming_edge_node_list.pop_front();
403
404      // Add it to the final list.
405      sorted_list.push_back(from_node);
406
407      DVLOG(2) << from_node->layer->id() << ", ";
408
409      // Remove all its outgoing edges from the graph.
410      for (size_t i = 0; i < from_node->outgoing.size(); i++) {
411        GraphEdge* outgoing_edge = from_node->outgoing[i];
412
413        active_edges_.erase(outgoing_edge);
414        RemoveEdgeFromList(outgoing_edge, &outgoing_edge->to->incoming);
415        outgoing_edge->to->incoming_edge_weight -= outgoing_edge->weight;
416
417        if (!outgoing_edge->to->incoming.size())
418          no_incoming_edge_node_list.push_back(outgoing_edge->to);
419      }
420      from_node->outgoing.clear();
421    }
422
423    if (!active_edges_.size())
424      break;
425
426    // If there are still active edges but the list of nodes without incoming
427    // edges is empty then we have run into a cycle. Break the cycle by finding
428    // the node with the smallest overall incoming edge weight and use it. This
429    // will favor nodes that have zero-weight incoming edges i.e. layers that
430    // are being occluded by a layer that intersects them.
431    float min_incoming_edge_weight = FLT_MAX;
432    GraphNode* next_node = NULL;
433    for (size_t i = 0; i < nodes_.size(); i++) {
434      if (nodes_[i].incoming.size() &&
435          nodes_[i].incoming_edge_weight < min_incoming_edge_weight) {
436        min_incoming_edge_weight = nodes_[i].incoming_edge_weight;
437        next_node = &nodes_[i];
438      }
439    }
440    DCHECK(next_node);
441    // Remove all its incoming edges.
442    for (size_t e = 0; e < next_node->incoming.size(); e++) {
443      GraphEdge* incoming_edge = next_node->incoming[e];
444
445      active_edges_.erase(incoming_edge);
446      RemoveEdgeFromList(incoming_edge, &incoming_edge->from->outgoing);
447    }
448    next_node->incoming.clear();
449    next_node->incoming_edge_weight = 0.f;
450    no_incoming_edge_node_list.push_back(next_node);
451    DVLOG(2) << "Breaking cycle by cleaning up incoming edges from " <<
452        next_node->layer->id() <<
453        " (weight = " << min_incoming_edge_weight << ")";
454  }
455
456  // Note: The original elements of the list are in no danger of having their
457  // ref count go to zero here as they are all nodes of the layer hierarchy and
458  // are kept alive by their parent nodes.
459  int count = 0;
460  for (LayerImplList::iterator it = first; it < last; it++)
461    *it = sorted_list[count++]->layer;
462
463  DVLOG(2) << "Sorting end ----";
464
465  nodes_.clear();
466  edges_.clear();
467  active_edges_.clear();
468}
469
470}  // namespace cc
471