audio_low_latency_output_win.cc revision cedac228d2dd51db4b79ea1e72c7f249408ee061
1// Copyright (c) 2012 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "media/audio/win/audio_low_latency_output_win.h"
6
7#include <Functiondiscoverykeys_devpkey.h>
8
9#include "base/command_line.h"
10#include "base/debug/trace_event.h"
11#include "base/logging.h"
12#include "base/memory/scoped_ptr.h"
13#include "base/metrics/histogram.h"
14#include "base/strings/utf_string_conversions.h"
15#include "base/win/scoped_propvariant.h"
16#include "media/audio/win/audio_manager_win.h"
17#include "media/audio/win/avrt_wrapper_win.h"
18#include "media/audio/win/core_audio_util_win.h"
19#include "media/base/limits.h"
20#include "media/base/media_switches.h"
21
22using base::win::ScopedComPtr;
23using base::win::ScopedCOMInitializer;
24using base::win::ScopedCoMem;
25
26namespace media {
27
28// static
29AUDCLNT_SHAREMODE WASAPIAudioOutputStream::GetShareMode() {
30  const CommandLine* cmd_line = CommandLine::ForCurrentProcess();
31  if (cmd_line->HasSwitch(switches::kEnableExclusiveAudio))
32    return AUDCLNT_SHAREMODE_EXCLUSIVE;
33  return AUDCLNT_SHAREMODE_SHARED;
34}
35
36// static
37int WASAPIAudioOutputStream::HardwareSampleRate(const std::string& device_id) {
38  WAVEFORMATPCMEX format;
39  ScopedComPtr<IAudioClient> client;
40  if (device_id.empty()) {
41    client = CoreAudioUtil::CreateDefaultClient(eRender, eConsole);
42  } else {
43    ScopedComPtr<IMMDevice> device(CoreAudioUtil::CreateDevice(device_id));
44    if (!device)
45      return 0;
46    client = CoreAudioUtil::CreateClient(device);
47  }
48
49  if (!client || FAILED(CoreAudioUtil::GetSharedModeMixFormat(client, &format)))
50    return 0;
51
52  return static_cast<int>(format.Format.nSamplesPerSec);
53}
54
55WASAPIAudioOutputStream::WASAPIAudioOutputStream(AudioManagerWin* manager,
56                                                 const std::string& device_id,
57                                                 const AudioParameters& params,
58                                                 ERole device_role)
59    : creating_thread_id_(base::PlatformThread::CurrentId()),
60      manager_(manager),
61      format_(),
62      opened_(false),
63      volume_(1.0),
64      packet_size_frames_(0),
65      packet_size_bytes_(0),
66      endpoint_buffer_size_frames_(0),
67      device_id_(device_id),
68      device_role_(device_role),
69      share_mode_(GetShareMode()),
70      num_written_frames_(0),
71      source_(NULL),
72      audio_bus_(AudioBus::Create(params)) {
73  DCHECK(manager_);
74  VLOG(1) << "WASAPIAudioOutputStream::WASAPIAudioOutputStream()";
75  VLOG_IF(1, share_mode_ == AUDCLNT_SHAREMODE_EXCLUSIVE)
76      << "Core Audio (WASAPI) EXCLUSIVE MODE is enabled.";
77
78  // Load the Avrt DLL if not already loaded. Required to support MMCSS.
79  bool avrt_init = avrt::Initialize();
80  DCHECK(avrt_init) << "Failed to load the avrt.dll";
81
82  // Set up the desired render format specified by the client. We use the
83  // WAVE_FORMAT_EXTENSIBLE structure to ensure that multiple channel ordering
84  // and high precision data can be supported.
85
86  // Begin with the WAVEFORMATEX structure that specifies the basic format.
87  WAVEFORMATEX* format = &format_.Format;
88  format->wFormatTag = WAVE_FORMAT_EXTENSIBLE;
89  format->nChannels = params.channels();
90  format->nSamplesPerSec = params.sample_rate();
91  format->wBitsPerSample = params.bits_per_sample();
92  format->nBlockAlign = (format->wBitsPerSample / 8) * format->nChannels;
93  format->nAvgBytesPerSec = format->nSamplesPerSec * format->nBlockAlign;
94  format->cbSize = sizeof(WAVEFORMATEXTENSIBLE) - sizeof(WAVEFORMATEX);
95
96  // Add the parts which are unique to WAVE_FORMAT_EXTENSIBLE.
