1// Copyright (c) 2011 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "courgette/disassembler_win32_x86.h"
6
7#include <algorithm>
8#include <string>
9#include <vector>
10
11#include "base/basictypes.h"
12#include "base/logging.h"
13
14#include "courgette/assembly_program.h"
15#include "courgette/courgette.h"
16#include "courgette/encoded_program.h"
17
18namespace courgette {
19
20DisassemblerWin32X86::DisassemblerWin32X86(const void* start, size_t length)
21  : Disassembler(start, length),
22    incomplete_disassembly_(false),
23    is_PE32_plus_(false),
24    optional_header_(NULL),
25    size_of_optional_header_(0),
26    offset_of_data_directories_(0),
27    machine_type_(0),
28    number_of_sections_(0),
29    sections_(NULL),
30    has_text_section_(false),
31    size_of_code_(0),
32    size_of_initialized_data_(0),
33    size_of_uninitialized_data_(0),
34    base_of_code_(0),
35    base_of_data_(0),
36    image_base_(0),
37    size_of_image_(0),
38    number_of_data_directories_(0) {
39}
40
41// ParseHeader attempts to match up the buffer with the Windows data
42// structures that exist within a Windows 'Portable Executable' format file.
43// Returns 'true' if the buffer matches, and 'false' if the data looks
44// suspicious.  Rather than try to 'map' the buffer to the numerous windows
45// structures, we extract the information we need into the courgette::PEInfo
46// structure.
47//
48bool DisassemblerWin32X86::ParseHeader() {
49  if (length() < kOffsetOfFileAddressOfNewExeHeader + 4 /*size*/)
50    return Bad("Too small");
51
52  // Have 'MZ' magic for a DOS header?
53  if (start()[0] != 'M' || start()[1] != 'Z')
54    return Bad("Not MZ");
55
56  // offset from DOS header to PE header is stored in DOS header.
57  uint32 offset = ReadU32(start(),
58                          kOffsetOfFileAddressOfNewExeHeader);
59
60  if (offset >= length())
61    return Bad("Bad offset to PE header");
62
63  const uint8* const pe_header = OffsetToPointer(offset);
64  const size_t kMinPEHeaderSize = 4 /*signature*/ + kSizeOfCoffHeader;
65  if (pe_header <= start() ||
66      pe_header >= end() - kMinPEHeaderSize)
67    return Bad("Bad offset to PE header");
68
69  if (offset % 8 != 0)
70    return Bad("Misaligned PE header");
71
72  // The 'PE' header is an IMAGE_NT_HEADERS structure as defined in WINNT.H.
73  // See http://msdn.microsoft.com/en-us/library/ms680336(VS.85).aspx
74  //
75  // The first field of the IMAGE_NT_HEADERS is the signature.
76  if (!(pe_header[0] == 'P' &&
77        pe_header[1] == 'E' &&
78        pe_header[2] == 0 &&
79        pe_header[3] == 0))
80    return Bad("no PE signature");
81
82  // The second field of the IMAGE_NT_HEADERS is the COFF header.
83  // The COFF header is also called an IMAGE_FILE_HEADER
84  //   http://msdn.microsoft.com/en-us/library/ms680313(VS.85).aspx
85  const uint8* const coff_header = pe_header + 4;
86  machine_type_       = ReadU16(coff_header, 0);
87  number_of_sections_ = ReadU16(coff_header, 2);
88  size_of_optional_header_ = ReadU16(coff_header, 16);
89
90  // The rest of the IMAGE_NT_HEADERS is the IMAGE_OPTIONAL_HEADER(32|64)
91  const uint8* const optional_header = coff_header + kSizeOfCoffHeader;
92  optional_header_ = optional_header;
93
94  if (optional_header + size_of_optional_header_ >= end())
95    return Bad("optional header past end of file");
96
97  // Check we can read the magic.
