1// Copyright (c) 2012 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "chrome/browser/history/scored_history_match.h"
6
7#include <algorithm>
8#include <functional>
9#include <iterator>
10#include <numeric>
11#include <set>
12
13#include <math.h>
14
15#include "base/logging.h"
16#include "base/metrics/histogram.h"
17#include "base/strings/string_util.h"
18#include "base/strings/utf_string_conversions.h"
19#include "chrome/browser/autocomplete/history_url_provider.h"
20#include "components/bookmarks/browser/bookmark_utils.h"
21#include "components/history/core/browser/history_client.h"
22#include "components/omnibox/omnibox_field_trial.h"
23#include "components/omnibox/url_prefix.h"
24#include "content/public/browser/browser_thread.h"
25
26namespace history {
27
28// ScoredHistoryMatch ----------------------------------------------------------
29
30// static
31const size_t ScoredHistoryMatch::kMaxVisitsToScore = 10;
32const int ScoredHistoryMatch::kDaysToPrecomputeRecencyScoresFor = 366;
33const int ScoredHistoryMatch::kMaxRawTermScore = 30;
34float* ScoredHistoryMatch::raw_term_score_to_topicality_score_ = NULL;
35float* ScoredHistoryMatch::days_ago_to_recency_score_ = NULL;
36bool ScoredHistoryMatch::initialized_ = false;
37int ScoredHistoryMatch::bookmark_value_ = 1;
38bool ScoredHistoryMatch::allow_tld_matches_ = false;
39bool ScoredHistoryMatch::allow_scheme_matches_ = false;
40bool ScoredHistoryMatch::also_do_hup_like_scoring_ = false;
41int ScoredHistoryMatch::max_assigned_score_for_non_inlineable_matches_ = -1;
42
43ScoredHistoryMatch::ScoredHistoryMatch()
44    : raw_score_(0),
45      can_inline_(false) {
46  Init();
47}
48
49ScoredHistoryMatch::ScoredHistoryMatch(
50    const URLRow& row,
51    const VisitInfoVector& visits,
52    const std::string& languages,
53    const base::string16& lower_string,
54    const String16Vector& terms,
55    const WordStarts& terms_to_word_starts_offsets,
56    const RowWordStarts& word_starts,
57    const base::Time now,
58    HistoryClient* history_client)
59    : HistoryMatch(row, 0, false, false),
60      raw_score_(0),
61      can_inline_(false) {
62  Init();
63
64  GURL gurl = row.url();
65  if (!gurl.is_valid())
66    return;
67
68  // Figure out where each search term appears in the URL and/or page title
69  // so that we can score as well as provide autocomplete highlighting.
70  base::OffsetAdjuster::Adjustments adjustments;
71  base::string16 url =
72      bookmarks::CleanUpUrlForMatching(gurl, languages, &adjustments);
73  base::string16 title = bookmarks::CleanUpTitleForMatching(row.title());
74  int term_num = 0;
75  for (String16Vector::const_iterator iter = terms.begin(); iter != terms.end();
76       ++iter, ++term_num) {
77    base::string16 term = *iter;
78    TermMatches url_term_matches = MatchTermInString(term, url, term_num);
79    TermMatches title_term_matches = MatchTermInString(term, title, term_num);
80    if (url_term_matches.empty() && title_term_matches.empty())
81      return;  // A term was not found in either URL or title - reject.
82    url_matches_.insert(url_matches_.end(), url_term_matches.begin(),
83                        url_term_matches.end());
84    title_matches_.insert(title_matches_.end(), title_term_matches.begin(),
85                          title_term_matches.end());
86  }
87
88  // Sort matches by offset and eliminate any which overlap.
89  // TODO(mpearson): Investigate whether this has any meaningful
90  // effect on scoring.  (It's necessary at some point: removing
91  // overlaps and sorting is needed to decide what to highlight in the
92  // suggestion string.  But this sort and de-overlap doesn't have to
93  // be done before scoring.)
94  url_matches_ = SortAndDeoverlapMatches(url_matches_);
95  title_matches_ = SortAndDeoverlapMatches(title_matches_);
96
97  // We can inline autocomplete a match if:
98  //  1) there is only one search term
99  //  2) AND the match begins immediately after one of the prefixes in
100  //     URLPrefix such as http://www and https:// (note that one of these
101  //     is the empty prefix, for cases where the user has typed the scheme)
102  //  3) AND the search string does not end in whitespace (making it look to
103  //     the IMUI as though there is a single search term when actually there
104  //     is a second, empty term).
