1283c650658850e499b64d9d4b9b0b383fbfe50e0thakis@chromium.org// Copyright 2014 The Chromium Authors. All rights reserved.
2283c650658850e499b64d9d4b9b0b383fbfe50e0thakis@chromium.org// Use of this source code is governed by a BSD-style license that can be
3283c650658850e499b64d9d4b9b0b383fbfe50e0thakis@chromium.org// found in the LICENSE file.
4283c650658850e499b64d9d4b9b0b383fbfe50e0thakis@chromium.org
5283c650658850e499b64d9d4b9b0b383fbfe50e0thakis@chromium.org#include "components/rappor/byte_vector_utils.h"
6283c650658850e499b64d9d4b9b0b383fbfe50e0thakis@chromium.org
7283c650658850e499b64d9d4b9b0b383fbfe50e0thakis@chromium.org#include <string>
8283c650658850e499b64d9d4b9b0b383fbfe50e0thakis@chromium.org
9283c650658850e499b64d9d4b9b0b383fbfe50e0thakis@chromium.org#include "base/logging.h"
10283c650658850e499b64d9d4b9b0b383fbfe50e0thakis@chromium.org#include "base/rand_util.h"
11283c650658850e499b64d9d4b9b0b383fbfe50e0thakis@chromium.org#include "base/strings/string_number_conversions.h"
12283c650658850e499b64d9d4b9b0b383fbfe50e0thakis@chromium.org#include "crypto/random.h"
13283c650658850e499b64d9d4b9b0b383fbfe50e0thakis@chromium.org
14namespace rappor {
15
16namespace {
17
18// Reinterpets a ByteVector as a StringPiece.
19base::StringPiece ByteVectorAsStringPiece(const ByteVector& lhs) {
20  return base::StringPiece(reinterpret_cast<const char *>(&lhs[0]), lhs.size());
21}
22
23// Concatenates parameters together as a string.
24std::string Concat(const ByteVector& value, char c, const std::string& data) {
25  return std::string(value.begin(), value.end()) + c + data;
26}
27
28// Performs the operation: K = HMAC(K, data)
29// The input "K" is passed by initializing |hmac| with it.
30// The output "K" is returned by initializing |result| with it.
31// Returns false on an error.
32bool HMAC_Rotate(const crypto::HMAC& hmac,
33                 const std::string& data,
34                 crypto::HMAC* result) {
35  ByteVector key(hmac.DigestLength());
36  if (!hmac.Sign(data, &key[0], key.size()))
37    return false;
38  return result->Init(ByteVectorAsStringPiece(key));
39}
40
41// Performs the operation: V = HMAC(K, V)
42// The input "K" is passed by initializing |hmac| with it.
43// "V" is read from and written to |value|.
44// Returns false on an error.
45bool HMAC_Rehash(const crypto::HMAC& hmac, ByteVector* value) {
46  return hmac.Sign(ByteVectorAsStringPiece(*value),
47                   &(*value)[0], value->size());
48}
49
50// Implements (Key, V) = HMAC_DRBG_Update(provided_data, Key, V)
51// See: http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
52// "V" is read from and written to |value|.
53// The input "Key" is passed by initializing |hmac1| with it.
54// The output "Key" is returned by initializing |out_hmac| with it.
55// Returns false on an error.
56bool HMAC_DRBG_Update(const std::string& provided_data,
57                      const crypto::HMAC& hmac1,
58                      ByteVector* value,
59                      crypto::HMAC* out_hmac) {
60  // HMAC_DRBG Update Process
61  crypto::HMAC temp_hmac(crypto::HMAC::SHA256);
62  crypto::HMAC* hmac2 = provided_data.size() > 0 ? &temp_hmac : out_hmac;
63  // 1. K = HMAC(K, V || 0x00 || provided_data)
64  if (!HMAC_Rotate(hmac1, Concat(*value, 0x00, provided_data), hmac2))
65    return false;
66  // 2. V = HMAC(K, V)
67  if (!HMAC_Rehash(*hmac2, value))
68    return false;
69  // 3. If (provided_data = Null), then return K and V.