98  if (size_of_optional_header_ < 2)
99    return Bad("optional header no magic");
100
101  uint16 magic = ReadU16(optional_header, 0);
102
103  if (magic == kImageNtOptionalHdr32Magic) {
104    is_PE32_plus_ = false;
105    offset_of_data_directories_ =
106      kOffsetOfDataDirectoryFromImageOptionalHeader32;
107  } else if (magic == kImageNtOptionalHdr64Magic) {
108    is_PE32_plus_ = true;
109    offset_of_data_directories_ =
110      kOffsetOfDataDirectoryFromImageOptionalHeader64;
111  } else {
112    return Bad("unrecognized magic");
113  }
114
115  // Check that we can read the rest of the the fixed fields.  Data directories
116  // directly follow the fixed fields of the IMAGE_OPTIONAL_HEADER.
117  if (size_of_optional_header_ < offset_of_data_directories_)
118    return Bad("optional header too short");
119
120  // The optional header is either an IMAGE_OPTIONAL_HEADER32 or
121  // IMAGE_OPTIONAL_HEADER64
122  // http://msdn.microsoft.com/en-us/library/ms680339(VS.85).aspx
123  //
124  // Copy the fields we care about.
125  size_of_code_               = ReadU32(optional_header, 4);
126  size_of_initialized_data_   = ReadU32(optional_header, 8);
127  size_of_uninitialized_data_ = ReadU32(optional_header, 12);
128  base_of_code_               = ReadU32(optional_header, 20);
129  if (is_PE32_plus_) {
130    base_of_data_ = 0;
131    image_base_  = ReadU64(optional_header, 24);
132  } else {
133    base_of_data_ = ReadU32(optional_header, 24);
134    image_base_   = ReadU32(optional_header, 28);
135  }
136  size_of_image_ = ReadU32(optional_header, 56);
137  number_of_data_directories_ =
138    ReadU32(optional_header, (is_PE32_plus_ ? 108 : 92));
139
140  if (size_of_code_ >= length() ||
141      size_of_initialized_data_ >= length() ||
142      size_of_code_ + size_of_initialized_data_ >= length()) {
143    // This validation fires on some perfectly fine executables.
144    //  return Bad("code or initialized data too big");
145  }
146
147  // TODO(sra): we can probably get rid of most of the data directories.
148  bool b = true;
149  // 'b &= ...' could be short circuit 'b = b && ...' but it is not necessary
150  // for correctness and it compiles smaller this way.
151  b &= ReadDataDirectory(0, &export_table_);
152  b &= ReadDataDirectory(1, &import_table_);
153  b &= ReadDataDirectory(2, &resource_table_);
154  b &= ReadDataDirectory(3, &exception_table_);
155  b &= ReadDataDirectory(5, &base_relocation_table_);
156  b &= ReadDataDirectory(11, &bound_import_table_);
157  b &= ReadDataDirectory(12, &import_address_table_);
158  b &= ReadDataDirectory(13, &delay_import_descriptor_);
159  b &= ReadDataDirectory(14, &clr_runtime_header_);
160  if (!b) {
161    return Bad("malformed data directory");
162  }
163
164  // Sections follow the optional header.
165  sections_ =
166      reinterpret_cast<const Section*>(optional_header +
167                                       size_of_optional_header_);
168  size_t detected_length = 0;
169
170  for (int i = 0;  i < number_of_sections_;  ++i) {
171    const Section* section = &sections_[i];
172
173    // TODO(sra): consider using the 'characteristics' field of the section
174    // header to see if the section contains instructions.
175    if (memcmp(section->name, ".text", 6) == 0)
176      has_text_section_ = true;
177
178    uint32 section_end =
179        section->file_offset_of_raw_data + section->size_of_raw_data;
180    if (section_end > detected_length)
181      detected_length = section_end;
182  }
183
184  // Pretend our in-memory copy is only as long as our detected length.