105  // |best_inlineable_prefix| stores the inlineable prefix computed in
106  // clause (2) or NULL if no such prefix exists.  (The URL is not inlineable.)
107  // Note that using the best prefix here means that when multiple
108  // prefixes match, we'll choose to inline following the longest one.
109  // For a URL like "http://www.washingtonmutual.com", this means
110  // typing "w" will inline "ashington..." instead of "ww.washington...".
111  const URLPrefix* best_inlineable_prefix =
112      (!url_matches_.empty() && (terms.size() == 1)) ?
113      URLPrefix::BestURLPrefix(base::UTF8ToUTF16(gurl.spec()), terms[0]) :
114      NULL;
115  can_inline_ = (best_inlineable_prefix != NULL) &&
116      !IsWhitespace(*(lower_string.rbegin()));
117  if (can_inline_) {
118    // Initialize innermost_match.
119    // The idea here is that matches that occur in the scheme or
120    // "www." are worse than matches which don't.  For the URLs
121    // "http://www.google.com" and "http://wellsfargo.com", we want
122    // the omnibox input "w" to cause the latter URL to rank higher
123    // than the former.  Note that this is not the same as checking
124    // whether one match's inlinable prefix has more components than
125    // the other match's, since in this example, both matches would
126    // have an inlinable prefix of "http://", which is one component.
127    //
128    // Instead, we look for the overall best (i.e., most components)
129    // prefix of the current URL, and then check whether the inlinable
130    // prefix has that many components.  If it does, this is an
131    // "innermost" match, and should be boosted.  In the example
132    // above, the best prefixes for the two URLs have two and one
133    // components respectively, while the inlinable prefixes each
134    // have one component; this means the first match is not innermost
135    // and the second match is innermost, resulting in us boosting the
136    // second match.
137    //
138    // Now, the code that implements this.
139    // The deepest prefix for this URL regardless of where the match is.
140    const URLPrefix* best_prefix = URLPrefix::BestURLPrefix(
141        base::UTF8ToUTF16(gurl.spec()), base::string16());
142    DCHECK(best_prefix != NULL);
143    const int num_components_in_best_prefix = best_prefix->num_components;
144    // If the URL is inlineable, we must have a match.  Note the prefix that
145    // makes it inlineable may be empty.
146    DCHECK(best_inlineable_prefix != NULL);
147    const int num_components_in_best_inlineable_prefix =
148        best_inlineable_prefix->num_components;
149    innermost_match = (num_components_in_best_inlineable_prefix ==
150        num_components_in_best_prefix);
151  }
152
153  const float topicality_score = GetTopicalityScore(
154      terms.size(), url, terms_to_word_starts_offsets, word_starts);
155  const float frequency_score = GetFrequency(
156      now, (history_client && history_client->IsBookmarked(gurl)), visits);
157  raw_score_ = GetFinalRelevancyScore(topicality_score, frequency_score);
158  raw_score_ =
159      (raw_score_ <= kint32max) ? static_cast<int>(raw_score_) : kint32max;
160
161  if (also_do_hup_like_scoring_ && can_inline_) {
162    // HistoryURL-provider-like scoring gives any match that is
163    // capable of being inlined a certain minimum score.  Some of these
164    // are given a higher score that lets them be shown in inline.
165    // This test here derives from the test in
166    // HistoryURLProvider::PromoteMatchForInlineAutocomplete().
167    const bool promote_to_inline = (row.typed_count() > 1) ||
168        (IsHostOnly() && (row.typed_count() == 1));
169    int hup_like_score = promote_to_inline ?
170        HistoryURLProvider::kScoreForBestInlineableResult :
171        HistoryURLProvider::kBaseScoreForNonInlineableResult;
172
173    // Also, if the user types the hostname of a host with a typed
174    // visit, then everything from that host get given inlineable scores
175    // (because the URL-that-you-typed will go first and everything
176    // else will be assigned one minus the previous score, as coded
177    // at the end of HistoryURLProvider::DoAutocomplete().
