quic_framer.cc revision e5d81f57cb97b3b6b7fccc9c5610d21eb81db09d
1// Copyright (c) 2012 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "net/quic/quic_framer.h"
6
7#include "base/containers/hash_tables.h"
8#include "base/stl_util.h"
9#include "net/quic/crypto/crypto_framer.h"
10#include "net/quic/crypto/crypto_handshake_message.h"
11#include "net/quic/crypto/crypto_protocol.h"
12#include "net/quic/crypto/quic_decrypter.h"
13#include "net/quic/crypto/quic_encrypter.h"
14#include "net/quic/quic_data_reader.h"
15#include "net/quic/quic_data_writer.h"
16#include "net/quic/quic_flags.h"
17#include "net/quic/quic_socket_address_coder.h"
18
19using base::StringPiece;
20using std::make_pair;
21using std::map;
22using std::max;
23using std::min;
24using std::numeric_limits;
25using std::string;
26
27namespace net {
28
29namespace {
30
31// Mask to select the lowest 48 bits of a sequence number.
32const QuicPacketSequenceNumber k6ByteSequenceNumberMask =
33    GG_UINT64_C(0x0000FFFFFFFFFFFF);
34const QuicPacketSequenceNumber k4ByteSequenceNumberMask =
35    GG_UINT64_C(0x00000000FFFFFFFF);
36const QuicPacketSequenceNumber k2ByteSequenceNumberMask =
37    GG_UINT64_C(0x000000000000FFFF);
38const QuicPacketSequenceNumber k1ByteSequenceNumberMask =
39    GG_UINT64_C(0x00000000000000FF);
40
41const QuicConnectionId k1ByteConnectionIdMask = GG_UINT64_C(0x00000000000000FF);
42const QuicConnectionId k4ByteConnectionIdMask = GG_UINT64_C(0x00000000FFFFFFFF);
43
44// Number of bits the sequence number length bits are shifted from the right
45// edge of the public header.
46const uint8 kPublicHeaderSequenceNumberShift = 4;
47
48// New Frame Types, QUIC v. >= 10:
49// There are two interpretations for the Frame Type byte in the QUIC protocol,
50// resulting in two Frame Types: Special Frame Types and Regular Frame Types.
51//
52// Regular Frame Types use the Frame Type byte simply. Currently defined
53// Regular Frame Types are:
54// Padding            : 0b 00000000 (0x00)
55// ResetStream        : 0b 00000001 (0x01)
56// ConnectionClose    : 0b 00000010 (0x02)
57// GoAway             : 0b 00000011 (0x03)
58// WindowUpdate       : 0b 00000100 (0x04)
59// Blocked            : 0b 00000101 (0x05)
60//
61// Special Frame Types encode both a Frame Type and corresponding flags
62// all in the Frame Type byte. Currently defined Special Frame Types are:
63// Stream             : 0b 1xxxxxxx
64// Ack                : 0b 01xxxxxx
65// CongestionFeedback : 0b 001xxxxx
66//
67// Semantics of the flag bits above (the x bits) depends on the frame type.
68
69// Masks to determine if the frame type is a special use
70// and for specific special frame types.
71const uint8 kQuicFrameTypeSpecialMask = 0xE0;  // 0b 11100000
72const uint8 kQuicFrameTypeStreamMask = 0x80;
73const uint8 kQuicFrameTypeAckMask = 0x40;
74const uint8 kQuicFrameTypeCongestionFeedbackMask = 0x20;
75
76// Stream frame relative shifts and masks for interpreting the stream flags.
77// StreamID may be 1, 2, 3, or 4 bytes.
78const uint8 kQuicStreamIdShift = 2;
79const uint8 kQuicStreamIDLengthMask = 0x03;
80
81// Offset may be 0, 2, 3, 4, 5, 6, 7, 8 bytes.
82const uint8 kQuicStreamOffsetShift = 3;
83const uint8 kQuicStreamOffsetMask = 0x07;
84
85// Data length may be 0 or 2 bytes.
86const uint8 kQuicStreamDataLengthShift = 1;
87const uint8 kQuicStreamDataLengthMask = 0x01;
88
89// Fin bit may be set or not.
90const uint8 kQuicStreamFinShift = 1;
91const uint8 kQuicStreamFinMask = 0x01;
92
93// Sequence number size shift used in AckFrames.
94const uint8 kQuicSequenceNumberLengthShift = 2;
95
96// Acks may be truncated.
97const uint8 kQuicAckTruncatedShift = 1;
98const uint8 kQuicAckTruncatedMask = 0x01;
99
100// Acks may not have any nacks.
101const uint8 kQuicHasNacksMask = 0x01;
102
103// Returns the absolute value of the difference between |a| and |b|.
104QuicPacketSequenceNumber Delta(QuicPacketSequenceNumber a,
105                               QuicPacketSequenceNumber b) {
106  // Since these are unsigned numbers, we can't just return abs(a - b)
107  if (a < b) {
108    return b - a;
109  }
110  return a - b;
111}
112
113QuicPacketSequenceNumber ClosestTo(QuicPacketSequenceNumber target,
114                                   QuicPacketSequenceNumber a,
115                                   QuicPacketSequenceNumber b) {
116  return (Delta(target, a) < Delta(target, b)) ? a : b;
117}
118
119QuicSequenceNumberLength ReadSequenceNumberLength(uint8 flags) {
120  switch (flags & PACKET_FLAGS_6BYTE_SEQUENCE) {
121    case PACKET_FLAGS_6BYTE_SEQUENCE:
122      return PACKET_6BYTE_SEQUENCE_NUMBER;
123    case PACKET_FLAGS_4BYTE_SEQUENCE:
124      return PACKET_4BYTE_SEQUENCE_NUMBER;
125    case PACKET_FLAGS_2BYTE_SEQUENCE:
126      return PACKET_2BYTE_SEQUENCE_NUMBER;
127    case PACKET_FLAGS_1BYTE_SEQUENCE:
128      return PACKET_1BYTE_SEQUENCE_NUMBER;
129    default:
130      LOG(DFATAL) << "Unreachable case statement.";
131      return PACKET_6BYTE_SEQUENCE_NUMBER;
132  }
133}
134
135bool CanTruncate(
136    QuicVersion version, const QuicFrame& frame, size_t free_bytes) {
137  if ((frame.type == ACK_FRAME || frame.type == CONNECTION_CLOSE_FRAME) &&
138      free_bytes >=
139          QuicFramer::GetMinAckFrameSize(version,
140                                         PACKET_6BYTE_SEQUENCE_NUMBER,
141                                         PACKET_6BYTE_SEQUENCE_NUMBER)) {
142    return true;
143  }
144  return false;
145}
146
147}  // namespace
148
149bool QuicFramerVisitorInterface::OnWindowUpdateFrame(
150    const QuicWindowUpdateFrame& frame) {
151  return true;
152}
153
154bool QuicFramerVisitorInterface::OnBlockedFrame(const QuicBlockedFrame& frame) {
155  return true;
156}
157
158QuicFramer::QuicFramer(const QuicVersionVector& supported_versions,
159                       QuicTime creation_time,
160                       bool is_server)
161    : visitor_(NULL),
162      fec_builder_(NULL),
163      entropy_calculator_(NULL),
164      error_(QUIC_NO_ERROR),
165      last_sequence_number_(0),
166      last_serialized_connection_id_(0),
167      supported_versions_(supported_versions),
168      alternative_decrypter_latch_(false),
169      is_server_(is_server),
170      validate_flags_(true),
171      creation_time_(creation_time) {
172  DCHECK(!supported_versions.empty());
173  quic_version_ = supported_versions_[0];
174  decrypter_.reset(QuicDecrypter::Create(kNULL));
175  encrypter_[ENCRYPTION_NONE].reset(
176      QuicEncrypter::Create(kNULL));
177}
178
179QuicFramer::~QuicFramer() {}
180
181// static
182size_t QuicFramer::GetMinStreamFrameSize(QuicVersion version,
183                                         QuicStreamId stream_id,
184                                         QuicStreamOffset offset,
185                                         bool last_frame_in_packet) {
186  return kQuicFrameTypeSize + GetStreamIdSize(stream_id) +
187      GetStreamOffsetSize(offset) +
188      (last_frame_in_packet ? 0 : kQuicStreamPayloadLengthSize);
189}
190
191// static
192size_t QuicFramer::GetMinAckFrameSize(
193    QuicVersion version,
194    QuicSequenceNumberLength sequence_number_length,
195    QuicSequenceNumberLength largest_observed_length) {
196  return kQuicFrameTypeSize + kQuicEntropyHashSize +
197      sequence_number_length + kQuicEntropyHashSize +
198      largest_observed_length + kQuicDeltaTimeLargestObservedSize;
199}
200
201// static
202size_t QuicFramer::GetStopWaitingFrameSize(
203    QuicSequenceNumberLength sequence_number_length) {
204  return kQuicFrameTypeSize + kQuicEntropyHashSize +
205      sequence_number_length;
206}
207
208// static
209size_t QuicFramer::GetMinRstStreamFrameSize(QuicVersion quic_version) {
210  if (quic_version > QUIC_VERSION_13) {
211    return kQuicFrameTypeSize + kQuicMaxStreamIdSize +
212           kQuicMaxStreamOffsetSize + kQuicErrorCodeSize +
213           kQuicErrorDetailsLengthSize;
214  } else {
215    return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicErrorCodeSize +
216           kQuicErrorDetailsLengthSize;
217  }
218}
219
220// static
221size_t QuicFramer::GetMinConnectionCloseFrameSize() {
222  return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize;
223}
224
225// static
226size_t QuicFramer::GetMinGoAwayFrameSize() {
227  return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize +
228      kQuicMaxStreamIdSize;
229}
230
231// static
232size_t QuicFramer::GetWindowUpdateFrameSize() {
233  return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize;
234}
235
236// static
237size_t QuicFramer::GetBlockedFrameSize() {
238  return kQuicFrameTypeSize + kQuicMaxStreamIdSize;
239}
240
241// static
242size_t QuicFramer::GetStreamIdSize(QuicStreamId stream_id) {
243  // Sizes are 1 through 4 bytes.
244  for (int i = 1; i <= 4; ++i) {
245    stream_id >>= 8;
246    if (stream_id == 0) {
247      return i;
248    }
249  }
250  LOG(DFATAL) << "Failed to determine StreamIDSize.";
251  return 4;
252}
253
254// static
255size_t QuicFramer::GetStreamOffsetSize(QuicStreamOffset offset) {
256  // 0 is a special case.
257  if (offset == 0) {
258    return 0;
259  }
260  // 2 through 8 are the remaining sizes.
261  offset >>= 8;
262  for (int i = 2; i <= 8; ++i) {
263    offset >>= 8;
264    if (offset == 0) {
265      return i;
266    }
267  }
268  LOG(DFATAL) << "Failed to determine StreamOffsetSize.";
269  return 8;
270}
271
272// static
273size_t QuicFramer::GetVersionNegotiationPacketSize(size_t number_versions) {
274  return kPublicFlagsSize + PACKET_8BYTE_CONNECTION_ID +
275      number_versions * kQuicVersionSize;
276}
277
278bool QuicFramer::IsSupportedVersion(const QuicVersion version) const {
279  for (size_t i = 0; i < supported_versions_.size(); ++i) {
280    if (version == supported_versions_[i]) {
281      return true;
282    }
283  }
284  return false;
285}
286
287size_t QuicFramer::GetSerializedFrameLength(
288    const QuicFrame& frame,
289    size_t free_bytes,
290    bool first_frame,
291    bool last_frame,
292    QuicSequenceNumberLength sequence_number_length) {
293  if (frame.type == PADDING_FRAME) {
294    // PADDING implies end of packet.
295    return free_bytes;
296  }
297  size_t frame_len =
298      ComputeFrameLength(frame, last_frame, sequence_number_length);
299  if (frame_len > free_bytes) {
300    // Only truncate the first frame in a packet, so if subsequent ones go
301    // over, stop including more frames.
302    if (!first_frame) {
303      return 0;
304    }
305    if (CanTruncate(quic_version_, frame, free_bytes)) {
306      // Truncate the frame so the packet will not exceed kMaxPacketSize.
307      // Note that we may not use every byte of the writer in this case.