185  ReduceLength(detected_length);
186
187  if (!is_32bit()) {
188    return Bad("64 bit executables are not supported by this disassembler");
189  }
190
191  if (!has_text_section()) {
192    return Bad("Resource-only executables are not yet supported");
193  }
194
195  return Good();
196}
197
198bool DisassemblerWin32X86::Disassemble(AssemblyProgram* target) {
199  if (!ok())
200    return false;
201
202  target->set_image_base(image_base());
203
204  if (!ParseAbs32Relocs())
205    return false;
206
207  ParseRel32RelocsFromSections();
208
209  if (!ParseFile(target))
210    return false;
211
212  target->DefaultAssignIndexes();
213
214  return true;
215}
216
217////////////////////////////////////////////////////////////////////////////////
218
219bool DisassemblerWin32X86::ParseRelocs(std::vector<RVA> *relocs) {
220  relocs->clear();
221
222  size_t relocs_size = base_relocation_table_.size_;
223  if (relocs_size == 0)
224    return true;
225
226  // The format of the base relocation table is a sequence of variable sized
227  // IMAGE_BASE_RELOCATION blocks.  Search for
228  //   "The format of the base relocation data is somewhat quirky"
229  // at http://msdn.microsoft.com/en-us/library/ms809762.aspx
230
231  const uint8* relocs_start = RVAToPointer(base_relocation_table_.address_);
232  const uint8* relocs_end = relocs_start + relocs_size;
233
234  // Make sure entire base relocation table is within the buffer.
235  if (relocs_start < start() ||
236      relocs_start >= end() ||
237      relocs_end <= start() ||
238      relocs_end > end()) {
239    return Bad(".relocs outside image");
240  }
241
242  const uint8* block = relocs_start;
243
244  // Walk the variable sized blocks.
245  while (block + 8 < relocs_end) {
246    RVA page_rva = ReadU32(block, 0);
247    uint32 size = ReadU32(block, 4);
248    if (size < 8 ||        // Size includes header ...
249        size % 4  !=  0)   // ... and is word aligned.
250      return Bad("unreasonable relocs block");
251
252    const uint8* end_entries = block + size;
253
254    if (end_entries <= block ||
255        end_entries <= start() ||
256        end_entries > end())
257      return Bad(".relocs block outside image");
258
259    // Walk through the two-byte entries.
260    for (const uint8* p = block + 8;  p < end_entries;  p += 2) {
261      uint16 entry = ReadU16(p, 0);
262      int type = entry >> 12;
263      int offset = entry & 0xFFF;
264
265      RVA rva = page_rva + offset;
266      if (type == 3) {         // IMAGE_REL_BASED_HIGHLOW
267        relocs->push_back(rva);
268      } else if (type == 0) {  // IMAGE_REL_BASED_ABSOLUTE
269        // Ignore, used as padding.
270      } else {
271        // Does not occur in Windows x86 executables.
272        return Bad("unknown type of reloc");
273      }
274    }
275
276    block += size;
277  }
278
279  std::sort(relocs->begin(), relocs->end());
280
281  return true;
282}
283
284const Section* DisassemblerWin32X86::RVAToSection(RVA rva) const {
285  for (int i = 0; i < number_of_sections_; i++) {
286    const Section* section = &sections_[i];
287    uint32 offset = rva - section->virtual_address;
288    if (offset < section->virtual_size) {
289      return section;
290    }
291  }
292  return NULL;
293}
294
295int DisassemblerWin32X86::RVAToFileOffset(RVA rva) const {
296  const Section* section = RVAToSection(rva);
297  if (section) {
298    uint32 offset = rva - section->virtual_address;
299    if (offset < section->size_of_raw_data) {
300      return section->file_offset_of_raw_data + offset;
301    } else {
302      return kNoOffset;  // In section but not in file (e.g. uninit data).
303    }
304  }
305
306  // Small RVA values point into the file header in the loaded image.
307  // RVA 0 is the module load address which Windows uses as the module handle.
308  // RVA 2 sometimes occurs, I'm not sure what it is, but it would map into the
309  // DOS header.