97  format_.Samples.wValidBitsPerSample = params.bits_per_sample();
98  format_.dwChannelMask = CoreAudioUtil::GetChannelConfig(device_id, eRender);
99  format_.SubFormat = KSDATAFORMAT_SUBTYPE_PCM;
100
101  // Store size (in different units) of audio packets which we expect to
102  // get from the audio endpoint device in each render event.
103  packet_size_frames_ = params.frames_per_buffer();
104  packet_size_bytes_ = params.GetBytesPerBuffer();
105  VLOG(1) << "Number of bytes per audio frame  : " << format->nBlockAlign;
106  VLOG(1) << "Number of audio frames per packet: " << packet_size_frames_;
107  VLOG(1) << "Number of bytes per packet       : " << packet_size_bytes_;
108  VLOG(1) << "Number of milliseconds per packet: "
109          << params.GetBufferDuration().InMillisecondsF();
110
111  // All events are auto-reset events and non-signaled initially.
112
113  // Create the event which the audio engine will signal each time
114  // a buffer becomes ready to be processed by the client.
115  audio_samples_render_event_.Set(CreateEvent(NULL, FALSE, FALSE, NULL));
116  DCHECK(audio_samples_render_event_.IsValid());
117
118  // Create the event which will be set in Stop() when capturing shall stop.
119  stop_render_event_.Set(CreateEvent(NULL, FALSE, FALSE, NULL));
120  DCHECK(stop_render_event_.IsValid());
121}
122
123WASAPIAudioOutputStream::~WASAPIAudioOutputStream() {}
124
125bool WASAPIAudioOutputStream::Open() {
126  VLOG(1) << "WASAPIAudioOutputStream::Open()";
127  DCHECK_EQ(GetCurrentThreadId(), creating_thread_id_);
128  if (opened_)
129    return true;
130
131  // Create an IAudioClient interface for the default rendering IMMDevice.
132  ScopedComPtr<IAudioClient> audio_client;
133  if (device_id_.empty() ||
134      CoreAudioUtil::DeviceIsDefault(eRender, device_role_, device_id_)) {
135    audio_client = CoreAudioUtil::CreateDefaultClient(eRender, device_role_);
136  } else {
137    ScopedComPtr<IMMDevice> device(CoreAudioUtil::CreateDevice(device_id_));
138    DLOG_IF(ERROR, !device) << "Failed to open device: " << device_id_;
139    if (device)
140      audio_client = CoreAudioUtil::CreateClient(device);
141  }
142
143  if (!audio_client)
144    return false;
145
146  // Extra sanity to ensure that the provided device format is still valid.
147  if (!CoreAudioUtil::IsFormatSupported(audio_client,
148                                        share_mode_,
149                                        &format_)) {
150    LOG(ERROR) << "Audio parameters are not supported.";
151    return false;
152  }
153
154  HRESULT hr = S_FALSE;
155  if (share_mode_ == AUDCLNT_SHAREMODE_SHARED) {
156    // Initialize the audio stream between the client and the device in shared
157    // mode and using event-driven buffer handling.
158    hr = CoreAudioUtil::SharedModeInitialize(
159        audio_client, &format_, audio_samples_render_event_.Get(),
160        &endpoint_buffer_size_frames_);
161    if (FAILED(hr))
162      return false;
163
164    // We know from experience that the best possible callback sequence is
165    // achieved when the packet size (given by the native device period)
166    // is an even divisor of the endpoint buffer size.
167    // Examples: 48kHz => 960 % 480, 44.1kHz => 896 % 448 or 882 % 441.
168    if (endpoint_buffer_size_frames_ % packet_size_frames_ != 0) {
169      LOG(ERROR)
170          << "Bailing out due to non-perfect timing.  Buffer size of "
171          << packet_size_frames_ << " is not an even divisor of "
172          << endpoint_buffer_size_frames_;
173      return false;
174    }
175  } else {
176    // TODO(henrika): break out to CoreAudioUtil::ExclusiveModeInitialize()
177    // when removing the enable-exclusive-audio flag.
178    hr = ExclusiveModeInitialization(audio_client,
179                                     audio_samples_render_event_.Get(),
180                                     &endpoint_buffer_size_frames_);
181    if (FAILED(hr))
182      return false;
183
184    // The buffer scheme for exclusive mode streams is not designed for max
185    // flexibility. We only allow a "perfect match" between the packet size set
186    // by the user and the actual endpoint buffer size.
187    if (endpoint_buffer_size_frames_ != packet_size_frames_) {
188      LOG(ERROR) << "Bailing out due to non-perfect timing.";
189      return false;
190    }
191  }
192
193  // Create an IAudioRenderClient client for an initialized IAudioClient.