308      DVLOG(1) << "Truncating large frame";
309      return free_bytes;
310    } else if (!FLAGS_quic_allow_oversized_packets_for_test) {
311      return 0;
312    }
313  }
314  return frame_len;
315}
316
317QuicFramer::AckFrameInfo::AckFrameInfo() : max_delta(0) { }
318
319QuicFramer::AckFrameInfo::~AckFrameInfo() { }
320
321QuicPacketEntropyHash QuicFramer::GetPacketEntropyHash(
322    const QuicPacketHeader& header) const {
323  return header.entropy_flag << (header.packet_sequence_number % 8);
324}
325
326// Test only.
327SerializedPacket QuicFramer::BuildUnsizedDataPacket(
328    const QuicPacketHeader& header,
329    const QuicFrames& frames) {
330  const size_t max_plaintext_size = GetMaxPlaintextSize(kMaxPacketSize);
331  size_t packet_size = GetPacketHeaderSize(header);
332  for (size_t i = 0; i < frames.size(); ++i) {
333    DCHECK_LE(packet_size, max_plaintext_size);
334    bool first_frame = i == 0;
335    bool last_frame = i == frames.size() - 1;
336    const size_t frame_size = GetSerializedFrameLength(
337        frames[i], max_plaintext_size - packet_size, first_frame, last_frame,
338        header.public_header.sequence_number_length);
339    DCHECK(frame_size);
340    packet_size += frame_size;
341  }
342  return BuildDataPacket(header, frames, packet_size);
343}
344
345SerializedPacket QuicFramer::BuildDataPacket(
346    const QuicPacketHeader& header,
347    const QuicFrames& frames,
348    size_t packet_size) {
349  QuicDataWriter writer(packet_size);
350  const SerializedPacket kNoPacket(
351      0, PACKET_1BYTE_SEQUENCE_NUMBER, NULL, 0, NULL);
352  if (!AppendPacketHeader(header, &writer)) {
353    LOG(DFATAL) << "AppendPacketHeader failed";
354    return kNoPacket;
355  }
356
357  for (size_t i = 0; i < frames.size(); ++i) {
358    const QuicFrame& frame = frames[i];
359
360    const bool last_frame_in_packet = i == (frames.size() - 1);
361    if (!AppendTypeByte(frame, last_frame_in_packet, &writer)) {
362      LOG(DFATAL) << "AppendTypeByte failed";
363      return kNoPacket;
364    }
365
366    switch (frame.type) {
367      case PADDING_FRAME:
368        writer.WritePadding();
369        break;
370      case STREAM_FRAME:
371        if (!AppendStreamFrame(
372            *frame.stream_frame, last_frame_in_packet, &writer)) {
373          LOG(DFATAL) << "AppendStreamFrame failed";
374          return kNoPacket;
375        }
376        break;
377      case ACK_FRAME:
378        if (!AppendAckFrameAndTypeByte(
379                header, *frame.ack_frame, &writer)) {
380          LOG(DFATAL) << "AppendAckFrameAndTypeByte failed";
381          return kNoPacket;
382        }
383        break;
384      case CONGESTION_FEEDBACK_FRAME:
385        if (!AppendCongestionFeedbackFrame(
386                *frame.congestion_feedback_frame, &writer)) {
387          LOG(DFATAL) << "AppendCongestionFeedbackFrame failed";
388          return kNoPacket;
389        }
390        break;
391      case STOP_WAITING_FRAME:
392        if (quic_version_ <= QUIC_VERSION_15) {
393          LOG(DFATAL) << "Attempt to add a StopWaitingFrame in "
394                      << QuicVersionToString(quic_version_);
395          return kNoPacket;
396        }
397        if (!AppendStopWaitingFrame(
398                header, *frame.stop_waiting_frame, &writer)) {
399          LOG(DFATAL) << "AppendStopWaitingFrame failed";
400          return kNoPacket;
401        }
402        break;
403      case RST_STREAM_FRAME:
404        if (!AppendRstStreamFrame(*frame.rst_stream_frame, &writer)) {
405          LOG(DFATAL) << "AppendRstStreamFrame failed";
406          return kNoPacket;
407        }
408        break;
409      case CONNECTION_CLOSE_FRAME:
410        if (!AppendConnectionCloseFrame(
411                *frame.connection_close_frame, &writer)) {
412          LOG(DFATAL) << "AppendConnectionCloseFrame failed";
413          return kNoPacket;
414        }
415        break;
416      case GOAWAY_FRAME:
417        if (!AppendGoAwayFrame(*frame.goaway_frame, &writer)) {
418          LOG(DFATAL) << "AppendGoAwayFrame failed";
419          return kNoPacket;
420        }
421        break;
422      case WINDOW_UPDATE_FRAME:
423        if (quic_version_ > QUIC_VERSION_13) {
424          if (!AppendWindowUpdateFrame(*frame.window_update_frame, &writer)) {
425            LOG(DFATAL) << "AppendWindowUpdateFrame failed";
426            return kNoPacket;
427          }
428        } else {
429          LOG(DFATAL) << "Attempt to add a WindowUpdateFrame in "
430                      << QuicVersionToString(quic_version_);
431          return kNoPacket;
432        }
433        break;
434      case BLOCKED_FRAME:
435        if (quic_version_ > QUIC_VERSION_13) {
436          if (!AppendBlockedFrame(*frame.blocked_frame, &writer)) {
437            LOG(DFATAL) << "AppendBlockedFrame failed";
438            return kNoPacket;
439          }
440        } else {
441          LOG(DFATAL) << "Attempt to add a BlockedFrame in "
442                      << QuicVersionToString(quic_version_);
443          return kNoPacket;
444        }
445        break;
446      default:
447        RaiseError(QUIC_INVALID_FRAME_DATA);
448        LOG(DFATAL) << "QUIC_INVALID_FRAME_DATA";
449        return kNoPacket;
450    }
451  }
452
453  // Save the length before writing, because take clears it.
454  const size_t len = writer.length();
455  // Less than or equal because truncated acks end up with max_plaintex_size
456  // length, even though they're typically slightly shorter.
457  DCHECK_LE(len, packet_size);
458  QuicPacket* packet = QuicPacket::NewDataPacket(
459      writer.take(), len, true, header.public_header.connection_id_length,
460      header.public_header.version_flag,
461      header.public_header.sequence_number_length);
462
463  if (fec_builder_) {
464    fec_builder_->OnBuiltFecProtectedPayload(header,
465                                             packet->FecProtectedData());
466  }
467
468  return SerializedPacket(header.packet_sequence_number,
469                          header.public_header.sequence_number_length, packet,
470                          GetPacketEntropyHash(header), NULL);
471}
472
473SerializedPacket QuicFramer::BuildFecPacket(const QuicPacketHeader& header,
474                                            const QuicFecData& fec) {
475  DCHECK_EQ(IN_FEC_GROUP, header.is_in_fec_group);
476  DCHECK_NE(0u, header.fec_group);
477  size_t len = GetPacketHeaderSize(header);
478  len += fec.redundancy.length();
479
480  QuicDataWriter writer(len);
481  const SerializedPacket kNoPacket(
482      0, PACKET_1BYTE_SEQUENCE_NUMBER, NULL, 0, NULL);
483  if (!AppendPacketHeader(header, &writer)) {
484    LOG(DFATAL) << "AppendPacketHeader failed";
485    return kNoPacket;
486  }
487
488  if (!writer.WriteBytes(fec.redundancy.data(), fec.redundancy.length())) {
489    LOG(DFATAL) << "Failed to add FEC";
490    return kNoPacket;
491  }
492
493  return SerializedPacket(
494      header.packet_sequence_number,
495      header.public_header.sequence_number_length,
496      QuicPacket::NewFecPacket(writer.take(), len, true,
497                               header.public_header.connection_id_length,
498                               header.public_header.version_flag,
499                               header.public_header.sequence_number_length),
500      GetPacketEntropyHash(header), NULL);
501}
502
503// static
504QuicEncryptedPacket* QuicFramer::BuildPublicResetPacket(
505    const QuicPublicResetPacket& packet) {
506  DCHECK(packet.public_header.reset_flag);
507
508  CryptoHandshakeMessage reset;
509  reset.set_tag(kPRST);
510  reset.SetValue(kRNON, packet.nonce_proof);
511  reset.SetValue(kRSEQ, packet.rejected_sequence_number);
512  if (!packet.client_address.address().empty()) {
513    // packet.client_address is non-empty.
514    QuicSocketAddressCoder address_coder(packet.client_address);
515    string serialized_address = address_coder.Encode();
516    if (serialized_address.empty()) {
517      return NULL;
518    }
519    reset.SetStringPiece(kCADR, serialized_address);
520  }
521  const QuicData& reset_serialized = reset.GetSerialized();
522
523  size_t len =
524      kPublicFlagsSize + PACKET_8BYTE_CONNECTION_ID + reset_serialized.length();
525  QuicDataWriter writer(len);
526
527  uint8 flags = static_cast<uint8>(PACKET_PUBLIC_FLAGS_RST |
528                                   PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID);
529  if (!writer.WriteUInt8(flags)) {
530    return NULL;
531  }
532
533  if (!writer.WriteUInt64(packet.public_header.connection_id)) {
534    return NULL;
535  }
536
537  if (!writer.WriteBytes(reset_serialized.data(), reset_serialized.length())) {
538    return NULL;
539  }
540
541  return new QuicEncryptedPacket(writer.take(), len, true);
542}
543
544QuicEncryptedPacket* QuicFramer::BuildVersionNegotiationPacket(
545    const QuicPacketPublicHeader& header,
546    const QuicVersionVector& supported_versions) {
547  DCHECK(header.version_flag);
548  size_t len = GetVersionNegotiationPacketSize(supported_versions.size());
549  QuicDataWriter writer(len);
550
551  uint8 flags = static_cast<uint8>(PACKET_PUBLIC_FLAGS_VERSION |
552                                   PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID);
553  if (!writer.WriteUInt8(flags)) {
554    return NULL;
555  }
556
557  if (!writer.WriteUInt64(header.connection_id)) {
558    return NULL;
559  }
560
561  for (size_t i = 0; i < supported_versions.size(); ++i) {
562    if (!writer.WriteUInt32(QuicVersionToQuicTag(supported_versions[i]))) {
563      return NULL;
564    }
565  }
566
567  return new QuicEncryptedPacket(writer.take(), len, true);
568}
569
570bool QuicFramer::ProcessPacket(const QuicEncryptedPacket& packet) {
571  DCHECK(!reader_.get());
572  reader_.reset(new QuicDataReader(packet.data(), packet.length()));
573
574  visitor_->OnPacket();
575
576  // First parse the public header.
577  QuicPacketPublicHeader public_header;
578  if (!ProcessPublicHeader(&public_header)) {
579    DLOG(WARNING) << "Unable to process public header.";
580    DCHECK_NE("", detailed_error_);
581    return RaiseError(QUIC_INVALID_PACKET_HEADER);
582  }
583
584  if (!visitor_->OnUnauthenticatedPublicHeader(public_header)) {
585    // The visitor suppresses further processing of the packet.
586    reader_.reset(NULL);
587    return true;
588  }
589
590  if (is_server_ && public_header.version_flag &&
591      public_header.versions[0] != quic_version_) {
592    if (!visitor_->OnProtocolVersionMismatch(public_header.versions[0])) {
593      reader_.reset(NULL);
594      return true;
595    }
596  }
597
598  bool rv;
599  if (!is_server_ && public_header.version_flag) {
600    rv = ProcessVersionNegotiationPacket(&public_header);
601  } else if (public_header.reset_flag) {
602    rv = ProcessPublicResetPacket(public_header);
603  } else {
604    rv = ProcessDataPacket(public_header, packet);
605  }
606
607  reader_.reset(NULL);
608  return rv;
609}
610
611bool QuicFramer::ProcessVersionNegotiationPacket(
612    QuicPacketPublicHeader* public_header) {
613  DCHECK(!is_server_);
614  // Try reading at least once to raise error if the packet is invalid.