310  if (rva == 0 || rva == 2)
311    return rva;
312
313  NOTREACHED();
314  return kNoOffset;
315}
316
317const uint8* DisassemblerWin32X86::RVAToPointer(RVA rva) const {
318  int file_offset = RVAToFileOffset(rva);
319  if (file_offset == kNoOffset)
320    return NULL;
321  else
322    return OffsetToPointer(file_offset);
323}
324
325std::string DisassemblerWin32X86::SectionName(const Section* section) {
326  if (section == NULL)
327    return "<none>";
328  char name[9];
329  memcpy(name, section->name, 8);
330  name[8] = '\0';  // Ensure termination.
331  return name;
332}
333
334CheckBool DisassemblerWin32X86::ParseFile(AssemblyProgram* program) {
335  // Walk all the bytes in the file, whether or not in a section.
336  uint32 file_offset = 0;
337  while (file_offset < length()) {
338    const Section* section = FindNextSection(file_offset);
339    if (section == NULL) {
340      // No more sections.  There should not be extra stuff following last
341      // section.
342      //   ParseNonSectionFileRegion(file_offset, pe_info().length(), program);
343      break;
344    }
345    if (file_offset < section->file_offset_of_raw_data) {
346      uint32 section_start_offset = section->file_offset_of_raw_data;
347      if(!ParseNonSectionFileRegion(file_offset, section_start_offset,
348                                    program))
349        return false;
350
351      file_offset = section_start_offset;
352    }
353    uint32 end = file_offset + section->size_of_raw_data;
354    if (!ParseFileRegion(section, file_offset, end, program))
355      return false;
356    file_offset = end;
357  }
358
359#if COURGETTE_HISTOGRAM_TARGETS
360  HistogramTargets("abs32 relocs", abs32_target_rvas_);
361  HistogramTargets("rel32 relocs", rel32_target_rvas_);
362#endif
363
364  return true;
365}
366
367bool DisassemblerWin32X86::ParseAbs32Relocs() {
368  abs32_locations_.clear();
369  if (!ParseRelocs(&abs32_locations_))
370    return false;
371
372  std::sort(abs32_locations_.begin(), abs32_locations_.end());
373
374#if COURGETTE_HISTOGRAM_TARGETS
375  for (size_t i = 0;  i < abs32_locations_.size(); ++i) {
376    RVA rva = abs32_locations_[i];
377    // The 4 bytes at the relocation are a reference to some address.
378    uint32 target_address = Read32LittleEndian(RVAToPointer(rva));
379    ++abs32_target_rvas_[target_address - image_base()];
380  }
381#endif
382  return true;
383}
384
385void DisassemblerWin32X86::ParseRel32RelocsFromSections() {
386  uint32 file_offset = 0;
387  while (file_offset < length()) {
388    const Section* section = FindNextSection(file_offset);
389    if (section == NULL)
390      break;
391    if (file_offset < section->file_offset_of_raw_data)
392      file_offset = section->file_offset_of_raw_data;
393    ParseRel32RelocsFromSection(section);
394    file_offset += section->size_of_raw_data;
395  }
396  std::sort(rel32_locations_.begin(), rel32_locations_.end());
397
398#if COURGETTE_HISTOGRAM_TARGETS
399  VLOG(1) << "abs32_locations_ " << abs32_locations_.size()
400          << "\nrel32_locations_ " << rel32_locations_.size()
401          << "\nabs32_target_rvas_ " << abs32_target_rvas_.size()
402          << "\nrel32_target_rvas_ " << rel32_target_rvas_.size();
403
404  int common = 0;
405  std::map<RVA, int>::iterator abs32_iter = abs32_target_rvas_.begin();
406  std::map<RVA, int>::iterator rel32_iter = rel32_target_rvas_.begin();
407  while (abs32_iter != abs32_target_rvas_.end() &&
408         rel32_iter != rel32_target_rvas_.end()) {
409    if (abs32_iter->first < rel32_iter->first)
410      ++abs32_iter;
411    else if (rel32_iter->first < abs32_iter->first)
412      ++rel32_iter;
413    else {
414      ++common;
415      ++abs32_iter;
416      ++rel32_iter;
417    }
418  }
419  VLOG(1) << "common " << common;
420#endif
421}
422
423void DisassemblerWin32X86::ParseRel32RelocsFromSection(const Section* section) {
424  // TODO(sra): use characteristic.