178    if (base::UTF8ToUTF16(gurl.host()) == terms[0])
179      hup_like_score = HistoryURLProvider::kScoreForBestInlineableResult;
180
181    // HistoryURLProvider has the function PromoteOrCreateShorterSuggestion()
182    // that's meant to promote prefixes of the best match (if they've
183    // been visited enough related to the best match) or
184    // create/promote host-only suggestions (even if they've never
185    // been typed).  The code is complicated and we don't try to
186    // duplicate the logic here.  Instead, we handle a simple case: in
187    // low-typed-count ranges, give host-only matches (i.e.,
188    // http://www.foo.com/ vs. http://www.foo.com/bar.html) a boost so
189    // that the host-only match outscores all the other matches that
190    // would normally have the same base score.  This behavior is not
191    // identical to what happens in HistoryURLProvider even in these
192    // low typed count ranges--sometimes it will create/promote when
193    // this test does not (indeed, we cannot create matches like HUP
194    // can) and vice versa--but the underlying philosophy is similar.
195    if (!promote_to_inline && IsHostOnly())
196      hup_like_score++;
197
198    // All the other logic to goes into hup-like-scoring happens in
199    // the tie-breaker case of MatchScoreGreater().
200
201    // Incorporate hup_like_score into raw_score.
202    raw_score_ = std::max(raw_score_, hup_like_score);
203  }
204
205  // If this match is not inlineable and there's a cap on the maximum
206  // score that can be given to non-inlineable matches, apply the cap.
207  if (!can_inline_ && (max_assigned_score_for_non_inlineable_matches_ != -1)) {
208    raw_score_ = std::min(max_assigned_score_for_non_inlineable_matches_,
209                          raw_score_);
210  }
211
212  // Now that we're done processing this entry, correct the offsets of the
213  // matches in |url_matches_| so they point to offsets in the original URL
214  // spec, not the cleaned-up URL string that we used for matching.
215  std::vector<size_t> offsets = OffsetsFromTermMatches(url_matches_);
216  base::OffsetAdjuster::UnadjustOffsets(adjustments, &offsets);
217  url_matches_ = ReplaceOffsetsInTermMatches(url_matches_, offsets);
218}
219
220ScoredHistoryMatch::~ScoredHistoryMatch() {}
221
222// Comparison function for sorting ScoredMatches by their scores with
223// intelligent tie-breaking.
224bool ScoredHistoryMatch::MatchScoreGreater(const ScoredHistoryMatch& m1,
225                                           const ScoredHistoryMatch& m2) {
226  if (m1.raw_score_ != m2.raw_score_)
227    return m1.raw_score_ > m2.raw_score_;
228
229  // This tie-breaking logic is inspired by / largely copied from the
230  // ordering logic in history_url_provider.cc CompareHistoryMatch().
231
232  // A URL that has been typed at all is better than one that has never been
233  // typed.  (Note "!"s on each side.)
234  if (!m1.url_info.typed_count() != !m2.url_info.typed_count())
235    return m1.url_info.typed_count() > m2.url_info.typed_count();
236
237  // Innermost matches (matches after any scheme or "www.") are better than
238  // non-innermost matches.
239  if (m1.innermost_match != m2.innermost_match)
240    return m1.innermost_match;
241
242  // URLs that have been typed more often are better.
243  if (m1.url_info.typed_count() != m2.url_info.typed_count())
244    return m1.url_info.typed_count() > m2.url_info.typed_count();
245
246  // For URLs that have each been typed once, a host (alone) is better
247  // than a page inside.
248  if (m1.url_info.typed_count() == 1) {
249    if (m1.IsHostOnly() != m2.IsHostOnly())
250      return m1.IsHostOnly();
251  }
252
253  // URLs that have been visited more often are better.
254  if (m1.url_info.visit_count() != m2.url_info.visit_count())
255    return m1.url_info.visit_count() > m2.url_info.visit_count();
256
257  // URLs that have been visited more recently are better.
258  return m1.url_info.last_visit() > m2.url_info.last_visit();
259}
260
261// static
262TermMatches ScoredHistoryMatch::FilterTermMatchesByWordStarts(
263    const TermMatches& term_matches,
264    const WordStarts& terms_to_word_starts_offsets,
265    const WordStarts& word_starts,
266    size_t start_pos,
267    size_t end_pos) {
268  // Return early if no filtering is needed.