615  do {
616    QuicTag version;
617    if (!reader_->ReadBytes(&version, kQuicVersionSize)) {
618      set_detailed_error("Unable to read supported version in negotiation.");
619      return RaiseError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET);
620    }
621    public_header->versions.push_back(QuicTagToQuicVersion(version));
622  } while (!reader_->IsDoneReading());
623
624  visitor_->OnVersionNegotiationPacket(*public_header);
625  return true;
626}
627
628bool QuicFramer::ProcessDataPacket(
629    const QuicPacketPublicHeader& public_header,
630    const QuicEncryptedPacket& packet) {
631  QuicPacketHeader header(public_header);
632  if (!ProcessPacketHeader(&header, packet)) {
633    DLOG(WARNING) << "Unable to process data packet header.";
634    return false;
635  }
636
637  if (!visitor_->OnPacketHeader(header)) {
638    // The visitor suppresses further processing of the packet.
639    return true;
640  }
641
642  if (packet.length() > kMaxPacketSize) {
643    DLOG(WARNING) << "Packet too large: " << packet.length();
644    return RaiseError(QUIC_PACKET_TOO_LARGE);
645  }
646
647  // Handle the payload.
648  if (!header.fec_flag) {
649    if (header.is_in_fec_group == IN_FEC_GROUP) {
650      StringPiece payload = reader_->PeekRemainingPayload();
651      visitor_->OnFecProtectedPayload(payload);
652    }
653    if (!ProcessFrameData(header)) {
654      DCHECK_NE(QUIC_NO_ERROR, error_);  // ProcessFrameData sets the error.
655      DLOG(WARNING) << "Unable to process frame data.";
656      return false;
657    }
658  } else {
659    QuicFecData fec_data;
660    fec_data.fec_group = header.fec_group;
661    fec_data.redundancy = reader_->ReadRemainingPayload();
662    visitor_->OnFecData(fec_data);
663  }
664
665  visitor_->OnPacketComplete();
666  return true;
667}
668
669bool QuicFramer::ProcessPublicResetPacket(
670    const QuicPacketPublicHeader& public_header) {
671  QuicPublicResetPacket packet(public_header);
672
673  if (public_header.sequence_number_length == PACKET_6BYTE_SEQUENCE_NUMBER) {
674    // An old-style public reset packet has the
675    // PACKET_PUBLIC_FLAGS_6BYTE_SEQUENCE bits set in the public flags.
676    // TODO(wtc): remove this when we drop support for QUIC_VERSION_13.
677    if (!reader_->ReadUInt64(&packet.nonce_proof)) {
678      set_detailed_error("Unable to read nonce proof.");
679      return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
680    }
681
682    if (!reader_->ReadUInt48(&packet.rejected_sequence_number)) {
683      set_detailed_error("Unable to read rejected sequence number.");
684      return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
685    }
686
687    visitor_->OnPublicResetPacket(packet);
688    return true;
689  }
690
691  scoped_ptr<CryptoHandshakeMessage> reset(
692      CryptoFramer::ParseMessage(reader_->ReadRemainingPayload()));
693  if (!reset.get()) {
694    set_detailed_error("Unable to read reset message.");
695    return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
696  }
697  if (reset->tag() != kPRST) {
698    set_detailed_error("Incorrect message tag.");
699    return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
700  }
701
702  if (reset->GetUint64(kRNON, &packet.nonce_proof) != QUIC_NO_ERROR) {
703    set_detailed_error("Unable to read nonce proof.");
704    return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
705  }
706  // TODO(satyamshekhar): validate nonce to protect against DoS.
707
708  if (reset->GetUint64(kRSEQ, &packet.rejected_sequence_number) !=
709      QUIC_NO_ERROR) {
710    set_detailed_error("Unable to read rejected sequence number.");
711    return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
712  }
713
714  StringPiece address;
715  if (reset->GetStringPiece(kCADR, &address)) {
716    QuicSocketAddressCoder address_coder;
717    if (address_coder.Decode(address.data(), address.length())) {
718      packet.client_address = IPEndPoint(address_coder.ip(),
719                                         address_coder.port());
720    }
721  }
722
723  visitor_->OnPublicResetPacket(packet);
724  return true;
725}
726
727bool QuicFramer::ProcessRevivedPacket(QuicPacketHeader* header,
728                                      StringPiece payload) {
729  DCHECK(!reader_.get());
730
731  visitor_->OnRevivedPacket();
732
733  header->entropy_hash = GetPacketEntropyHash(*header);
734
735  if (!visitor_->OnPacketHeader(*header)) {
736    return true;
737  }
738
739  if (payload.length() > kMaxPacketSize) {
740    set_detailed_error("Revived packet too large.");
741    return RaiseError(QUIC_PACKET_TOO_LARGE);
742  }
743
744  reader_.reset(new QuicDataReader(payload.data(), payload.length()));
745  if (!ProcessFrameData(*header)) {
746    DCHECK_NE(QUIC_NO_ERROR, error_);  // ProcessFrameData sets the error.
747    DLOG(WARNING) << "Unable to process frame data.";
748    return false;
749  }
750
751  visitor_->OnPacketComplete();
752  reader_.reset(NULL);
753  return true;
754}
755
756bool QuicFramer::AppendPacketHeader(const QuicPacketHeader& header,
757                                    QuicDataWriter* writer) {
758  DVLOG(1) << "Appending header: " << header;
759  DCHECK(header.fec_group > 0 || header.is_in_fec_group == NOT_IN_FEC_GROUP);
760  uint8 public_flags = 0;
761  if (header.public_header.reset_flag) {
762    public_flags |= PACKET_PUBLIC_FLAGS_RST;
763  }
764  if (header.public_header.version_flag) {
765    public_flags |= PACKET_PUBLIC_FLAGS_VERSION;
766  }
767
768  public_flags |=
769      GetSequenceNumberFlags(header.public_header.sequence_number_length)
770          << kPublicHeaderSequenceNumberShift;
771
772  switch (header.public_header.connection_id_length) {
773    case PACKET_0BYTE_CONNECTION_ID:
774      if (!writer->WriteUInt8(
775              public_flags | PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID)) {
776        return false;
777      }
778      break;
779    case PACKET_1BYTE_CONNECTION_ID:
780      if (!writer->WriteUInt8(
781              public_flags | PACKET_PUBLIC_FLAGS_1BYTE_CONNECTION_ID)) {
782         return false;
783      }
784      if (!writer->WriteUInt8(
785              header.public_header.connection_id & k1ByteConnectionIdMask)) {
786        return false;
787      }
788      break;
789    case PACKET_4BYTE_CONNECTION_ID:
790      if (!writer->WriteUInt8(
791              public_flags | PACKET_PUBLIC_FLAGS_4BYTE_CONNECTION_ID)) {
792         return false;
793      }
794      if (!writer->WriteUInt32(
795              header.public_header.connection_id & k4ByteConnectionIdMask)) {
796        return false;
797      }
798      break;
799    case PACKET_8BYTE_CONNECTION_ID:
800      if (!writer->WriteUInt8(
801              public_flags | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID)) {
802        return false;
803      }
804      if (!writer->WriteUInt64(header.public_header.connection_id)) {
805        return false;
806      }
807      break;
808  }
809  last_serialized_connection_id_ = header.public_header.connection_id;
810
811  if (header.public_header.version_flag) {
812    DCHECK(!is_server_);
813    writer->WriteUInt32(QuicVersionToQuicTag(quic_version_));
814  }
815
816  if (!AppendPacketSequenceNumber(header.public_header.sequence_number_length,
817                                  header.packet_sequence_number, writer)) {
818    return false;
819  }
820
821  uint8 private_flags = 0;
822  if (header.entropy_flag) {
823    private_flags |= PACKET_PRIVATE_FLAGS_ENTROPY;
824  }
825  if (header.is_in_fec_group == IN_FEC_GROUP) {
826    private_flags |= PACKET_PRIVATE_FLAGS_FEC_GROUP;
827  }
828  if (header.fec_flag) {
829    private_flags |= PACKET_PRIVATE_FLAGS_FEC;
830  }
831  if (!writer->WriteUInt8(private_flags)) {
832    return false;
833  }
834
835  // The FEC group number is the sequence number of the first fec
836  // protected packet, or 0 if this packet is not protected.
837  if (header.is_in_fec_group == IN_FEC_GROUP) {
838    DCHECK_GE(header.packet_sequence_number, header.fec_group);
839    DCHECK_GT(255u, header.packet_sequence_number - header.fec_group);
840    // Offset from the current packet sequence number to the first fec
841    // protected packet.
842    uint8 first_fec_protected_packet_offset =
843        header.packet_sequence_number - header.fec_group;
844    if (!writer->WriteBytes(&first_fec_protected_packet_offset, 1)) {
845      return false;
846    }
847  }
848
849  return true;
850}
851
852QuicPacketSequenceNumber QuicFramer::CalculatePacketSequenceNumberFromWire(
853    QuicSequenceNumberLength sequence_number_length,
854    QuicPacketSequenceNumber packet_sequence_number) const {
855  // The new sequence number might have wrapped to the next epoch, or
856  // it might have reverse wrapped to the previous epoch, or it might
857  // remain in the same epoch.  Select the sequence number closest to the
858  // next expected sequence number, the previous sequence number plus 1.
859
860  // epoch_delta is the delta between epochs the sequence number was serialized
861  // with, so the correct value is likely the same epoch as the last sequence
862  // number or an adjacent epoch.
863  const QuicPacketSequenceNumber epoch_delta =
864      GG_UINT64_C(1) << (8 * sequence_number_length);
865  QuicPacketSequenceNumber next_sequence_number = last_sequence_number_ + 1;
866  QuicPacketSequenceNumber epoch = last_sequence_number_ & ~(epoch_delta - 1);
867  QuicPacketSequenceNumber prev_epoch = epoch - epoch_delta;
868  QuicPacketSequenceNumber next_epoch = epoch + epoch_delta;
869
870  return ClosestTo(next_sequence_number,
871                   epoch + packet_sequence_number,
872                   ClosestTo(next_sequence_number,
873                             prev_epoch + packet_sequence_number,
874                             next_epoch + packet_sequence_number));
875}
876
877bool QuicFramer::ProcessPublicHeader(
878    QuicPacketPublicHeader* public_header) {
879  uint8 public_flags;
880  if (!reader_->ReadBytes(&public_flags, 1)) {
881    set_detailed_error("Unable to read public flags.");
882    return false;
883  }
884
885  public_header->reset_flag = (public_flags & PACKET_PUBLIC_FLAGS_RST) != 0;
886  public_header->version_flag =
887      (public_flags & PACKET_PUBLIC_FLAGS_VERSION) != 0;
888
889  if (validate_flags_ &&
890      !public_header->version_flag && public_flags > PACKET_PUBLIC_FLAGS_MAX) {
891    set_detailed_error("Illegal public flags value.");
892    return false;
893  }
894
895  if (public_header->reset_flag && public_header->version_flag) {
896    set_detailed_error("Got version flag in reset packet");
897    return false;
898  }
899
900  switch (public_flags & PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID) {
901    case PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID:
902      if (!reader_->ReadUInt64(&public_header->connection_id)) {
903        set_detailed_error("Unable to read ConnectionId.");
904        return false;
905      }
906      public_header->connection_id_length = PACKET_8BYTE_CONNECTION_ID;
907      break;
908    case PACKET_PUBLIC_FLAGS_4BYTE_CONNECTION_ID:
909      // If the connection_id is truncated, expect to read the last serialized
910      // connection_id.
911      if (!reader_->ReadBytes(&public_header->connection_id,
912                              PACKET_4BYTE_CONNECTION_ID)) {
913        set_detailed_error("Unable to read ConnectionId.");
914        return false;
915      }
916      if ((public_header->connection_id & k4ByteConnectionIdMask) !=
917          (last_serialized_connection_id_ & k4ByteConnectionIdMask)) {
918        set_detailed_error("Truncated 4 byte ConnectionId does not match "
919                           "previous connection_id.");
920        return false;
921      }
922      public_header->connection_id_length = PACKET_4BYTE_CONNECTION_ID;
923      public_header->connection_id = last_serialized_connection_id_;
924      break;
925    case PACKET_PUBLIC_FLAGS_1BYTE_CONNECTION_ID:
926      if (!reader_->ReadBytes(&public_header->connection_id,
927                              PACKET_1BYTE_CONNECTION_ID)) {
928        set_detailed_error("Unable to read ConnectionId.");
929        return false;
930      }
931      if ((public_header->connection_id & k1ByteConnectionIdMask) !=
932          (last_serialized_connection_id_ & k1ByteConnectionIdMask)) {
933        set_detailed_error("Truncated 1 byte ConnectionId does not match "
934                           "previous connection_id.");
935        return false;
936      }
937      public_header->connection_id_length = PACKET_1BYTE_CONNECTION_ID;
938      public_header->connection_id = last_serialized_connection_id_;
939      break;
940    case PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID:
941      public_header->connection_id_length = PACKET_0BYTE_CONNECTION_ID;
942      public_header->connection_id = last_serialized_connection_id_;
943      break;
944  }
945
946  public_header->sequence_number_length =
947      ReadSequenceNumberLength(
948          public_flags >> kPublicHeaderSequenceNumberShift);
949
950  // Read the version only if the packet is from the client.