425  bool isCode = strcmp(section->name, ".text") == 0;
426  if (!isCode)
427    return;
428
429  uint32 start_file_offset = section->file_offset_of_raw_data;
430  uint32 end_file_offset = start_file_offset + section->size_of_raw_data;
431  RVA relocs_start_rva = base_relocation_table().address_;
432
433  const uint8* start_pointer = OffsetToPointer(start_file_offset);
434  const uint8* end_pointer = OffsetToPointer(end_file_offset);
435
436  RVA start_rva = FileOffsetToRVA(start_file_offset);
437  RVA end_rva = start_rva + section->virtual_size;
438
439  // Quick way to convert from Pointer to RVA within a single Section is to
440  // subtract 'pointer_to_rva'.
441  const uint8* const adjust_pointer_to_rva = start_pointer - start_rva;
442
443  std::vector<RVA>::iterator abs32_pos = abs32_locations_.begin();
444
445  // Find the rel32 relocations.
446  const uint8* p = start_pointer;
447  while (p < end_pointer) {
448    RVA current_rva = static_cast<RVA>(p - adjust_pointer_to_rva);
449    if (current_rva == relocs_start_rva) {
450      uint32 relocs_size = base_relocation_table().size_;
451      if (relocs_size) {
452        p += relocs_size;
453        continue;
454      }
455    }
456
457    //while (abs32_pos != abs32_locations_.end() && *abs32_pos < current_rva)
458    //  ++abs32_pos;
459
460    // Heuristic discovery of rel32 locations in instruction stream: are the
461    // next few bytes the start of an instruction containing a rel32
462    // addressing mode?
463    const uint8* rel32 = NULL;
464
465    if (p + 5 <= end_pointer) {
466      if (*p == 0xE8 || *p == 0xE9) {  // jmp rel32 and call rel32
467        rel32 = p + 1;
468      }
469    }
470    if (p + 6 <= end_pointer) {
471      if (*p == 0x0F  &&  (*(p+1) & 0xF0) == 0x80) {  // Jcc long form
472        if (p[1] != 0x8A && p[1] != 0x8B)  // JPE/JPO unlikely
473          rel32 = p + 2;
474      }
475    }
476    if (rel32) {
477      RVA rel32_rva = static_cast<RVA>(rel32 - adjust_pointer_to_rva);
478
479      // Is there an abs32 reloc overlapping the candidate?
480      while (abs32_pos != abs32_locations_.end() && *abs32_pos < rel32_rva - 3)
481        ++abs32_pos;
482      // Now: (*abs32_pos > rel32_rva - 4) i.e. the lowest addressed 4-byte
483      // region that could overlap rel32_rva.
484      if (abs32_pos != abs32_locations_.end()) {
485        if (*abs32_pos < rel32_rva + 4) {
486          // Beginning of abs32 reloc is before end of rel32 reloc so they
487          // overlap.  Skip four bytes past the abs32 reloc.
488          p += (*abs32_pos + 4) - current_rva;
489          continue;
490        }
491      }
492
493      RVA target_rva = rel32_rva + 4 + Read32LittleEndian(rel32);
494      // To be valid, rel32 target must be within image, and within this
495      // section.