70  if (hmac2 == out_hmac)
71    return true;
72  // 4. K = HMAC(K, V || 0x01 || provided_data)
73  if (!HMAC_Rotate(*hmac2, Concat(*value, 0x01, provided_data), out_hmac))
74    return false;
75  // 5. V = HMAC(K, V)
76  return HMAC_Rehash(*out_hmac, value);
77}
78
79}  // namespace
80
81ByteVector* ByteVectorAnd(const ByteVector& lhs, ByteVector* rhs) {
82  DCHECK_EQ(lhs.size(), rhs->size());
83  for (size_t i = 0; i < lhs.size(); ++i) {
84    (*rhs)[i] = lhs[i] & (*rhs)[i];
85  }
86  return rhs;
87}
88
89ByteVector* ByteVectorOr(const ByteVector& lhs, ByteVector* rhs) {
90  DCHECK_EQ(lhs.size(), rhs->size());
91  for (size_t i = 0; i < lhs.size(); ++i) {
92    (*rhs)[i] = lhs[i] | (*rhs)[i];
93  }
94  return rhs;
95}
96
97ByteVector* ByteVectorMerge(const ByteVector& mask,
98                            const ByteVector& lhs,
99                            ByteVector* rhs) {
100  DCHECK_EQ(lhs.size(), rhs->size());
101  for (size_t i = 0; i < lhs.size(); ++i) {
102    (*rhs)[i] = (lhs[i] & ~mask[i]) | ((*rhs)[i] & mask[i]);
103  }
104  return rhs;
105}
106
107int CountBits(const ByteVector& vector) {
108  int bit_count = 0;
109  for (size_t i = 0; i < vector.size(); ++i) {
110    uint8_t byte = vector[i];
111    for (int j = 0; j < 8 ; ++j) {
112      if (byte & (1 << j))
113        bit_count++;
114    }
115  }
116  return bit_count;
117}
118
119ByteVectorGenerator::ByteVectorGenerator(size_t byte_count)
120    : byte_count_(byte_count) {}
121
122ByteVectorGenerator::~ByteVectorGenerator() {}
123
124ByteVector ByteVectorGenerator::GetRandomByteVector() {
125  ByteVector bytes(byte_count_);
126  crypto::RandBytes(&bytes[0], bytes.size());
127  return bytes;
128}
129
130ByteVector ByteVectorGenerator::GetWeightedRandomByteVector(
131    Probability probability) {
132  ByteVector bytes = GetRandomByteVector();
133  switch (probability) {
134    case PROBABILITY_75:
135      return *ByteVectorOr(GetRandomByteVector(), &bytes);
136    case PROBABILITY_50:
137      return bytes;
138    case PROBABILITY_25:
139      return *ByteVectorAnd(GetRandomByteVector(), &bytes);
140  }
141  NOTREACHED();
142  return bytes;
143}
144
145HmacByteVectorGenerator::HmacByteVectorGenerator(
146    size_t byte_count,
147    const std::string& entropy_input,
148    const std::string& personalization_string)
149    : ByteVectorGenerator(byte_count),
150      hmac_(crypto::HMAC::SHA256),
151      value_(hmac_.DigestLength(), 0x01),
152      generated_bytes_(0) {
153  // HMAC_DRBG Instantiate Process
154  // See: http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
155  // 1. seed_material = entropy_input + nonce + personalization_string
156  // Note: We are using the 8.6.7 interpretation, where the entropy_input and
157  // nonce are acquired at the same time from the same source.
158  DCHECK_EQ(kEntropyInputSize, entropy_input.size());
159  std::string seed_material(entropy_input + personalization_string);
160  // 2. Key = 0x00 00...00
161  crypto::HMAC hmac1(crypto::HMAC::SHA256);
162  if (!hmac1.Init(std::string(hmac_.DigestLength(), 0x00)))
163    NOTREACHED();
164  // 3. V = 0x01 01...01
165  // (value_ in initializer list)
166
167  // 4. (Key, V) = HMAC_DRBG_Update(seed_material, Key, V)
168  if (!HMAC_DRBG_Update(seed_material, hmac1, &value_, &hmac_))
169    NOTREACHED();
170}
171
172HmacByteVectorGenerator::~HmacByteVectorGenerator() {}
173
174HmacByteVectorGenerator::HmacByteVectorGenerator(
175    const HmacByteVectorGenerator& prev_request)
176    : ByteVectorGenerator(prev_request.byte_count()),
177      hmac_(crypto::HMAC::SHA256),
178      value_(prev_request.value_),
179      generated_bytes_(0) {
180  if (!HMAC_DRBG_Update("", prev_request.hmac_, &value_, &hmac_))
181    NOTREACHED();
182}
183
184// HMAC_DRBG requires entropy input to be security_strength bits long,
185// and nonce to be at least 1/2 security_strength bits long.  We
186// generate them both as a single "extra strong" entropy input.
187// max_security_strength for SHA256 is 256 bits.
188// See: http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
189const size_t HmacByteVectorGenerator::kEntropyInputSize = (256 / 8) * 3 / 2;
190
191// static
192std::string HmacByteVectorGenerator::GenerateEntropyInput() {
193  return base::RandBytesAsString(kEntropyInputSize);
194}
195
196ByteVector HmacByteVectorGenerator::GetRandomByteVector() {
197  // Streams bytes from HMAC_DRBG_Generate
198  // See: http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
199  const size_t digest_length = hmac_.DigestLength();
200  DCHECK_EQ(value_.size(), digest_length);
201  ByteVector bytes(byte_count());
202  uint8_t* data = &bytes[0];
203  size_t bytes_to_go = byte_count();
204  while (bytes_to_go > 0) {
205    size_t requested_byte_in_digest = generated_bytes_ % digest_length;
206    if (requested_byte_in_digest == 0) {
207      // Do step 4.1 of the HMAC_DRBG Generate Process for more bits.
208      // V = HMAC(Key, V)
209      if (!HMAC_Rehash(hmac_, &value_))
210        NOTREACHED();
211    }
212    size_t n = std::min(bytes_to_go,
213                        digest_length - requested_byte_in_digest);
214    memcpy(data, &value_[requested_byte_in_digest], n);
215    data += n;
216    bytes_to_go -= n;
217    generated_bytes_ += n;
218    // Check max_number_of_bits_per_request from 10.1 Table 2
219    // max_number_of_bits_per_request == 2^19 bits == 2^16 bytes
220    DCHECK_LT(generated_bytes_, 1U << 16);
221  }
222  return bytes;
223}
224
225}  // namespace rappor
226