951  // version flag from the server means version negotiation packet.
952  if (public_header->version_flag && is_server_) {
953    QuicTag version_tag;
954    if (!reader_->ReadUInt32(&version_tag)) {
955      set_detailed_error("Unable to read protocol version.");
956      return false;
957    }
958
959    // If the version from the new packet is the same as the version of this
960    // framer, then the public flags should be set to something we understand.
961    // If not, this raises an error.
962    QuicVersion version = QuicTagToQuicVersion(version_tag);
963    if (version == quic_version_ && public_flags > PACKET_PUBLIC_FLAGS_MAX) {
964      set_detailed_error("Illegal public flags value.");
965      return false;
966    }
967    public_header->versions.push_back(version);
968  }
969  return true;
970}
971
972// static
973QuicSequenceNumberLength QuicFramer::GetMinSequenceNumberLength(
974    QuicPacketSequenceNumber sequence_number) {
975  if (sequence_number < 1 << (PACKET_1BYTE_SEQUENCE_NUMBER * 8)) {
976    return PACKET_1BYTE_SEQUENCE_NUMBER;
977  } else if (sequence_number < 1 << (PACKET_2BYTE_SEQUENCE_NUMBER * 8)) {
978    return PACKET_2BYTE_SEQUENCE_NUMBER;
979  } else if (sequence_number <
980             GG_UINT64_C(1) << (PACKET_4BYTE_SEQUENCE_NUMBER * 8)) {
981    return PACKET_4BYTE_SEQUENCE_NUMBER;
982  } else {
983    return PACKET_6BYTE_SEQUENCE_NUMBER;
984  }
985}
986
987// static
988uint8 QuicFramer::GetSequenceNumberFlags(
989    QuicSequenceNumberLength sequence_number_length) {
990  switch (sequence_number_length) {
991    case PACKET_1BYTE_SEQUENCE_NUMBER:
992      return PACKET_FLAGS_1BYTE_SEQUENCE;
993    case PACKET_2BYTE_SEQUENCE_NUMBER:
994      return PACKET_FLAGS_2BYTE_SEQUENCE;
995    case PACKET_4BYTE_SEQUENCE_NUMBER:
996      return PACKET_FLAGS_4BYTE_SEQUENCE;
997    case PACKET_6BYTE_SEQUENCE_NUMBER:
998      return PACKET_FLAGS_6BYTE_SEQUENCE;
999    default:
1000      LOG(DFATAL) << "Unreachable case statement.";
1001      return PACKET_FLAGS_6BYTE_SEQUENCE;
1002  }
1003}
1004
1005// static
1006QuicFramer::AckFrameInfo QuicFramer::GetAckFrameInfo(
1007    const QuicAckFrame& frame) {
1008  const ReceivedPacketInfo& received_info = frame.received_info;
1009
1010  AckFrameInfo ack_info;
1011  if (!received_info.missing_packets.empty()) {
1012    DCHECK_GE(received_info.largest_observed,
1013              *received_info.missing_packets.rbegin());
1014    size_t cur_range_length = 0;
1015    SequenceNumberSet::const_iterator iter =
1016        received_info.missing_packets.begin();
1017    QuicPacketSequenceNumber last_missing = *iter;
1018    ++iter;
1019    for (; iter != received_info.missing_packets.end(); ++iter) {
1020      if (cur_range_length != numeric_limits<uint8>::max() &&
1021          *iter == (last_missing + 1)) {
1022        ++cur_range_length;
1023      } else {
1024        ack_info.nack_ranges[last_missing - cur_range_length]
1025            = cur_range_length;
1026        cur_range_length = 0;
1027      }
1028      ack_info.max_delta = max(ack_info.max_delta, *iter - last_missing);
1029      last_missing = *iter;
1030    }
1031    // Include the last nack range.
1032    ack_info.nack_ranges[last_missing - cur_range_length] = cur_range_length;
1033    // Include the range to the largest observed.
1034    ack_info.max_delta = max(ack_info.max_delta,
1035                             received_info.largest_observed - last_missing);
1036  }
1037  return ack_info;
1038}
1039
1040bool QuicFramer::ProcessPacketHeader(
1041    QuicPacketHeader* header,
1042    const QuicEncryptedPacket& packet) {
1043  if (!ProcessPacketSequenceNumber(header->public_header.sequence_number_length,
1044                                   &header->packet_sequence_number)) {
1045    set_detailed_error("Unable to read sequence number.");
1046    return RaiseError(QUIC_INVALID_PACKET_HEADER);
1047  }
1048
1049  if (header->packet_sequence_number == 0u) {
1050    set_detailed_error("Packet sequence numbers cannot be 0.");
1051    return RaiseError(QUIC_INVALID_PACKET_HEADER);
1052  }
1053
1054  if (!visitor_->OnUnauthenticatedHeader(*header)) {
1055    return false;
1056  }
1057
1058  if (!DecryptPayload(*header, packet)) {
1059    set_detailed_error("Unable to decrypt payload.");
1060    return RaiseError(QUIC_DECRYPTION_FAILURE);
1061  }
1062
1063  uint8 private_flags;
1064  if (!reader_->ReadBytes(&private_flags, 1)) {
1065    set_detailed_error("Unable to read private flags.");
1066    return RaiseError(QUIC_INVALID_PACKET_HEADER);
1067  }
1068
1069  if (private_flags > PACKET_PRIVATE_FLAGS_MAX) {
1070    set_detailed_error("Illegal private flags value.");
1071    return RaiseError(QUIC_INVALID_PACKET_HEADER);
1072  }
1073
1074  header->entropy_flag = (private_flags & PACKET_PRIVATE_FLAGS_ENTROPY) != 0;
1075  header->fec_flag = (private_flags & PACKET_PRIVATE_FLAGS_FEC) != 0;
1076
1077  if ((private_flags & PACKET_PRIVATE_FLAGS_FEC_GROUP) != 0) {
1078    header->is_in_fec_group = IN_FEC_GROUP;
1079    uint8 first_fec_protected_packet_offset;
1080    if (!reader_->ReadBytes(&first_fec_protected_packet_offset, 1)) {
1081      set_detailed_error("Unable to read first fec protected packet offset.");
1082      return RaiseError(QUIC_INVALID_PACKET_HEADER);
1083    }
1084    if (first_fec_protected_packet_offset >= header->packet_sequence_number) {
1085      set_detailed_error("First fec protected packet offset must be less "
1086                         "than the sequence number.");
1087      return RaiseError(QUIC_INVALID_PACKET_HEADER);
1088    }
1089    header->fec_group =
1090        header->packet_sequence_number - first_fec_protected_packet_offset;
1091  }
1092
1093  header->entropy_hash = GetPacketEntropyHash(*header);
1094  // Set the last sequence number after we have decrypted the packet
1095  // so we are confident is not attacker controlled.
1096  last_sequence_number_ = header->packet_sequence_number;
1097  return true;
1098}
1099
1100bool QuicFramer::ProcessPacketSequenceNumber(
1101    QuicSequenceNumberLength sequence_number_length,
1102    QuicPacketSequenceNumber* sequence_number) {
1103  QuicPacketSequenceNumber wire_sequence_number = 0u;
1104  if (!reader_->ReadBytes(&wire_sequence_number, sequence_number_length)) {
1105    return false;
1106  }
1107
1108  // TODO(ianswett): Explore the usefulness of trying multiple sequence numbers
1109  // in case the first guess is incorrect.
1110  *sequence_number =
1111      CalculatePacketSequenceNumberFromWire(sequence_number_length,
1112                                            wire_sequence_number);
1113  return true;
1114}
1115
1116bool QuicFramer::ProcessFrameData(const QuicPacketHeader& header) {
1117  if (reader_->IsDoneReading()) {
1118    set_detailed_error("Packet has no frames.");
1119    return RaiseError(QUIC_MISSING_PAYLOAD);
1120  }
1121  while (!reader_->IsDoneReading()) {
1122    uint8 frame_type;
1123    if (!reader_->ReadBytes(&frame_type, 1)) {
1124      set_detailed_error("Unable to read frame type.");
1125      return RaiseError(QUIC_INVALID_FRAME_DATA);
1126    }
1127
1128    if (frame_type & kQuicFrameTypeSpecialMask) {
1129      // Stream Frame
1130      if (frame_type & kQuicFrameTypeStreamMask) {
1131        QuicStreamFrame frame;
1132        if (!ProcessStreamFrame(frame_type, &frame)) {
1133          return RaiseError(QUIC_INVALID_STREAM_DATA);
1134        }
1135        if (!visitor_->OnStreamFrame(frame)) {
1136          DVLOG(1) << "Visitor asked to stop further processing.";
1137          // Returning true since there was no parsing error.
1138          return true;
1139        }
1140        continue;
1141      }
1142
1143      // Ack Frame
1144      if (frame_type & kQuicFrameTypeAckMask) {
1145        QuicAckFrame frame;
1146        if (!ProcessAckFrame(header, frame_type, &frame)) {
1147          return RaiseError(QUIC_INVALID_ACK_DATA);
1148        }
1149        if (!visitor_->OnAckFrame(frame)) {
1150          DVLOG(1) << "Visitor asked to stop further processing.";
1151          // Returning true since there was no parsing error.
1152          return true;
1153        }
1154        continue;
1155      }
1156
1157      // Congestion Feedback Frame
1158      if (frame_type & kQuicFrameTypeCongestionFeedbackMask) {
1159        QuicCongestionFeedbackFrame frame;
1160        if (!ProcessQuicCongestionFeedbackFrame(&frame)) {
1161          return RaiseError(QUIC_INVALID_CONGESTION_FEEDBACK_DATA);
1162        }
1163        if (!visitor_->OnCongestionFeedbackFrame(frame)) {
1164          DVLOG(1) << "Visitor asked to stop further processing.";
1165          // Returning true since there was no parsing error.
1166          return true;
1167        }
1168        continue;
1169      }
1170
1171      // This was a special frame type that did not match any
1172      // of the known ones. Error.
1173      set_detailed_error("Illegal frame type.");
1174      DLOG(WARNING) << "Illegal frame type: "
1175                    << static_cast<int>(frame_type);
1176      return RaiseError(QUIC_INVALID_FRAME_DATA);
1177    }
1178
1179    switch (frame_type) {
1180      case PADDING_FRAME:
1181        // We're done with the packet.
1182        return true;
1183
1184      case RST_STREAM_FRAME: {
1185        QuicRstStreamFrame frame;
1186        if (!ProcessRstStreamFrame(&frame)) {
1187          return RaiseError(QUIC_INVALID_RST_STREAM_DATA);
1188        }
1189        if (!visitor_->OnRstStreamFrame(frame)) {
1190          DVLOG(1) << "Visitor asked to stop further processing.";
1191          // Returning true since there was no parsing error.
1192          return true;
1193        }
1194        continue;
1195      }
1196
1197      case CONNECTION_CLOSE_FRAME: {
1198        QuicConnectionCloseFrame frame;
1199        if (!ProcessConnectionCloseFrame(&frame)) {
1200          return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA);
1201        }
1202
1203        if (!visitor_->OnConnectionCloseFrame(frame)) {
1204          DVLOG(1) << "Visitor asked to stop further processing.";
1205          // Returning true since there was no parsing error.