194  // The IAudioRenderClient interface enables us to write output data to
195  // a rendering endpoint buffer.
196  ScopedComPtr<IAudioRenderClient> audio_render_client =
197      CoreAudioUtil::CreateRenderClient(audio_client);
198  if (!audio_render_client)
199    return false;
200
201   // Store valid COM interfaces.
202  audio_client_ = audio_client;
203  audio_render_client_ = audio_render_client;
204
205  hr = audio_client_->GetService(__uuidof(IAudioClock),
206                                 audio_clock_.ReceiveVoid());
207  if (FAILED(hr)) {
208    LOG(ERROR) << "Failed to get IAudioClock service.";
209    return false;
210  }
211
212  opened_ = true;
213  return true;
214}
215
216void WASAPIAudioOutputStream::Start(AudioSourceCallback* callback) {
217  VLOG(1) << "WASAPIAudioOutputStream::Start()";
218  DCHECK_EQ(GetCurrentThreadId(), creating_thread_id_);
219  CHECK(callback);
220  CHECK(opened_);
221
222  if (render_thread_) {
223    CHECK_EQ(callback, source_);
224    return;
225  }
226
227  source_ = callback;
228
229  // Ensure that the endpoint buffer is prepared with silence.
230  if (share_mode_ == AUDCLNT_SHAREMODE_SHARED) {
231    if (!CoreAudioUtil::FillRenderEndpointBufferWithSilence(
232             audio_client_, audio_render_client_)) {
233      LOG(ERROR) << "Failed to prepare endpoint buffers with silence.";
234      callback->OnError(this);
235      return;
236    }
237  }
238  num_written_frames_ = endpoint_buffer_size_frames_;
239
240  // Create and start the thread that will drive the rendering by waiting for
241  // render events.
242  render_thread_.reset(
243      new base::DelegateSimpleThread(this, "wasapi_render_thread"));
244  render_thread_->Start();
245  if (!render_thread_->HasBeenStarted()) {
246    LOG(ERROR) << "Failed to start WASAPI render thread.";
247    StopThread();
248    callback->OnError(this);
249    return;
250  }
251
252  // Start streaming data between the endpoint buffer and the audio engine.
253  HRESULT hr = audio_client_->Start();
254  if (FAILED(hr)) {
255    PLOG(ERROR) << "Failed to start output streaming: " << std::hex << hr;
256    StopThread();
257    callback->OnError(this);
258  }
259}
260
261void WASAPIAudioOutputStream::Stop() {
262  VLOG(1) << "WASAPIAudioOutputStream::Stop()";
263  DCHECK_EQ(GetCurrentThreadId(), creating_thread_id_);
264  if (!render_thread_)
265    return;
266
267  // Stop output audio streaming.
268  HRESULT hr = audio_client_->Stop();
269  if (FAILED(hr)) {
270    PLOG(ERROR) << "Failed to stop output streaming: " << std::hex << hr;
271    source_->OnError(this);
272  }
273
274  // Make a local copy of |source_| since StopThread() will clear it.
275  AudioSourceCallback* callback = source_;
276  StopThread();
277
278  // Flush all pending data and reset the audio clock stream position to 0.
279  hr = audio_client_->Reset();
280  if (FAILED(hr)) {
281    PLOG(ERROR) << "Failed to reset streaming: " << std::hex << hr;
282    callback->OnError(this);
283  }
284
285  // Extra safety check to ensure that the buffers are cleared.
286  // If the buffers are not cleared correctly, the next call to Start()
287  // would fail with AUDCLNT_E_BUFFER_ERROR at IAudioRenderClient::GetBuffer().
288  // This check is is only needed for shared-mode streams.
289  if (share_mode_ == AUDCLNT_SHAREMODE_SHARED) {
290    UINT32 num_queued_frames = 0;
291    audio_client_->GetCurrentPadding(&num_queued_frames);
292    DCHECK_EQ(0u, num_queued_frames);
293  }
294}
295
296void WASAPIAudioOutputStream::Close() {
297  VLOG(1) << "WASAPIAudioOutputStream::Close()";
298  DCHECK_EQ(GetCurrentThreadId(), creating_thread_id_);
299
300  // It is valid to call Close() before calling open or Start().
301  // It is also valid to call Close() after Start() has been called.
302  Stop();
303
304  // Inform the audio manager that we have been closed. This will cause our
305  // destruction.