269  if (start_pos == std::string::npos)
270    return term_matches;
271  TermMatches filtered_matches;
272  WordStarts::const_iterator next_word_starts = word_starts.begin();
273  WordStarts::const_iterator end_word_starts = word_starts.end();
274  for (TermMatches::const_iterator iter = term_matches.begin();
275       iter != term_matches.end(); ++iter) {
276    const size_t term_offset = terms_to_word_starts_offsets[iter->term_num];
277    // Advance next_word_starts until it's >= the position of the term we're
278    // considering (adjusted for where the word begins within the term).
279    while ((next_word_starts != end_word_starts) &&
280           (*next_word_starts < (iter->offset + term_offset)))
281      ++next_word_starts;
282    // Add the match if it's before the position we start filtering at or
283    // after the position we stop filtering at (assuming we have a position
284    // to stop filtering at) or if it's at a word boundary.
285    if ((iter->offset < start_pos) ||
286        ((end_pos != std::string::npos) && (iter->offset >= end_pos)) ||
287        ((next_word_starts != end_word_starts) &&
288         (*next_word_starts == iter->offset + term_offset)))
289      filtered_matches.push_back(*iter);
290  }
291  return filtered_matches;
292}
293
294float ScoredHistoryMatch::GetTopicalityScore(
295    const int num_terms,
296    const base::string16& url,
297    const WordStarts& terms_to_word_starts_offsets,
298    const RowWordStarts& word_starts) {
299  // Because the below thread is not thread safe, we check that we're
300  // only calling it from one thread: the UI thread.  Specifically,
301  // we check "if we've heard of the UI thread then we'd better
302  // be on it."  The first part is necessary so unit tests pass.  (Many
303  // unit tests don't set up the threading naming system; hence
304  // CurrentlyOn(UI thread) will fail.)
305  DCHECK(!content::BrowserThread::IsThreadInitialized(
306             content::BrowserThread::UI) ||
307         content::BrowserThread::CurrentlyOn(content::BrowserThread::UI));
308  if (raw_term_score_to_topicality_score_ == NULL) {
309    raw_term_score_to_topicality_score_ = new float[kMaxRawTermScore];
310    FillInTermScoreToTopicalityScoreArray();
311  }
312  // A vector that accumulates per-term scores.  The strongest match--a
313  // match in the hostname at a word boundary--is worth 10 points.
314  // Everything else is less.  In general, a match that's not at a word
315  // boundary is worth about 1/4th or 1/5th of a match at the word boundary
316  // in the same part of the URL/title.
317  DCHECK_GT(num_terms, 0);
318  std::vector<int> term_scores(num_terms, 0);
319  WordStarts::const_iterator next_word_starts =
320      word_starts.url_word_starts_.begin();
321  WordStarts::const_iterator end_word_starts =
322      word_starts.url_word_starts_.end();
323  const size_t question_mark_pos = url.find('?');
324  const size_t colon_pos = url.find(':');
325  // The + 3 skips the // that probably appears in the protocol
326  // after the colon.  If the protocol doesn't have two slashes after
327  // the colon, that's okay--all this ends up doing is starting our
328  // search for the next / a few characters into the hostname.  The
329  // only times this can cause problems is if we have a protocol without
330  // a // after the colon and the hostname is only one or two characters.
331  // This isn't worth worrying about.
332  const size_t end_of_hostname_pos = (colon_pos != std::string::npos) ?
333      url.find('/', colon_pos + 3) : url.find('/');
334  size_t last_part_of_hostname_pos =
335      (end_of_hostname_pos != std::string::npos) ?
336      url.rfind('.', end_of_hostname_pos) : url.rfind('.');
337  // Loop through all URL matches and score them appropriately.
338  // First, filter all matches not at a word boundary and in the path (or
339  // later).
340  url_matches_ = FilterTermMatchesByWordStarts(
341      url_matches_, terms_to_word_starts_offsets, word_starts.url_word_starts_,
342      end_of_hostname_pos,
343      std::string::npos);
344  if (colon_pos != std::string::npos) {
345    // Also filter matches not at a word boundary and in the scheme.
346    url_matches_ = FilterTermMatchesByWordStarts(
347        url_matches_, terms_to_word_starts_offsets,
348        word_starts.url_word_starts_, 0, colon_pos);
349  }
350  for (TermMatches::const_iterator iter = url_matches_.begin();
351       iter != url_matches_.end(); ++iter) {
352    const size_t term_offset = terms_to_word_starts_offsets[iter->term_num];
353    // Advance next_word_starts until it's >= the position of the term we're
354    // considering (adjusted for where the word begins within the term).