1206          return true;
1207        }
1208        continue;
1209      }
1210
1211      case GOAWAY_FRAME: {
1212        QuicGoAwayFrame goaway_frame;
1213        if (!ProcessGoAwayFrame(&goaway_frame)) {
1214          return RaiseError(QUIC_INVALID_GOAWAY_DATA);
1215        }
1216        if (!visitor_->OnGoAwayFrame(goaway_frame)) {
1217          DVLOG(1) << "Visitor asked to stop further processing.";
1218          // Returning true since there was no parsing error.
1219          return true;
1220        }
1221        continue;
1222      }
1223
1224      case WINDOW_UPDATE_FRAME: {
1225        if (quic_version_ > QUIC_VERSION_13) {
1226          QuicWindowUpdateFrame window_update_frame;
1227          if (!ProcessWindowUpdateFrame(&window_update_frame)) {
1228            return RaiseError(QUIC_INVALID_WINDOW_UPDATE_DATA);
1229          }
1230          if (!visitor_->OnWindowUpdateFrame(window_update_frame)) {
1231            DVLOG(1) << "Visitor asked to stop further processing.";
1232            // Returning true since there was no parsing error.
1233            return true;
1234          }
1235        } else {
1236          LOG(DFATAL) << "Trying to read a WindowUpdateFrame in "
1237                      << QuicVersionToString(quic_version_);
1238          return RaiseError(QUIC_INTERNAL_ERROR);
1239        }
1240        continue;
1241      }
1242
1243      case BLOCKED_FRAME: {
1244        if (quic_version_ > QUIC_VERSION_13) {
1245          QuicBlockedFrame blocked_frame;
1246          if (!ProcessBlockedFrame(&blocked_frame)) {
1247            return RaiseError(QUIC_INVALID_BLOCKED_DATA);
1248          }
1249          if (!visitor_->OnBlockedFrame(blocked_frame)) {
1250            DVLOG(1) << "Visitor asked to stop further processing.";
1251            // Returning true since there was no parsing error.
1252            return true;
1253          }
1254        } else {
1255          LOG(DFATAL) << "Trying to read a BlockedFrame in "
1256                      << QuicVersionToString(quic_version_);
1257          return RaiseError(QUIC_INTERNAL_ERROR);
1258        }
1259        continue;
1260      }
1261
1262      case STOP_WAITING_FRAME: {
1263        if (quic_version_ <= QUIC_VERSION_15) {
1264          LOG(DFATAL) << "Trying to read a StopWaiting in "
1265                      << QuicVersionToString(quic_version_);
1266          return RaiseError(QUIC_INTERNAL_ERROR);
1267        }
1268        QuicStopWaitingFrame stop_waiting_frame;
1269        if (!ProcessStopWaitingFrame(header, &stop_waiting_frame)) {
1270          return RaiseError(QUIC_INVALID_STOP_WAITING_DATA);
1271        }
1272        if (!visitor_->OnStopWaitingFrame(stop_waiting_frame)) {
1273          DVLOG(1) << "Visitor asked to stop further processing.";
1274          // Returning true since there was no parsing error.
1275          return true;
1276        }
1277        continue;
1278      }
1279
1280      default:
1281        set_detailed_error("Illegal frame type.");
1282        DLOG(WARNING) << "Illegal frame type: "
1283                      << static_cast<int>(frame_type);
1284        return RaiseError(QUIC_INVALID_FRAME_DATA);
1285    }
1286  }
1287
1288  return true;
1289}
1290
1291bool QuicFramer::ProcessStreamFrame(uint8 frame_type,
1292                                    QuicStreamFrame* frame) {
1293  uint8 stream_flags = frame_type;
1294
1295  stream_flags &= ~kQuicFrameTypeStreamMask;
1296
1297  // Read from right to left: StreamID, Offset, Data Length, Fin.
1298  const uint8 stream_id_length = (stream_flags & kQuicStreamIDLengthMask) + 1;
1299  stream_flags >>= kQuicStreamIdShift;
1300
1301  uint8 offset_length = (stream_flags & kQuicStreamOffsetMask);
1302  // There is no encoding for 1 byte, only 0 and 2 through 8.
1303  if (offset_length > 0) {
1304    offset_length += 1;
1305  }
1306  stream_flags >>= kQuicStreamOffsetShift;
1307
1308  bool has_data_length =
1309      (stream_flags & kQuicStreamDataLengthMask) == kQuicStreamDataLengthMask;
1310  stream_flags >>= kQuicStreamDataLengthShift;
1311
1312  frame->fin = (stream_flags & kQuicStreamFinMask) == kQuicStreamFinShift;
1313
1314  frame->stream_id = 0;
1315  if (!reader_->ReadBytes(&frame->stream_id, stream_id_length)) {
1316    set_detailed_error("Unable to read stream_id.");
1317    return false;
1318  }
1319
1320  frame->offset = 0;
1321  if (!reader_->ReadBytes(&frame->offset, offset_length)) {
1322    set_detailed_error("Unable to read offset.");
1323    return false;
1324  }
1325
1326  StringPiece frame_data;
1327  if (has_data_length) {
1328    if (!reader_->ReadStringPiece16(&frame_data)) {
1329      set_detailed_error("Unable to read frame data.");
1330      return false;
1331    }
1332  } else {
1333    if (!reader_->ReadStringPiece(&frame_data, reader_->BytesRemaining())) {
1334      set_detailed_error("Unable to read frame data.");
1335      return false;
1336    }
1337  }
1338  // Point frame to the right data.
1339  frame->data.Clear();
1340  if (!frame_data.empty()) {
1341    frame->data.Append(const_cast<char*>(frame_data.data()), frame_data.size());
1342  }
1343
1344  return true;
1345}
1346
1347bool QuicFramer::ProcessAckFrame(const QuicPacketHeader& header,
1348                                 uint8 frame_type,
1349                                 QuicAckFrame* frame) {
1350  if (quic_version_ <= QUIC_VERSION_15) {
1351    if (!ProcessStopWaitingFrame(header, &frame->sent_info)) {
1352      return false;
1353    }
1354  }
1355  if (!ProcessReceivedInfo(frame_type, &frame->received_info)) {
1356    return false;
1357  }
1358  return true;
1359}
1360
1361bool QuicFramer::ProcessReceivedInfo(uint8 frame_type,
1362                                     ReceivedPacketInfo* received_info) {
1363  // Determine the three lengths from the frame type: largest observed length,
1364  // missing sequence number length, and missing range length.
1365  const QuicSequenceNumberLength missing_sequence_number_length =
1366      ReadSequenceNumberLength(frame_type);
1367  frame_type >>= kQuicSequenceNumberLengthShift;
1368  const QuicSequenceNumberLength largest_observed_sequence_number_length =
1369      ReadSequenceNumberLength(frame_type);
1370  frame_type >>= kQuicSequenceNumberLengthShift;
1371  received_info->is_truncated = frame_type & kQuicAckTruncatedMask;
1372  frame_type >>= kQuicAckTruncatedShift;
1373  bool has_nacks = frame_type & kQuicHasNacksMask;
1374
1375  if (!reader_->ReadBytes(&received_info->entropy_hash, 1)) {
1376    set_detailed_error("Unable to read entropy hash for received packets.");
1377    return false;
1378  }
1379
1380  if (!reader_->ReadBytes(&received_info->largest_observed,
1381                          largest_observed_sequence_number_length)) {
1382    set_detailed_error("Unable to read largest observed.");
1383    return false;
1384  }
1385
1386  uint64 delta_time_largest_observed_us;
1387  if (!reader_->ReadUFloat16(&delta_time_largest_observed_us)) {
1388    set_detailed_error("Unable to read delta time largest observed.");
1389    return false;
1390  }
1391
1392  if (delta_time_largest_observed_us == kUFloat16MaxValue) {
1393    received_info->delta_time_largest_observed = QuicTime::Delta::Infinite();
1394  } else {
1395    received_info->delta_time_largest_observed =
1396        QuicTime::Delta::FromMicroseconds(delta_time_largest_observed_us);
1397  }
1398
1399  if (!has_nacks) {
1400    return true;
1401  }
1402
1403  uint8 num_missing_ranges;
1404  if (!reader_->ReadBytes(&num_missing_ranges, 1)) {
1405    set_detailed_error("Unable to read num missing packet ranges.");
1406    return false;
1407  }
1408
1409  QuicPacketSequenceNumber last_sequence_number =
1410      received_info->largest_observed;
1411  for (size_t i = 0; i < num_missing_ranges; ++i) {
1412    QuicPacketSequenceNumber missing_delta = 0;
1413    if (!reader_->ReadBytes(&missing_delta, missing_sequence_number_length)) {
1414      set_detailed_error("Unable to read missing sequence number delta.");
1415      return false;
1416    }
1417    last_sequence_number -= missing_delta;
1418    QuicPacketSequenceNumber range_length = 0;
1419    if (!reader_->ReadBytes(&range_length, PACKET_1BYTE_SEQUENCE_NUMBER)) {
1420      set_detailed_error("Unable to read missing sequence number range.");
1421      return false;
1422    }
1423    for (size_t i = 0; i <= range_length; ++i) {
1424      received_info->missing_packets.insert(last_sequence_number - i);
1425    }
1426    // Subtract an extra 1 to ensure ranges are represented efficiently and
1427    // can't overlap by 1 sequence number.  This allows a missing_delta of 0
1428    // to represent an adjacent nack range.
1429    last_sequence_number -= (range_length + 1);
1430  }
1431
1432  if (quic_version_ != QUIC_VERSION_13) {
1433    // Parse the revived packets list.
1434    uint8 num_revived_packets;
1435    if (!reader_->ReadBytes(&num_revived_packets, 1)) {
1436      set_detailed_error("Unable to read num revived packets.");
1437      return false;
1438    }
1439
1440    for (size_t i = 0; i < num_revived_packets; ++i) {
1441      QuicPacketSequenceNumber revived_packet = 0;
1442      if (!reader_->ReadBytes(&revived_packet,
1443                              largest_observed_sequence_number_length)) {
1444        set_detailed_error("Unable to read revived packet.");
1445        return false;
1446      }
1447
1448      received_info->revived_packets.insert(revived_packet);
1449    }
1450  }
1451
1452  return true;
1453}
1454
1455bool QuicFramer::ProcessStopWaitingFrame(const QuicPacketHeader& header,
1456                                         QuicStopWaitingFrame* stop_waiting) {
1457  if (!reader_->ReadBytes(&stop_waiting->entropy_hash, 1)) {
1458    set_detailed_error("Unable to read entropy hash for sent packets.");
1459    return false;
1460  }
1461
1462  QuicPacketSequenceNumber least_unacked_delta = 0;
1463  if (!reader_->ReadBytes(&least_unacked_delta,
1464                          header.public_header.sequence_number_length)) {
1465    set_detailed_error("Unable to read least unacked delta.");
1466    return false;
1467  }
1468  DCHECK_GE(header.packet_sequence_number, least_unacked_delta);
1469  stop_waiting->least_unacked =
1470      header.packet_sequence_number - least_unacked_delta;
1471
1472  return true;
1473}
1474
1475bool QuicFramer::ProcessQuicCongestionFeedbackFrame(
1476    QuicCongestionFeedbackFrame* frame) {
1477  uint8 feedback_type;
1478  if (!reader_->ReadBytes(&feedback_type, 1)) {
1479    set_detailed_error("Unable to read congestion feedback type.");
1480    return false;
1481  }
1482  frame->type =
1483      static_cast<CongestionFeedbackType>(feedback_type);
1484
1485  switch (frame->type) {
1486    case kInterArrival: {
1487      CongestionFeedbackMessageInterArrival* inter_arrival =
1488          &frame->inter_arrival;
1489      if (quic_version_ == QUIC_VERSION_13) {
1490        uint16 unused_accumulated_number_of_lost_packets;
1491        if (!reader_->ReadUInt16(
1492                &unused_accumulated_number_of_lost_packets)) {
1493          set_detailed_error(
1494              "Unable to read accumulated number of lost packets.");
1495          return false;
1496        }
1497      }
1498      uint8 num_received_packets;
1499      if (!reader_->ReadBytes(&num_received_packets, 1)) {
1500        set_detailed_error("Unable to read num received packets.");
1501        return false;
1502      }
1503
1504      if (num_received_packets > 0u) {
1505        uint64 smallest_received;
1506        if (!ProcessPacketSequenceNumber(PACKET_6BYTE_SEQUENCE_NUMBER,
1507                                         &smallest_received)) {
1508          set_detailed_error("Unable to read smallest received.");
1509          return false;
1510        }
1511
1512        uint64 time_received_us;
1513        if (!reader_->ReadUInt64(&time_received_us)) {
1514          set_detailed_error("Unable to read time received.");
1515          return false;
1516        }
1517        QuicTime time_received = creation_time_.Add(
1518            QuicTime::Delta::FromMicroseconds(time_received_us));
1519
1520        inter_arrival->received_packet_times.insert(
1521            make_pair(smallest_received, time_received));
1522
1523        for (uint8 i = 0; i < num_received_packets - 1; ++i) {
1524          uint16 sequence_delta;
1525          if (!reader_->ReadUInt16(&sequence_delta)) {
1526            set_detailed_error(
1527                "Unable to read sequence delta in received packets.");
1528            return false;
1529          }
1530
1531          int32 time_delta_us;
1532          if (!reader_->ReadBytes(&time_delta_us, sizeof(time_delta_us))) {
1533            set_detailed_error(
1534                "Unable to read time delta in received packets.");
1535            return false;
1536          }
1537          QuicPacketSequenceNumber packet = smallest_received + sequence_delta;
1538          inter_arrival->received_packet_times.insert(
1539              make_pair(packet, time_received.Add(
1540                  QuicTime::Delta::FromMicroseconds(time_delta_us))));
1541        }
1542      }
1543      break;
1544    }
1545    case kFixRate: {
1546      uint32 bitrate = 0;
1547      if (!reader_->ReadUInt32(&bitrate)) {
1548        set_detailed_error("Unable to read bitrate.");
1549        return false;
1550      }
1551      frame->fix_rate.bitrate = QuicBandwidth::FromBytesPerSecond(bitrate);
1552      break;
1553    }
1554    case kTCP: {
1555      CongestionFeedbackMessageTCP* tcp = &frame->tcp;
1556      if (quic_version_ == QUIC_VERSION_13) {
1557        uint16 unused_accumulated_number_of_lost_packets;
1558        if (!reader_->ReadUInt16(&unused_accumulated_number_of_lost_packets)) {
1559          set_detailed_error(
1560              "Unable to read accumulated number of lost packets.");
1561          return false;
1562        }
1563      }
1564      // TODO(ianswett): Remove receive window, since it's constant.