306  manager_->ReleaseOutputStream(this);
307}
308
309void WASAPIAudioOutputStream::SetVolume(double volume) {
310  VLOG(1) << "SetVolume(volume=" << volume << ")";
311  float volume_float = static_cast<float>(volume);
312  if (volume_float < 0.0f || volume_float > 1.0f) {
313    return;
314  }
315  volume_ = volume_float;
316}
317
318void WASAPIAudioOutputStream::GetVolume(double* volume) {
319  VLOG(1) << "GetVolume()";
320  *volume = static_cast<double>(volume_);
321}
322
323void WASAPIAudioOutputStream::Run() {
324  ScopedCOMInitializer com_init(ScopedCOMInitializer::kMTA);
325
326  // Increase the thread priority.
327  render_thread_->SetThreadPriority(base::kThreadPriority_RealtimeAudio);
328
329  // Enable MMCSS to ensure that this thread receives prioritized access to
330  // CPU resources.
331  DWORD task_index = 0;
332  HANDLE mm_task = avrt::AvSetMmThreadCharacteristics(L"Pro Audio",
333                                                      &task_index);
334  bool mmcss_is_ok =
335      (mm_task && avrt::AvSetMmThreadPriority(mm_task, AVRT_PRIORITY_CRITICAL));
336  if (!mmcss_is_ok) {
337    // Failed to enable MMCSS on this thread. It is not fatal but can lead
338    // to reduced QoS at high load.
339    DWORD err = GetLastError();
340    LOG(WARNING) << "Failed to enable MMCSS (error code=" << err << ").";
341  }
342
343  HRESULT hr = S_FALSE;
344
345  bool playing = true;
346  bool error = false;
347  HANDLE wait_array[] = { stop_render_event_,
348                          audio_samples_render_event_ };
349  UINT64 device_frequency = 0;
350
351  // The device frequency is the frequency generated by the hardware clock in
352  // the audio device. The GetFrequency() method reports a constant frequency.
353  hr = audio_clock_->GetFrequency(&device_frequency);
354  error = FAILED(hr);
355  PLOG_IF(ERROR, error) << "Failed to acquire IAudioClock interface: "
356                        << std::hex << hr;
357
358  // Keep rendering audio until the stop event or the stream-switch event
359  // is signaled. An error event can also break the main thread loop.
360  while (playing && !error) {
361    // Wait for a close-down event, stream-switch event or a new render event.
362    DWORD wait_result = WaitForMultipleObjects(arraysize(wait_array),
363                                               wait_array,
364                                               FALSE,
365                                               INFINITE);
366
367    switch (wait_result) {
368      case WAIT_OBJECT_0 + 0:
369        // |stop_render_event_| has been set.
370        playing = false;
371        break;
372      case WAIT_OBJECT_0 + 1:
373        // |audio_samples_render_event_| has been set.
374        error = !RenderAudioFromSource(device_frequency);
375        break;
376      default:
377        error = true;
378        break;
379    }
380  }
381
382  if (playing && error) {
383    // Stop audio rendering since something has gone wrong in our main thread
384    // loop. Note that, we are still in a "started" state, hence a Stop() call
385    // is required to join the thread properly.
386    audio_client_->Stop();
387    PLOG(ERROR) << "WASAPI rendering failed.";
388  }
389
390  // Disable MMCSS.
391  if (mm_task && !avrt::AvRevertMmThreadCharacteristics(mm_task)) {
392    PLOG(WARNING) << "Failed to disable MMCSS";
393  }
394}
395
396bool WASAPIAudioOutputStream::RenderAudioFromSource(UINT64 device_frequency) {
397  TRACE_EVENT0("audio", "RenderAudioFromSource");
398
399  HRESULT hr = S_FALSE;
400  UINT32 num_queued_frames = 0;
401  uint8* audio_data = NULL;
402
403  // Contains how much new data we can write to the buffer without
404  // the risk of overwriting previously written data that the audio
405  // engine has not yet read from the buffer.
406  size_t num_available_frames = 0;
407
408  if (share_mode_ == AUDCLNT_SHAREMODE_SHARED) {
409    // Get the padding value which represents the amount of rendering
410    // data that is queued up to play in the endpoint buffer.