355    while ((next_word_starts != end_word_starts) &&
356           (*next_word_starts < (iter->offset + term_offset))) {
357      ++next_word_starts;
358    }
359    const bool at_word_boundary = (next_word_starts != end_word_starts) &&
360        (*next_word_starts == iter->offset + term_offset);
361    if ((question_mark_pos != std::string::npos) &&
362        (iter->offset > question_mark_pos)) {
363      // The match is in a CGI ?... fragment.
364      DCHECK(at_word_boundary);
365      term_scores[iter->term_num] += 5;
366    } else if ((end_of_hostname_pos != std::string::npos) &&
367        (iter->offset > end_of_hostname_pos)) {
368      // The match is in the path.
369      DCHECK(at_word_boundary);
370      term_scores[iter->term_num] += 8;
371    } else if ((colon_pos == std::string::npos) ||
372         (iter->offset > colon_pos)) {
373      // The match is in the hostname.
374      if ((last_part_of_hostname_pos == std::string::npos) ||
375          (iter->offset < last_part_of_hostname_pos)) {
376        // Either there are no dots in the hostname or this match isn't
377        // the last dotted component.
378        term_scores[iter->term_num] += at_word_boundary ? 10 : 2;
379      } else {
380        // The match is in the last part of a dotted hostname (usually this
381        // is the top-level domain .com, .net, etc.).
382        if (allow_tld_matches_)
383          term_scores[iter->term_num] += at_word_boundary ? 10 : 0;
384      }
385    } else {
386      // The match is in the protocol (a.k.a. scheme).
387      // Matches not at a word boundary should have been filtered already.
388      DCHECK(at_word_boundary);
389      match_in_scheme = true;
390      if (allow_scheme_matches_)
391        term_scores[iter->term_num] += 10;
392    }
393  }
394  // Now do the analogous loop over all matches in the title.
395  next_word_starts = word_starts.title_word_starts_.begin();
396  end_word_starts = word_starts.title_word_starts_.end();
397  int word_num = 0;
398  title_matches_ = FilterTermMatchesByWordStarts(
399      title_matches_, terms_to_word_starts_offsets,
400      word_starts.title_word_starts_, 0, std::string::npos);
401  for (TermMatches::const_iterator iter = title_matches_.begin();
402       iter != title_matches_.end(); ++iter) {
403    const size_t term_offset = terms_to_word_starts_offsets[iter->term_num];
404    // Advance next_word_starts until it's >= the position of the term we're
405    // considering (adjusted for where the word begins within the term).
406    while ((next_word_starts != end_word_starts) &&
407           (*next_word_starts < (iter->offset + term_offset))) {
408      ++next_word_starts;
409      ++word_num;
410    }
411    if (word_num >= 10) break;  // only count the first ten words
412    DCHECK(next_word_starts != end_word_starts);
413    DCHECK_EQ(*next_word_starts, iter->offset + term_offset)
414        << "not at word boundary";
415    term_scores[iter->term_num] += 8;
416  }
417  // TODO(mpearson): Restore logic for penalizing out-of-order matches.
418  // (Perhaps discount them by 0.8?)
419  // TODO(mpearson): Consider: if the earliest match occurs late in the string,
420  // should we discount it?
421  // TODO(mpearson): Consider: do we want to score based on how much of the
422  // input string the input covers?  (I'm leaning toward no.)
423
424  // Compute the topicality_score as the sum of transformed term_scores.
425  float topicality_score = 0;
426  for (size_t i = 0; i < term_scores.size(); ++i) {
427    // Drop this URL if it seems like a term didn't appear or, more precisely,
428    // didn't appear in a part of the URL or title that we trust enough
429    // to give it credit for.  For instance, terms that appear in the middle
430    // of a CGI parameter get no credit.  Almost all the matches dropped
431    // due to this test would look stupid if shown to the user.
432    if (term_scores[i] == 0)
433      return 0;
434    topicality_score += raw_term_score_to_topicality_score_[
435        (term_scores[i] >= kMaxRawTermScore) ? (kMaxRawTermScore - 1) :
436        term_scores[i]];
437  }
438  // TODO(mpearson): If there are multiple terms, consider taking the
439  // geometric mean of per-term scores rather than the arithmetic mean.