496      if (IsValidRVA(target_rva) &&
497          start_rva <= target_rva && target_rva < end_rva) {
498        rel32_locations_.push_back(rel32_rva);
499#if COURGETTE_HISTOGRAM_TARGETS
500        ++rel32_target_rvas_[target_rva];
501#endif
502        p = rel32 + 4;
503        continue;
504      }
505    }
506    p += 1;
507  }
508}
509
510CheckBool DisassemblerWin32X86::ParseNonSectionFileRegion(
511    uint32 start_file_offset,
512    uint32 end_file_offset,
513    AssemblyProgram* program) {
514  if (incomplete_disassembly_)
515    return true;
516
517  const uint8* start = OffsetToPointer(start_file_offset);
518  const uint8* end = OffsetToPointer(end_file_offset);
519
520  const uint8* p = start;
521
522  while (p < end) {
523    if (!program->EmitByteInstruction(*p))
524      return false;
525    ++p;
526  }
527
528  return true;
529}
530
531CheckBool DisassemblerWin32X86::ParseFileRegion(
532    const Section* section,
533    uint32 start_file_offset, uint32 end_file_offset,
534    AssemblyProgram* program) {
535  RVA relocs_start_rva = base_relocation_table().address_;
536
537  const uint8* start_pointer = OffsetToPointer(start_file_offset);
538  const uint8* end_pointer = OffsetToPointer(end_file_offset);
539
540  RVA start_rva = FileOffsetToRVA(start_file_offset);
541  RVA end_rva = start_rva + section->virtual_size;
542
543  // Quick way to convert from Pointer to RVA within a single Section is to
544  // subtract 'pointer_to_rva'.
545  const uint8* const adjust_pointer_to_rva = start_pointer - start_rva;
546
547  std::vector<RVA>::iterator rel32_pos = rel32_locations_.begin();
548  std::vector<RVA>::iterator abs32_pos = abs32_locations_.begin();
549
550  if (!program->EmitOriginInstruction(start_rva))
551    return false;
552
553  const uint8* p = start_pointer;
554
555  while (p < end_pointer) {
556    RVA current_rva = static_cast<RVA>(p - adjust_pointer_to_rva);
557
558    // The base relocation table is usually in the .relocs section, but it could
559    // actually be anywhere.  Make sure we skip it because we will regenerate it
560    // during assembly.
561    if (current_rva == relocs_start_rva) {
562      if (!program->EmitPeRelocsInstruction())
563        return false;
564      uint32 relocs_size = base_relocation_table().size_;
565      if (relocs_size) {
566        p += relocs_size;
567        continue;
568      }
569    }
570
571    while (abs32_pos != abs32_locations_.end() && *abs32_pos < current_rva)
572      ++abs32_pos;
573
574    if (abs32_pos != abs32_locations_.end() && *abs32_pos == current_rva) {
575      uint32 target_address = Read32LittleEndian(p);
576      RVA target_rva = target_address - image_base();
577      // TODO(sra): target could be Label+offset.  It is not clear how to guess
578      // which it might be.  We assume offset==0.
579      if (!program->EmitAbs32(program->FindOrMakeAbs32Label(target_rva)))
580        return false;
581      p += 4;
582      continue;
583    }
584
585    while (rel32_pos != rel32_locations_.end() && *rel32_pos < current_rva)
586      ++rel32_pos;
587
588    if (rel32_pos != rel32_locations_.end() && *rel32_pos == current_rva) {
589      RVA target_rva = current_rva + 4 + Read32LittleEndian(p);
590      if (!program->EmitRel32(program->FindOrMakeRel32Label(target_rva)))
591        return false;
592      p += 4;
593      continue;
594    }
595
596    if (incomplete_disassembly_) {
597      if ((abs32_pos == abs32_locations_.end() || end_rva <= *abs32_pos) &&
598          (rel32_pos == rel32_locations_.end() || end_rva <= *rel32_pos) &&
599          (end_rva <= relocs_start_rva || current_rva >= relocs_start_rva)) {
600        // No more relocs in this section, don't bother encoding bytes.
601        break;
602      }
603    }
604
605    if (!program->EmitByteInstruction(*p))
606      return false;
607    p += 1;
608  }
609
610  return true;
611}
612
613#if COURGETTE_HISTOGRAM_TARGETS
614// Histogram is printed to std::cout.  It is purely for debugging the algorithm
615// and is only enabled manually in 'exploration' builds.  I don't want to add
616// command-line configuration for this feature because this code has to be
617// small, which means compiled-out.