411    hr = audio_client_->GetCurrentPadding(&num_queued_frames);
412    num_available_frames =
413        endpoint_buffer_size_frames_ - num_queued_frames;
414    if (FAILED(hr)) {
415      DLOG(ERROR) << "Failed to retrieve amount of available space: "
416                  << std::hex << hr;
417      return false;
418    }
419  } else {
420    // While the stream is running, the system alternately sends one
421    // buffer or the other to the client. This form of double buffering
422    // is referred to as "ping-ponging". Each time the client receives
423    // a buffer from the system (triggers this event) the client must
424    // process the entire buffer. Calls to the GetCurrentPadding method
425    // are unnecessary because the packet size must always equal the
426    // buffer size. In contrast to the shared mode buffering scheme,
427    // the latency for an event-driven, exclusive-mode stream depends
428    // directly on the buffer size.
429    num_available_frames = endpoint_buffer_size_frames_;
430  }
431
432  // Check if there is enough available space to fit the packet size
433  // specified by the client.
434  if (num_available_frames < packet_size_frames_)
435    return true;
436
437  DLOG_IF(ERROR, num_available_frames % packet_size_frames_ != 0)
438      << "Non-perfect timing detected (num_available_frames="
439      << num_available_frames << ", packet_size_frames="
440      << packet_size_frames_ << ")";
441
442  // Derive the number of packets we need to get from the client to
443  // fill up the available area in the endpoint buffer.
444  // |num_packets| will always be one for exclusive-mode streams and
445  // will be one in most cases for shared mode streams as well.
446  // However, we have found that two packets can sometimes be
447  // required.
448  size_t num_packets = (num_available_frames / packet_size_frames_);
449
450  for (size_t n = 0; n < num_packets; ++n) {
451    // Grab all available space in the rendering endpoint buffer
452    // into which the client can write a data packet.
453    hr = audio_render_client_->GetBuffer(packet_size_frames_,
454                                         &audio_data);
455    if (FAILED(hr)) {
456      DLOG(ERROR) << "Failed to use rendering audio buffer: "
457                 << std::hex << hr;
458      return false;
459    }
460
461    // Derive the audio delay which corresponds to the delay between
462    // a render event and the time when the first audio sample in a
463    // packet is played out through the speaker. This delay value
464    // can typically be utilized by an acoustic echo-control (AEC)
465    // unit at the render side.
466    UINT64 position = 0;
467    int audio_delay_bytes = 0;
468    hr = audio_clock_->GetPosition(&position, NULL);
469    if (SUCCEEDED(hr)) {
470      // Stream position of the sample that is currently playing
471      // through the speaker.
472      double pos_sample_playing_frames = format_.Format.nSamplesPerSec *
473          (static_cast<double>(position) / device_frequency);
474
475      // Stream position of the last sample written to the endpoint
476      // buffer. Note that, the packet we are about to receive in
477      // the upcoming callback is also included.
478      size_t pos_last_sample_written_frames =
479          num_written_frames_ + packet_size_frames_;
480
481      // Derive the actual delay value which will be fed to the
482      // render client using the OnMoreData() callback.
483      audio_delay_bytes = (pos_last_sample_written_frames -
484          pos_sample_playing_frames) *  format_.Format.nBlockAlign;
485    }
486
487    // Read a data packet from the registered client source and
488    // deliver a delay estimate in the same callback to the client.
489    // A time stamp is also stored in the AudioBuffersState. This
490    // time stamp can be used at the client side to compensate for
491    // the delay between the usage of the delay value and the time
492    // of generation.
493
494    int frames_filled = source_->OnMoreData(
495        audio_bus_.get(), AudioBuffersState(0, audio_delay_bytes));
496    uint32 num_filled_bytes = frames_filled * format_.Format.nBlockAlign;
497    DCHECK_LE(num_filled_bytes, packet_size_bytes_);
498
499    // Note: If this ever changes to output raw float the data must be
500    // clipped and sanitized since it may come from an untrusted
501    // source such as NaCl.
502    const int bytes_per_sample = format_.Format.wBitsPerSample >> 3;
503    audio_bus_->Scale(volume_);
504    audio_bus_->ToInterleaved(
505        frames_filled, bytes_per_sample, audio_data);
506
507
508    // Release the buffer space acquired in the GetBuffer() call.
509    // Render silence if we were not able to fill up the buffer totally.