440
441  return topicality_score / num_terms;
442}
443
444// static
445void ScoredHistoryMatch::FillInTermScoreToTopicalityScoreArray() {
446  for (int term_score = 0; term_score < kMaxRawTermScore; ++term_score) {
447    float topicality_score;
448    if (term_score < 10) {
449      // If the term scores less than 10 points (no full-credit hit, or
450      // no combination of hits that score that well), then the topicality
451      // score is linear in the term score.
452      topicality_score = 0.1 * term_score;
453    } else {
454      // For term scores of at least ten points, pass them through a log
455      // function so a score of 10 points gets a 1.0 (to meet up exactly
456      // with the linear component) and increases logarithmically until
457      // maxing out at 30 points, with computes to a score around 2.1.
458      topicality_score = (1.0 + 2.25 * log10(0.1 * term_score));
459    }
460    raw_term_score_to_topicality_score_[term_score] = topicality_score;
461  }
462}
463
464// static
465float ScoredHistoryMatch::GetRecencyScore(int last_visit_days_ago) {
466  // Because the below thread is not thread safe, we check that we're
467  // only calling it from one thread: the UI thread.  Specifically,
468  // we check "if we've heard of the UI thread then we'd better
469  // be on it."  The first part is necessary so unit tests pass.  (Many
470  // unit tests don't set up the threading naming system; hence
471  // CurrentlyOn(UI thread) will fail.)
472  DCHECK(!content::BrowserThread::IsThreadInitialized(
473             content::BrowserThread::UI) ||
474         content::BrowserThread::CurrentlyOn(content::BrowserThread::UI));
475  if (days_ago_to_recency_score_ == NULL) {
476    days_ago_to_recency_score_ = new float[kDaysToPrecomputeRecencyScoresFor];
477    FillInDaysAgoToRecencyScoreArray();
478  }
479  // Lookup the score in days_ago_to_recency_score, treating
480  // everything older than what we've precomputed as the oldest thing
481  // we've precomputed.  The std::max is to protect against corruption
482  // in the database (in case last_visit_days_ago is negative).
483  return days_ago_to_recency_score_[
484      std::max(
485      std::min(last_visit_days_ago, kDaysToPrecomputeRecencyScoresFor - 1),
486      0)];
487}
488
489void ScoredHistoryMatch::FillInDaysAgoToRecencyScoreArray() {
490  for (int days_ago = 0; days_ago < kDaysToPrecomputeRecencyScoresFor;
491       days_ago++) {
492    int unnormalized_recency_score;
493    if (days_ago <= 4) {
494      unnormalized_recency_score = 100;
495    } else if (days_ago <= 14) {
496      // Linearly extrapolate between 4 and 14 days so 14 days has a score
497      // of 70.
498      unnormalized_recency_score = 70 + (14 - days_ago) * (100 - 70) / (14 - 4);
499    } else if (days_ago <= 31) {
500      // Linearly extrapolate between 14 and 31 days so 31 days has a score
501      // of 50.
502      unnormalized_recency_score = 50 + (31 - days_ago) * (70 - 50) / (31 - 14);
503    } else if (days_ago <= 90) {
504      // Linearly extrapolate between 30 and 90 days so 90 days has a score
505      // of 30.
506      unnormalized_recency_score = 30 + (90 - days_ago) * (50 - 30) / (90 - 30);
507    } else {
508      // Linearly extrapolate between 90 and 365 days so 365 days has a score
509      // of 10.
510      unnormalized_recency_score =
511          10 + (365 - days_ago) * (20 - 10) / (365 - 90);
512    }
513    days_ago_to_recency_score_[days_ago] = unnormalized_recency_score / 100.0;
514    if (days_ago > 0) {
515      DCHECK_LE(days_ago_to_recency_score_[days_ago],
516                days_ago_to_recency_score_[days_ago - 1]);
517    }
518  }
519}
520
521// static
522float ScoredHistoryMatch::GetFrequency(const base::Time& now,
523                                       const bool bookmarked,
524                                       const VisitInfoVector& visits) {
525  // Compute the weighted average |value_of_transition| over the last at
526  // most kMaxVisitsToScore visits, where each visit is weighted using
527  // GetRecencyScore() based on how many days ago it happened.  Use
528  // kMaxVisitsToScore as the denominator for the average regardless of
529  // how many visits there were in order to penalize a match that has
530  // fewer visits than kMaxVisitsToScore.