1565      uint16 receive_window = 0;
1566      if (!reader_->ReadUInt16(&receive_window)) {
1567        set_detailed_error("Unable to read receive window.");
1568        return false;
1569      }
1570      // Simple bit packing, don't send the 4 least significant bits.
1571      tcp->receive_window = static_cast<QuicByteCount>(receive_window) << 4;
1572      break;
1573    }
1574    default:
1575      set_detailed_error("Illegal congestion feedback type.");
1576      DLOG(WARNING) << "Illegal congestion feedback type: "
1577                    << frame->type;
1578      return RaiseError(QUIC_INVALID_FRAME_DATA);
1579  }
1580
1581  return true;
1582}
1583
1584bool QuicFramer::ProcessRstStreamFrame(QuicRstStreamFrame* frame) {
1585  if (!reader_->ReadUInt32(&frame->stream_id)) {
1586    set_detailed_error("Unable to read stream_id.");
1587    return false;
1588  }
1589
1590  if (quic_version_ > QUIC_VERSION_13) {
1591    if (!reader_->ReadUInt64(&frame->byte_offset)) {
1592      set_detailed_error("Unable to read rst stream sent byte offset.");
1593      return false;
1594    }
1595  }
1596
1597  uint32 error_code;
1598  if (!reader_->ReadUInt32(&error_code)) {
1599    set_detailed_error("Unable to read rst stream error code.");
1600    return false;
1601  }
1602
1603  if (error_code >= QUIC_STREAM_LAST_ERROR ||
1604      error_code < QUIC_STREAM_NO_ERROR) {
1605    set_detailed_error("Invalid rst stream error code.");
1606    return false;
1607  }
1608
1609  frame->error_code = static_cast<QuicRstStreamErrorCode>(error_code);
1610
1611  StringPiece error_details;
1612  if (!reader_->ReadStringPiece16(&error_details)) {
1613    set_detailed_error("Unable to read rst stream error details.");
1614    return false;
1615  }
1616  frame->error_details = error_details.as_string();
1617
1618  return true;
1619}
1620
1621bool QuicFramer::ProcessConnectionCloseFrame(QuicConnectionCloseFrame* frame) {
1622  uint32 error_code;
1623  if (!reader_->ReadUInt32(&error_code)) {
1624    set_detailed_error("Unable to read connection close error code.");
1625    return false;
1626  }
1627
1628  if (error_code >= QUIC_LAST_ERROR ||
1629         error_code < QUIC_NO_ERROR) {
1630    set_detailed_error("Invalid error code.");
1631    return false;
1632  }
1633
1634  frame->error_code = static_cast<QuicErrorCode>(error_code);
1635
1636  StringPiece error_details;
1637  if (!reader_->ReadStringPiece16(&error_details)) {
1638    set_detailed_error("Unable to read connection close error details.");
1639    return false;
1640  }
1641  frame->error_details = error_details.as_string();
1642
1643  return true;
1644}
1645
1646bool QuicFramer::ProcessGoAwayFrame(QuicGoAwayFrame* frame) {
1647  uint32 error_code;
1648  if (!reader_->ReadUInt32(&error_code)) {
1649    set_detailed_error("Unable to read go away error code.");
1650    return false;
1651  }
1652  frame->error_code = static_cast<QuicErrorCode>(error_code);
1653
1654  if (error_code >= QUIC_LAST_ERROR ||
1655      error_code < QUIC_NO_ERROR) {
1656    set_detailed_error("Invalid error code.");
1657    return false;
1658  }
1659
1660  uint32 stream_id;
1661  if (!reader_->ReadUInt32(&stream_id)) {
1662    set_detailed_error("Unable to read last good stream id.");
1663    return false;
1664  }
1665  frame->last_good_stream_id = static_cast<QuicStreamId>(stream_id);
1666
1667  StringPiece reason_phrase;
1668  if (!reader_->ReadStringPiece16(&reason_phrase)) {
1669    set_detailed_error("Unable to read goaway reason.");
1670    return false;
1671  }
1672  frame->reason_phrase = reason_phrase.as_string();
1673
1674  return true;
1675}
1676
1677bool QuicFramer::ProcessWindowUpdateFrame(QuicWindowUpdateFrame* frame) {
1678  if (!reader_->ReadUInt32(&frame->stream_id)) {
1679    set_detailed_error("Unable to read stream_id.");
1680    return false;
1681  }
1682
1683  if (!reader_->ReadUInt64(&frame->byte_offset)) {
1684    set_detailed_error("Unable to read window byte_offset.");
1685    return false;
1686  }
1687
1688  return true;
1689}
1690
1691bool QuicFramer::ProcessBlockedFrame(QuicBlockedFrame* frame) {
1692  if (!reader_->ReadUInt32(&frame->stream_id)) {
1693    set_detailed_error("Unable to read stream_id.");
1694    return false;
1695  }
1696
1697  return true;
1698}
1699
1700// static
1701StringPiece QuicFramer::GetAssociatedDataFromEncryptedPacket(
1702    const QuicEncryptedPacket& encrypted,
1703    QuicConnectionIdLength connection_id_length,
1704    bool includes_version,
1705    QuicSequenceNumberLength sequence_number_length) {
1706  return StringPiece(
1707      encrypted.data() + kStartOfHashData, GetStartOfEncryptedData(
1708          connection_id_length, includes_version, sequence_number_length)
1709      - kStartOfHashData);
1710}
1711
1712void QuicFramer::SetDecrypter(QuicDecrypter* decrypter) {
1713  DCHECK(alternative_decrypter_.get() == NULL);
1714  decrypter_.reset(decrypter);
1715}
1716
1717void QuicFramer::SetAlternativeDecrypter(QuicDecrypter* decrypter,
1718                                         bool latch_once_used) {
1719  alternative_decrypter_.reset(decrypter);
1720  alternative_decrypter_latch_ = latch_once_used;
1721}
1722
1723const QuicDecrypter* QuicFramer::decrypter() const {
1724  return decrypter_.get();
1725}
1726
1727const QuicDecrypter* QuicFramer::alternative_decrypter() const {
1728  return alternative_decrypter_.get();
1729}
1730
1731void QuicFramer::SetEncrypter(EncryptionLevel level,
1732                              QuicEncrypter* encrypter) {
1733  DCHECK_GE(level, 0);
1734  DCHECK_LT(level, NUM_ENCRYPTION_LEVELS);
1735  encrypter_[level].reset(encrypter);
1736}
1737
1738const QuicEncrypter* QuicFramer::encrypter(EncryptionLevel level) const {
1739  DCHECK_GE(level, 0);
1740  DCHECK_LT(level, NUM_ENCRYPTION_LEVELS);
1741  DCHECK(encrypter_[level].get() != NULL);
1742  return encrypter_[level].get();
1743}
1744
1745void QuicFramer::SwapCryptersForTest(QuicFramer* other) {
1746  for (int i = ENCRYPTION_NONE; i < NUM_ENCRYPTION_LEVELS; i++) {
1747    encrypter_[i].swap(other->encrypter_[i]);
1748  }
1749  decrypter_.swap(other->decrypter_);
1750  alternative_decrypter_.swap(other->alternative_decrypter_);
1751
1752  const bool other_latch = other->alternative_decrypter_latch_;
1753  other->alternative_decrypter_latch_ = alternative_decrypter_latch_;
1754  alternative_decrypter_latch_ = other_latch;
1755}
1756
1757QuicEncryptedPacket* QuicFramer::EncryptPacket(
1758    EncryptionLevel level,
1759    QuicPacketSequenceNumber packet_sequence_number,
1760    const QuicPacket& packet) {
1761  DCHECK(encrypter_[level].get() != NULL);
1762
1763  scoped_ptr<QuicData> out(encrypter_[level]->EncryptPacket(
1764      packet_sequence_number, packet.AssociatedData(), packet.Plaintext()));
1765  if (out.get() == NULL) {
1766    RaiseError(QUIC_ENCRYPTION_FAILURE);
1767    return NULL;
1768  }
1769  StringPiece header_data = packet.BeforePlaintext();
1770  size_t len =  header_data.length() + out->length();
1771  char* buffer = new char[len];
1772  // TODO(rch): eliminate this buffer copy by passing in a buffer to Encrypt().
1773  memcpy(buffer, header_data.data(), header_data.length());
1774  memcpy(buffer + header_data.length(), out->data(), out->length());
1775  return new QuicEncryptedPacket(buffer, len, true);
1776}
1777
1778size_t QuicFramer::GetMaxPlaintextSize(size_t ciphertext_size) {
1779  // In order to keep the code simple, we don't have the current encryption
1780  // level to hand. Both the NullEncrypter and AES-GCM have a tag length of 12.
1781  size_t min_plaintext_size = ciphertext_size;
1782
1783  for (int i = ENCRYPTION_NONE; i < NUM_ENCRYPTION_LEVELS; i++) {
1784    if (encrypter_[i].get() != NULL) {
1785      size_t size = encrypter_[i]->GetMaxPlaintextSize(ciphertext_size);
1786      if (size < min_plaintext_size) {
1787        min_plaintext_size = size;
1788      }
1789    }
1790  }
1791
1792  return min_plaintext_size;
1793}
1794
1795bool QuicFramer::DecryptPayload(const QuicPacketHeader& header,
1796                                const QuicEncryptedPacket& packet) {
1797  StringPiece encrypted;
1798  if (!reader_->ReadStringPiece(&encrypted, reader_->BytesRemaining())) {
1799    return false;
1800  }
1801  DCHECK(decrypter_.get() != NULL);
1802  decrypted_.reset(decrypter_->DecryptPacket(
1803      header.packet_sequence_number,
1804      GetAssociatedDataFromEncryptedPacket(
1805          packet,
1806          header.public_header.connection_id_length,
1807          header.public_header.version_flag,
1808          header.public_header.sequence_number_length),
1809      encrypted));
1810  if  (decrypted_.get() == NULL && alternative_decrypter_.get() != NULL) {
1811    decrypted_.reset(alternative_decrypter_->DecryptPacket(
1812        header.packet_sequence_number,
1813        GetAssociatedDataFromEncryptedPacket(
1814            packet,
1815            header.public_header.connection_id_length,
1816            header.public_header.version_flag,
1817            header.public_header.sequence_number_length),
1818        encrypted));
1819    if (decrypted_.get() != NULL) {
1820      if (alternative_decrypter_latch_) {
1821        // Switch to the alternative decrypter and latch so that we cannot
1822        // switch back.