510    DWORD flags = (num_filled_bytes < packet_size_bytes_) ?
511        AUDCLNT_BUFFERFLAGS_SILENT : 0;
512    audio_render_client_->ReleaseBuffer(packet_size_frames_, flags);
513
514    num_written_frames_ += packet_size_frames_;
515  }
516
517  return true;
518}
519
520HRESULT WASAPIAudioOutputStream::ExclusiveModeInitialization(
521    IAudioClient* client, HANDLE event_handle, uint32* endpoint_buffer_size) {
522  DCHECK_EQ(share_mode_, AUDCLNT_SHAREMODE_EXCLUSIVE);
523
524  float f = (1000.0 * packet_size_frames_) / format_.Format.nSamplesPerSec;
525  REFERENCE_TIME requested_buffer_duration =
526      static_cast<REFERENCE_TIME>(f * 10000.0 + 0.5);
527
528  DWORD stream_flags = AUDCLNT_STREAMFLAGS_NOPERSIST;
529  bool use_event = (event_handle != NULL &&
530                    event_handle != INVALID_HANDLE_VALUE);
531  if (use_event)
532    stream_flags |= AUDCLNT_STREAMFLAGS_EVENTCALLBACK;
533  VLOG(2) << "stream_flags: 0x" << std::hex << stream_flags;
534
535  // Initialize the audio stream between the client and the device.
536  // For an exclusive-mode stream that uses event-driven buffering, the
537  // caller must specify nonzero values for hnsPeriodicity and
538  // hnsBufferDuration, and the values of these two parameters must be equal.
539  // The Initialize method allocates two buffers for the stream. Each buffer
540  // is equal in duration to the value of the hnsBufferDuration parameter.
541  // Following the Initialize call for a rendering stream, the caller should
542  // fill the first of the two buffers before starting the stream.
543  HRESULT hr = S_FALSE;
544  hr = client->Initialize(AUDCLNT_SHAREMODE_EXCLUSIVE,
545                          stream_flags,
546                          requested_buffer_duration,
547                          requested_buffer_duration,
548                          reinterpret_cast<WAVEFORMATEX*>(&format_),
549                          NULL);
550  if (FAILED(hr)) {
551    if (hr == AUDCLNT_E_BUFFER_SIZE_NOT_ALIGNED) {
552      LOG(ERROR) << "AUDCLNT_E_BUFFER_SIZE_NOT_ALIGNED";
553
554      UINT32 aligned_buffer_size = 0;
555      client->GetBufferSize(&aligned_buffer_size);
556      VLOG(1) << "Use aligned buffer size instead: " << aligned_buffer_size;
557
558      // Calculate new aligned periodicity. Each unit of reference time
559      // is 100 nanoseconds.
560      REFERENCE_TIME aligned_buffer_duration = static_cast<REFERENCE_TIME>(
561          (10000000.0 * aligned_buffer_size / format_.Format.nSamplesPerSec)
562          + 0.5);
563
564      // It is possible to re-activate and re-initialize the audio client
565      // at this stage but we bail out with an error code instead and
566      // combine it with a log message which informs about the suggested
567      // aligned buffer size which should be used instead.
568      VLOG(1) << "aligned_buffer_duration: "
569              << static_cast<double>(aligned_buffer_duration / 10000.0)
570              << " [ms]";
571    } else if (hr == AUDCLNT_E_INVALID_DEVICE_PERIOD) {
572      // We will get this error if we try to use a smaller buffer size than
573      // the minimum supported size (usually ~3ms on Windows 7).
574      LOG(ERROR) << "AUDCLNT_E_INVALID_DEVICE_PERIOD";
575    }
576    return hr;
577  }
578
579  if (use_event) {
580    hr = client->SetEventHandle(event_handle);
581    if (FAILED(hr)) {
582      VLOG(1) << "IAudioClient::SetEventHandle: " << std::hex << hr;
583      return hr;
584    }
585  }
586
587  UINT32 buffer_size_in_frames = 0;
588  hr = client->GetBufferSize(&buffer_size_in_frames);
589  if (FAILED(hr)) {
590    VLOG(1) << "IAudioClient::GetBufferSize: " << std::hex << hr;
591    return hr;
592  }
593
594  *endpoint_buffer_size = buffer_size_in_frames;
595  VLOG(2) << "endpoint buffer size: " << buffer_size_in_frames;
596  return hr;
597}
598
599void WASAPIAudioOutputStream::StopThread() {
600  if (render_thread_ ) {
601    if (render_thread_->HasBeenStarted()) {
602      // Wait until the thread completes and perform cleanup.
603      SetEvent(stop_render_event_.Get());
604      render_thread_->Join();
605    }
606
607    render_thread_.reset();
608
609    // Ensure that we don't quit the main thread loop immediately next
610    // time Start() is called.
611    ResetEvent(stop_render_event_.Get());
612  }
613
614  source_ = NULL;
615}
616
617}  // namespace media
618