531  float summed_visit_points = 0;
532  for (size_t i = 0; i < std::min(visits.size(), kMaxVisitsToScore); ++i) {
533    int value_of_transition =
534        (visits[i].second == ui::PAGE_TRANSITION_TYPED) ? 20 : 1;
535    if (bookmarked)
536      value_of_transition = std::max(value_of_transition, bookmark_value_);
537    const float bucket_weight =
538        GetRecencyScore((now - visits[i].first).InDays());
539    summed_visit_points += (value_of_transition * bucket_weight);
540  }
541  return visits.size() * summed_visit_points / kMaxVisitsToScore;
542}
543
544// static
545float ScoredHistoryMatch::GetFinalRelevancyScore(float topicality_score,
546                                                 float frequency_score) {
547  if (topicality_score == 0)
548    return 0;
549  // Here's how to interpret intermediate_score: Suppose the omnibox
550  // has one input term.  Suppose we have a URL for which the omnibox
551  // input term has a single URL hostname hit at a word boundary.  (This
552  // implies topicality_score = 1.0.).  Then the intermediate_score for
553  // this URL will depend entirely on the frequency_score with
554  // this interpretation:
555  // - a single typed visit more than three months ago, no other visits -> 0.2
556  // - a visit every three days, no typed visits -> 0.706
557  // - a visit every day, no typed visits -> 0.916
558  // - a single typed visit yesterday, no other visits -> 2.0
559  // - a typed visit once a week -> 11.77
560  // - a typed visit every three days -> 14.12
561  // - at least ten typed visits today -> 20.0 (maximum score)
562  const float intermediate_score = topicality_score * frequency_score;
563  // The below code maps intermediate_score to the range [0, 1399].
564  // The score maxes out at 1400 (i.e., cannot beat a good inline result).
565  if (intermediate_score <= 1) {
566    // Linearly extrapolate between 0 and 1.5 so 0 has a score of 400
567    // and 1.5 has a score of 600.
568    const float slope = (600 - 400) / (1.5f - 0.0f);
569    return 400 + slope * intermediate_score;
570  }
571  if (intermediate_score <= 12.0) {
572    // Linearly extrapolate up to 12 so 12 has a score of 1300.
573    const float slope = (1300 - 600) / (12.0f - 1.5f);
574    return 600 + slope * (intermediate_score - 1.5);
575  }
576  // Linearly extrapolate so a score of 20 (or more) has a score of 1399.
577  // (Scores above 20 are possible for URLs that have multiple term hits
578  // in the URL and/or title and that are visited practically all
579  // the time using typed visits.  We don't attempt to distinguish
580  // between these very good results.)
581  const float slope = (1399 - 1300) / (20.0f - 12.0f);
582  return std::min(1399.0, 1300 + slope * (intermediate_score - 12.0));
583}
584
585void ScoredHistoryMatch::Init() {
586  if (initialized_)
587    return;
588  also_do_hup_like_scoring_ = false;
589  // When doing HUP-like scoring, don't allow a non-inlineable match
590  // to beat the score of good inlineable matches.  This is a problem
591  // because if a non-inlineable match ends up with the highest score
592  // from HistoryQuick provider, all HistoryQuick matches get demoted
593  // to non-inlineable scores (scores less than 1200).  Without
594  // HUP-like-scoring, these results would actually come from the HUP
595  // and not be demoted, thus outscoring the demoted HQP results.
596  // When the HQP provides these, we need to clamp the non-inlineable
597  // results to preserve this behavior.
598  if (also_do_hup_like_scoring_) {
599    max_assigned_score_for_non_inlineable_matches_ =
600        HistoryURLProvider::kScoreForBestInlineableResult - 1;
601  }
602  bookmark_value_ = OmniboxFieldTrial::HQPBookmarkValue();
603  allow_tld_matches_ = OmniboxFieldTrial::HQPAllowMatchInTLDValue();
604  allow_scheme_matches_ = OmniboxFieldTrial::HQPAllowMatchInSchemeValue();
605  initialized_ = true;
606}
607
608}  // namespace history
609