618void DisassemblerWin32X86::HistogramTargets(const char* kind,
619                                            const std::map<RVA, int>& map) {
620  int total = 0;
621  std::map<int, std::vector<RVA> > h;
622  for (std::map<RVA, int>::const_iterator p = map.begin();
623       p != map.end();
624       ++p) {
625    h[p->second].push_back(p->first);
626    total += p->second;
627  }
628
629  std::cout << total << " " << kind << " to "
630            << map.size() << " unique targets" << std::endl;
631
632  std::cout << "indegree: #targets-with-indegree (example)" << std::endl;
633  const int kFirstN = 15;
634  bool someSkipped = false;
635  int index = 0;
636  for (std::map<int, std::vector<RVA> >::reverse_iterator p = h.rbegin();
637       p != h.rend();
638       ++p) {
639    ++index;
640    if (index <= kFirstN || p->first <= 3) {
641      if (someSkipped) {
642        std::cout << "..." << std::endl;
643      }
644      size_t count = p->second.size();
645      std::cout << std::dec << p->first << ": " << count;
646      if (count <= 2) {
647        for (size_t i = 0;  i < count;  ++i)
648          std::cout << "  " << DescribeRVA(p->second[i]);
649      }
650      std::cout << std::endl;
651      someSkipped = false;
652    } else {
653      someSkipped = true;
654    }
655  }
656}
657#endif  // COURGETTE_HISTOGRAM_TARGETS
658
659
660// DescribeRVA is for debugging only.  I would put it under #ifdef DEBUG except
661// that during development I'm finding I need to call it when compiled in
662// Release mode.  Hence:
663// TODO(sra): make this compile only for debug mode.
664std::string DisassemblerWin32X86::DescribeRVA(RVA rva) const {
665  const Section* section = RVAToSection(rva);
666  std::ostringstream s;
667  s << std::hex << rva;
668  if (section) {
669    s << " (";
670    s << SectionName(section) << "+"
671      << std::hex << (rva - section->virtual_address)
672      << ")";
673  }
674  return s.str();
675}
676
677const Section* DisassemblerWin32X86::FindNextSection(uint32 fileOffset) const {
678  const Section* best = 0;
679  for (int i = 0; i < number_of_sections_; i++) {
680    const Section* section = &sections_[i];
681    if (section->size_of_raw_data > 0) {  // i.e. has data in file.
682      if (fileOffset <= section->file_offset_of_raw_data) {
683        if (best == 0 ||
684            section->file_offset_of_raw_data < best->file_offset_of_raw_data) {
685          best = section;
686        }
687      }
688    }
689  }
690  return best;
691}
692
693RVA DisassemblerWin32X86::FileOffsetToRVA(uint32 file_offset) const {
694  for (int i = 0; i < number_of_sections_; i++) {
695    const Section* section = &sections_[i];
696    uint32 offset = file_offset - section->file_offset_of_raw_data;
697    if (offset < section->size_of_raw_data) {
698      return section->virtual_address + offset;
699    }
700  }
701  return 0;
702}
703
704bool DisassemblerWin32X86::ReadDataDirectory(
705    int index,
706    ImageDataDirectory* directory) {
707
708  if (index < number_of_data_directories_) {
709    size_t offset = index * 8 + offset_of_data_directories_;
710    if (offset >= size_of_optional_header_)
711      return Bad("number of data directories inconsistent");
712    const uint8* data_directory = optional_header_ + offset;
713    if (data_directory < start() ||
714        data_directory + 8 >= end())
715      return Bad("data directory outside image");
716    RVA rva = ReadU32(data_directory, 0);
717    size_t size  = ReadU32(data_directory, 4);
718    if (size > size_of_image_)
719      return Bad("data directory size too big");
720
721    // TODO(sra): validate RVA.
722    directory->address_ = rva;
723    directory->size_ = static_cast<uint32>(size);
724    return true;
725  } else {
726    directory->address_ = 0;
727    directory->size_ = 0;
728    return true;
729  }
730}
731
732}  // namespace courgette
733