1823        decrypter_.reset(alternative_decrypter_.release());
1824      } else {
1825        // Switch the alternative decrypter so that we use it first next time.
1826        decrypter_.swap(alternative_decrypter_);
1827      }
1828    }
1829  }
1830
1831  if  (decrypted_.get() == NULL) {
1832    DLOG(WARNING) << "DecryptPacket failed";
1833    return false;
1834  }
1835
1836  reader_.reset(new QuicDataReader(decrypted_->data(), decrypted_->length()));
1837  return true;
1838}
1839
1840size_t QuicFramer::GetAckFrameSize(
1841    const QuicAckFrame& ack,
1842    QuicSequenceNumberLength sequence_number_length) {
1843  AckFrameInfo ack_info = GetAckFrameInfo(ack);
1844  QuicSequenceNumberLength largest_observed_length =
1845      GetMinSequenceNumberLength(ack.received_info.largest_observed);
1846  QuicSequenceNumberLength missing_sequence_number_length =
1847      GetMinSequenceNumberLength(ack_info.max_delta);
1848
1849  size_t ack_size = GetMinAckFrameSize(quic_version_,
1850                                       sequence_number_length,
1851                                       largest_observed_length);
1852  if (!ack_info.nack_ranges.empty()) {
1853    ack_size += kNumberOfMissingPacketsSize  +
1854        (quic_version_ == QUIC_VERSION_13 ? 0 : kNumberOfRevivedPacketsSize);
1855    ack_size += ack_info.nack_ranges.size() *
1856      (missing_sequence_number_length + PACKET_1BYTE_SEQUENCE_NUMBER);
1857    ack_size +=
1858        ack.received_info.revived_packets.size() * largest_observed_length;
1859  }
1860  return ack_size;
1861}
1862
1863size_t QuicFramer::ComputeFrameLength(
1864    const QuicFrame& frame,
1865    bool last_frame_in_packet,
1866    QuicSequenceNumberLength sequence_number_length) {
1867  switch (frame.type) {
1868    case STREAM_FRAME:
1869      return GetMinStreamFrameSize(quic_version_,
1870                                   frame.stream_frame->stream_id,
1871                                   frame.stream_frame->offset,
1872                                   last_frame_in_packet) +
1873          frame.stream_frame->data.TotalBufferSize();
1874    case ACK_FRAME: {
1875      return GetAckFrameSize(*frame.ack_frame, sequence_number_length);
1876    }
1877    case CONGESTION_FEEDBACK_FRAME: {
1878      size_t len = kQuicFrameTypeSize;
1879      const QuicCongestionFeedbackFrame& congestion_feedback =
1880          *frame.congestion_feedback_frame;
1881      len += 1;  // Congestion feedback type.
1882
1883      switch (congestion_feedback.type) {
1884        case kInterArrival: {
1885          const CongestionFeedbackMessageInterArrival& inter_arrival =
1886              congestion_feedback.inter_arrival;
1887          if (quic_version_ == QUIC_VERSION_13) {
1888            len += 2;  // Accumulated number of lost packets.
1889          }
1890          len += 1;  // Number received packets.
1891          if (inter_arrival.received_packet_times.size() > 0) {
1892            len += PACKET_6BYTE_SEQUENCE_NUMBER;  // Smallest received.
1893            len += 8;  // Time.
1894            // 2 bytes per sequence number delta plus 4 bytes per delta time.
1895            len += PACKET_6BYTE_SEQUENCE_NUMBER *
1896                (inter_arrival.received_packet_times.size() - 1);
1897          }
1898          break;
1899        }
1900        case kFixRate:
1901          len += 4;  // Bitrate.
1902          break;
1903        case kTCP:
1904          if (quic_version_ == QUIC_VERSION_13) {
1905            len += 2;  // Accumulated number of lost packets.
1906          }
1907          len += 2;  // Receive window.
1908          break;
1909        default:
1910          set_detailed_error("Illegal feedback type.");
1911          DVLOG(1) << "Illegal feedback type: " << congestion_feedback.type;
1912          break;
1913      }
1914      return len;
1915    }
1916    case STOP_WAITING_FRAME:
1917      return GetStopWaitingFrameSize(sequence_number_length);
1918    case RST_STREAM_FRAME:
1919      return GetMinRstStreamFrameSize(quic_version_) +
1920          frame.rst_stream_frame->error_details.size();
1921    case CONNECTION_CLOSE_FRAME:
1922      return GetMinConnectionCloseFrameSize() +
1923          frame.connection_close_frame->error_details.size();
1924    case GOAWAY_FRAME:
1925      return GetMinGoAwayFrameSize() + frame.goaway_frame->reason_phrase.size();
1926    case WINDOW_UPDATE_FRAME:
1927      return GetWindowUpdateFrameSize();
1928    case BLOCKED_FRAME:
1929      return GetBlockedFrameSize();
1930    case PADDING_FRAME:
1931      DCHECK(false);
1932      return 0;
1933    case NUM_FRAME_TYPES:
1934      DCHECK(false);
1935      return 0;
1936  }
1937
1938  // Not reachable, but some Chrome compilers can't figure that out.  *sigh*
1939  DCHECK(false);
1940  return 0;
1941}
1942
1943bool QuicFramer::AppendTypeByte(const QuicFrame& frame,
1944                                bool last_frame_in_packet,
1945                                QuicDataWriter* writer) {
1946  uint8 type_byte = 0;
1947  switch (frame.type) {
1948    case STREAM_FRAME: {
1949      if (frame.stream_frame == NULL) {
1950        LOG(DFATAL) << "Failed to append STREAM frame with no stream_frame.";
1951      }
1952      // Fin bit.
1953      type_byte |= frame.stream_frame->fin ? kQuicStreamFinMask : 0;
1954
1955      // Data Length bit.
1956      type_byte <<= kQuicStreamDataLengthShift;
1957      type_byte |= last_frame_in_packet ? 0 : kQuicStreamDataLengthMask;
1958
1959      // Offset 3 bits.
1960      type_byte <<= kQuicStreamOffsetShift;
1961      const size_t offset_len = GetStreamOffsetSize(frame.stream_frame->offset);
1962      if (offset_len > 0) {
1963        type_byte |= offset_len - 1;
1964      }
1965
1966      // stream id 2 bits.
1967      type_byte <<= kQuicStreamIdShift;
1968      type_byte |= GetStreamIdSize(frame.stream_frame->stream_id) - 1;
1969      type_byte |= kQuicFrameTypeStreamMask;  // Set Stream Frame Type to 1.
1970      break;
1971    }
1972    case ACK_FRAME:
1973      return true;
1974    case CONGESTION_FEEDBACK_FRAME: {
1975      // TODO(ianswett): Use extra 5 bits in the congestion feedback framing.
1976      type_byte = kQuicFrameTypeCongestionFeedbackMask;
1977      break;
1978    }
1979    default:
1980      type_byte = frame.type;
1981      break;
1982  }
1983
1984  return writer->WriteUInt8(type_byte);
1985}
1986
1987// static
1988bool QuicFramer::AppendPacketSequenceNumber(
1989    QuicSequenceNumberLength sequence_number_length,
1990    QuicPacketSequenceNumber packet_sequence_number,
1991    QuicDataWriter* writer) {
1992  // Ensure the entire sequence number can be written.
1993  if (writer->capacity() - writer->length() <
1994      static_cast<size_t>(sequence_number_length)) {
1995    return false;
1996  }
1997  switch (sequence_number_length) {
1998    case PACKET_1BYTE_SEQUENCE_NUMBER:
1999      return writer->WriteUInt8(
2000          packet_sequence_number & k1ByteSequenceNumberMask);
2001      break;
2002    case PACKET_2BYTE_SEQUENCE_NUMBER:
2003      return writer->WriteUInt16(
2004          packet_sequence_number & k2ByteSequenceNumberMask);
2005      break;
2006    case PACKET_4BYTE_SEQUENCE_NUMBER:
2007      return writer->WriteUInt32(
2008          packet_sequence_number & k4ByteSequenceNumberMask);
2009      break;
2010    case PACKET_6BYTE_SEQUENCE_NUMBER:
2011      return writer->WriteUInt48(
2012          packet_sequence_number & k6ByteSequenceNumberMask);
2013      break;
2014    default:
2015      DCHECK(false) << "sequence_number_length: " << sequence_number_length;
2016      return false;
2017  }
2018}
2019
2020bool QuicFramer::AppendStreamFrame(
2021    const QuicStreamFrame& frame,
2022    bool last_frame_in_packet,
2023    QuicDataWriter* writer) {
2024  if (!writer->WriteBytes(&frame.stream_id, GetStreamIdSize(frame.stream_id))) {
2025    return false;
2026  }
2027  if (!writer->WriteBytes(&frame.offset, GetStreamOffsetSize(frame.offset))) {
2028    return false;
2029  }
2030  if (!last_frame_in_packet) {
2031    if (!writer->WriteUInt16(frame.data.TotalBufferSize())) {
2032      return false;
2033    }
2034  }
2035
2036  if (!writer->WriteIOVector(frame.data)) {
2037    return false;
2038  }
2039  return true;
2040}
2041
2042// static
2043void QuicFramer::set_version(const QuicVersion version) {
2044  DCHECK(IsSupportedVersion(version)) << QuicVersionToString(version);
2045  quic_version_ = version;
2046}
2047
2048bool QuicFramer::AppendAckFrameAndTypeByte(
2049    const QuicPacketHeader& header,
2050    const QuicAckFrame& frame,
2051    QuicDataWriter* writer) {
2052  AckFrameInfo ack_info = GetAckFrameInfo(frame);
2053  QuicPacketSequenceNumber ack_largest_observed =
2054      frame.received_info.largest_observed;
2055  QuicSequenceNumberLength largest_observed_length =
2056      GetMinSequenceNumberLength(ack_largest_observed);
2057  QuicSequenceNumberLength missing_sequence_number_length =
2058      GetMinSequenceNumberLength(ack_info.max_delta);
2059  // Determine whether we need to truncate ranges.
2060  size_t available_range_bytes = writer->capacity() - writer->length() -
2061      GetMinAckFrameSize(quic_version_,
2062                         header.public_header.sequence_number_length,
2063                         largest_observed_length) -
2064      (quic_version_ == QUIC_VERSION_13 ? 0 : kNumberOfRevivedPacketsSize);
2065  size_t max_num_ranges = available_range_bytes /
2066      (missing_sequence_number_length + PACKET_1BYTE_SEQUENCE_NUMBER);
2067  max_num_ranges =
2068      min(static_cast<size_t>(numeric_limits<uint8>::max()), max_num_ranges);
2069  bool truncated = ack_info.nack_ranges.size() > max_num_ranges;
2070  DVLOG_IF(1, truncated) << "Truncating ack from "
2071                         << ack_info.nack_ranges.size() << " ranges to "
2072                         << max_num_ranges;
2073
2074  // Write out the type byte by setting the low order bits and doing shifts
2075  // to make room for the next bit flags to be set.
2076  // Whether there are any nacks.
2077  uint8 type_byte = ack_info.nack_ranges.empty() ? 0 : kQuicHasNacksMask;
2078
2079  // truncating bit.
2080  type_byte <<= kQuicAckTruncatedShift;
2081  type_byte |= truncated ? kQuicAckTruncatedMask : 0;
2082
2083  // Largest observed sequence number length.
2084  type_byte <<= kQuicSequenceNumberLengthShift;
2085  type_byte |= GetSequenceNumberFlags(largest_observed_length);
2086
2087  // Missing sequence number length.
2088  type_byte <<= kQuicSequenceNumberLengthShift;
2089  type_byte |= GetSequenceNumberFlags(missing_sequence_number_length);
2090
2091  type_byte |= kQuicFrameTypeAckMask;
2092
2093  if (!writer->WriteUInt8(type_byte)) {
2094    return false;
2095  }
2096
2097  if (quic_version_ <= QUIC_VERSION_15) {
2098    if (!AppendStopWaitingFrame(header, frame.sent_info, writer)) {
2099      return false;
2100    }
2101  }
2102
2103  const ReceivedPacketInfo& received_info = frame.received_info;
2104  QuicPacketEntropyHash ack_entropy_hash = received_info.entropy_hash;
2105  NackRangeMap::reverse_iterator ack_iter = ack_info.nack_ranges.rbegin();
2106  if (truncated) {
2107    // Skip the nack ranges which the truncated ack won't include and set
2108    // a correct largest observed for the truncated ack.
2109    for (size_t i = 1; i < (ack_info.nack_ranges.size() - max_num_ranges);
2110         ++i) {
2111      ++ack_iter;
2112    }
2113    // If the last range is followed by acks, include them.
2114    // If the last range is followed by another range, specify the end of the
2115    // range as the largest_observed.
2116    ack_largest_observed = ack_iter->first - 1;
2117    // Also update the entropy so it matches the largest observed.
2118    ack_entropy_hash = entropy_calculator_->EntropyHash(ack_largest_observed);
2119    ++ack_iter;
2120  }
2121
2122  if (!writer->WriteUInt8(ack_entropy_hash)) {
2123    return false;
2124  }
2125
2126  if (!AppendPacketSequenceNumber(largest_observed_length,
2127                                  ack_largest_observed, writer)) {
2128    return false;
2129  }
2130
2131  uint64 delta_time_largest_observed_us = kUFloat16MaxValue;
2132  if (!received_info.delta_time_largest_observed.IsInfinite()) {
2133    DCHECK_LE(0u,
2134              frame.received_info.delta_time_largest_observed.ToMicroseconds());
2135    delta_time_largest_observed_us =
2136        received_info.delta_time_largest_observed.ToMicroseconds();
2137  }
2138
2139  if (!writer->WriteUFloat16(delta_time_largest_observed_us)) {
2140    return false;
2141  }
2142
2143  if (ack_info.nack_ranges.empty()) {
2144    return true;
2145  }
2146
2147  const uint8 num_missing_ranges =
2148      min(ack_info.nack_ranges.size(), max_num_ranges);
2149  if (!writer->WriteBytes(&num_missing_ranges, 1)) {
2150    return false;
2151  }
2152
2153  int num_ranges_written = 0;
2154  QuicPacketSequenceNumber last_sequence_written = ack_largest_observed;
2155  for (; ack_iter != ack_info.nack_ranges.rend(); ++ack_iter) {
2156    // Calculate the delta to the last number in the range.
2157    QuicPacketSequenceNumber missing_delta =
2158        last_sequence_written - (ack_iter->first + ack_iter->second);
2159    if (!AppendPacketSequenceNumber(missing_sequence_number_length,
2160                                    missing_delta, writer)) {
2161      return false;
2162    }
2163    if (!AppendPacketSequenceNumber(PACKET_1BYTE_SEQUENCE_NUMBER,
2164                                    ack_iter->second, writer)) {
2165      return false;
2166    }
2167    // Subtract 1 so a missing_delta of 0 means an adjacent range.
2168    last_sequence_written = ack_iter->first - 1;
2169    ++num_ranges_written;
2170  }
2171  DCHECK_EQ(num_missing_ranges, num_ranges_written);
2172
2173  if (quic_version_ != QUIC_VERSION_13) {
2174    // Append revived packets.
2175    // If not all the revived packets fit, only mention the ones that do.
2176    uint8 num_revived_packets =
2177        min(received_info.revived_packets.size(),
2178            static_cast<size_t>(numeric_limits<uint8>::max()));
2179    num_revived_packets = min(
2180        static_cast<size_t>(num_revived_packets),
2181        (writer->capacity() - writer->length()) / largest_observed_length);
2182    if (!writer->WriteBytes(&num_revived_packets, 1)) {
2183      return false;
2184    }
2185
2186    SequenceNumberSet::const_iterator iter =
2187        received_info.revived_packets.begin();
2188    for (int i = 0; i < num_revived_packets; ++i, ++iter) {
2189      LOG_IF(DFATAL, !ContainsKey(received_info.missing_packets, *iter));
2190      if (!AppendPacketSequenceNumber(largest_observed_length,
2191                                      *iter, writer)) {
2192        return false;
2193      }
2194    }
2195  }
2196
2197  return true;
2198}
2199
2200bool QuicFramer::AppendCongestionFeedbackFrame(
2201    const QuicCongestionFeedbackFrame& frame,
2202    QuicDataWriter* writer) {
2203  if (!writer->WriteBytes(&frame.type, 1)) {
2204    return false;
2205  }
2206
2207  switch (frame.type) {
2208    case kInterArrival: {
2209      const CongestionFeedbackMessageInterArrival& inter_arrival =
2210          frame.inter_arrival;
2211      if (quic_version_ == QUIC_VERSION_13) {
2212        // accumulated_number_of_lost_packets is removed.  Always write 0.
2213        if (!writer->WriteUInt16(0)) {
2214          return false;
2215        }
2216      }
2217      DCHECK_GE(numeric_limits<uint8>::max(),
2218                inter_arrival.received_packet_times.size());
2219      if (inter_arrival.received_packet_times.size() >
2220          numeric_limits<uint8>::max()) {
2221        return false;
2222      }
2223      // TODO(ianswett): Make num_received_packets a varint.
2224      uint8 num_received_packets =
2225          inter_arrival.received_packet_times.size();
2226      if (!writer->WriteBytes(&num_received_packets, 1)) {
2227        return false;
2228      }
2229      if (num_received_packets > 0) {
2230        TimeMap::const_iterator it =
2231            inter_arrival.received_packet_times.begin();
2232
2233        QuicPacketSequenceNumber lowest_sequence = it->first;
2234        if (!AppendPacketSequenceNumber(PACKET_6BYTE_SEQUENCE_NUMBER,
2235                                        lowest_sequence, writer)) {
2236          return false;
2237        }
2238
2239        QuicTime lowest_time = it->second;
2240        if (!writer->WriteUInt64(
2241                lowest_time.Subtract(creation_time_).ToMicroseconds())) {
2242          return false;
2243        }
2244
2245        for (++it; it != inter_arrival.received_packet_times.end(); ++it) {
2246          QuicPacketSequenceNumber sequence_delta = it->first - lowest_sequence;
2247          DCHECK_GE(numeric_limits<uint16>::max(), sequence_delta);
2248          if (sequence_delta > numeric_limits<uint16>::max()) {
2249            return false;
2250          }
2251          if (!writer->WriteUInt16(static_cast<uint16>(sequence_delta))) {
2252            return false;
2253          }
2254
2255          int32 time_delta_us =
2256              it->second.Subtract(lowest_time).ToMicroseconds();
2257          if (!writer->WriteBytes(&time_delta_us, sizeof(time_delta_us))) {
2258            return false;
2259          }
2260        }
2261      }
2262      break;
2263    }
2264    case kFixRate: {
2265      const CongestionFeedbackMessageFixRate& fix_rate =
2266          frame.fix_rate;
2267      if (!writer->WriteUInt32(fix_rate.bitrate.ToBytesPerSecond())) {
2268        return false;
2269      }
2270      break;
2271    }
2272    case kTCP: {
2273      const CongestionFeedbackMessageTCP& tcp = frame.tcp;
2274      DCHECK_LE(tcp.receive_window, 1u << 20);
2275      // Simple bit packing, don't send the 4 least significant bits.
2276      uint16 receive_window = static_cast<uint16>(tcp.receive_window >> 4);
2277      if (quic_version_ == QUIC_VERSION_13) {
2278        // accumulated_number_of_lost_packets is removed.  Always write 0.
2279        if (!writer->WriteUInt16(0)) {
2280          return false;
2281        }
2282      }
2283      if (!writer->WriteUInt16(receive_window)) {
2284        return false;
2285      }
2286      break;
2287    }
2288    default:
2289      return false;
2290  }
2291
2292  return true;
2293}
2294
2295bool QuicFramer::AppendStopWaitingFrame(
2296    const QuicPacketHeader& header,
2297    const QuicStopWaitingFrame& frame,
2298    QuicDataWriter* writer) {
2299  DCHECK_GE(header.packet_sequence_number, frame.least_unacked);
2300  const QuicPacketSequenceNumber least_unacked_delta =
2301      header.packet_sequence_number - frame.least_unacked;
2302  const QuicPacketSequenceNumber length_shift =
2303      header.public_header.sequence_number_length * 8;
2304  if (!writer->WriteUInt8(frame.entropy_hash)) {
2305    LOG(DFATAL) << " hash failed";
2306    return false;
2307  }
2308
2309  if (least_unacked_delta >> length_shift > 0) {
2310    LOG(DFATAL) << "sequence_number_length "
2311                << header.public_header.sequence_number_length
2312                << " is too small for least_unacked_delta: "
2313                << least_unacked_delta;
2314    return false;
2315  }
2316  if (!AppendPacketSequenceNumber(header.public_header.sequence_number_length,
2317                                  least_unacked_delta, writer)) {
2318    LOG(DFATAL) << " seq failed: "
2319                << header.public_header.sequence_number_length;
2320    return false;
2321  }
2322
2323  return true;
2324}
2325
2326bool QuicFramer::AppendRstStreamFrame(
2327        const QuicRstStreamFrame& frame,
2328        QuicDataWriter* writer) {
2329  if (!writer->WriteUInt32(frame.stream_id)) {
2330    return false;
2331  }
2332
2333  if (quic_version_ > QUIC_VERSION_13) {
2334    if (!writer->WriteUInt64(frame.byte_offset)) {
2335      return false;
2336    }
2337  }
2338
2339  uint32 error_code = static_cast<uint32>(frame.error_code);
2340  if (!writer->WriteUInt32(error_code)) {
2341    return false;
2342  }
2343
2344  if (!writer->WriteStringPiece16(frame.error_details)) {
2345    return false;
2346  }
2347  return true;
2348}
2349
2350bool QuicFramer::AppendConnectionCloseFrame(
2351    const QuicConnectionCloseFrame& frame,
2352    QuicDataWriter* writer) {
2353  uint32 error_code = static_cast<uint32>(frame.error_code);
2354  if (!writer->WriteUInt32(error_code)) {
2355    return false;
2356  }
2357  if (!writer->WriteStringPiece16(frame.error_details)) {
2358    return false;
2359  }
2360  return true;
2361}
2362
2363bool QuicFramer::AppendGoAwayFrame(const QuicGoAwayFrame& frame,
2364                                   QuicDataWriter* writer) {
2365  uint32 error_code = static_cast<uint32>(frame.error_code);
2366  if (!writer->WriteUInt32(error_code)) {
2367    return false;
2368  }
2369  uint32 stream_id = static_cast<uint32>(frame.last_good_stream_id);
2370  if (!writer->WriteUInt32(stream_id)) {
2371    return false;
2372  }
2373  if (!writer->WriteStringPiece16(frame.reason_phrase)) {
2374    return false;
2375  }
2376  return true;
2377}
2378
2379bool QuicFramer::AppendWindowUpdateFrame(const QuicWindowUpdateFrame& frame,
2380                                         QuicDataWriter* writer) {
2381  uint32 stream_id = static_cast<uint32>(frame.stream_id);
2382  if (!writer->WriteUInt32(stream_id)) {
2383    return false;
2384  }
2385  if (!writer->WriteUInt64(frame.byte_offset)) {
2386    return false;
2387  }
2388  return true;
2389}
2390
2391bool QuicFramer::AppendBlockedFrame(const QuicBlockedFrame& frame,
2392                                    QuicDataWriter* writer) {
2393  uint32 stream_id = static_cast<uint32>(frame.stream_id);
2394  if (!writer->WriteUInt32(stream_id)) {
2395    return false;
2396  }
2397  return true;
2398}
2399
2400bool QuicFramer::RaiseError(QuicErrorCode error) {
2401  DVLOG(1) << "Error detail: " << detailed_error_;
2402  set_error(error);
2403  visitor_->OnError(this);
2404  reader_.reset(NULL);
2405  return false;
2406}
2407
2408}  // namespace net
2409