1// Copyright (c) 2011 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include <algorithm>
6
7#include "base/logging.h"
8#include "skia/ext/convolver.h"
9#include "skia/ext/convolver_SSE2.h"
10#include "skia/ext/convolver_mips_dspr2.h"
11#include "third_party/skia/include/core/SkSize.h"
12#include "third_party/skia/include/core/SkTypes.h"
13
14namespace skia {
15
16namespace {
17
18// Converts the argument to an 8-bit unsigned value by clamping to the range
19// 0-255.
20inline unsigned char ClampTo8(int a) {
21  if (static_cast<unsigned>(a) < 256)
22    return a;  // Avoid the extra check in the common case.
23  if (a < 0)
24    return 0;
25  return 255;
26}
27
28// Takes the value produced by accumulating element-wise product of image with
29// a kernel and brings it back into range.
30// All of the filter scaling factors are in fixed point with kShiftBits bits of
31// fractional part.
32inline unsigned char BringBackTo8(int a, bool take_absolute) {
33  a >>= ConvolutionFilter1D::kShiftBits;
34  if (take_absolute)
35    a = std::abs(a);
36  return ClampTo8(a);
37}
38
39// Stores a list of rows in a circular buffer. The usage is you write into it
40// by calling AdvanceRow. It will keep track of which row in the buffer it
41// should use next, and the total number of rows added.
42class CircularRowBuffer {
43 public:
44  // The number of pixels in each row is given in |source_row_pixel_width|.
45  // The maximum number of rows needed in the buffer is |max_y_filter_size|
46  // (we only need to store enough rows for the biggest filter).
47  //
48  // We use the |first_input_row| to compute the coordinates of all of the
49  // following rows returned by Advance().
50  CircularRowBuffer(int dest_row_pixel_width, int max_y_filter_size,
51                    int first_input_row)
52      : row_byte_width_(dest_row_pixel_width * 4),
53        num_rows_(max_y_filter_size),
54        next_row_(0),
55        next_row_coordinate_(first_input_row) {
56    buffer_.resize(row_byte_width_ * max_y_filter_size);
57    row_addresses_.resize(num_rows_);
58  }
59
60  // Moves to the next row in the buffer, returning a pointer to the beginning
61  // of it.
62  unsigned char* AdvanceRow() {
63    unsigned char* row = &buffer_[next_row_ * row_byte_width_];
64    next_row_coordinate_++;
65
66    // Set the pointer to the next row to use, wrapping around if necessary.
67    next_row_++;
68    if (next_row_ == num_rows_)
69      next_row_ = 0;
70    return row;
71  }
72
73  // Returns a pointer to an "unrolled" array of rows. These rows will start
74  // at the y coordinate placed into |*first_row_index| and will continue in
75  // order for the maximum number of rows in this circular buffer.
76  //
77  // The |first_row_index_| may be negative. This means the circular buffer
78  // starts before the top of the image (it hasn't been filled yet).
79  unsigned char* const* GetRowAddresses(int* first_row_index) {
80    // Example for a 4-element circular buffer holding coords 6-9.
81    //   Row 0   Coord 8
82    //   Row 1   Coord 9
83    //   Row 2   Coord 6  <- next_row_ = 2, next_row_coordinate_ = 10.
84    //   Row 3   Coord 7
85    //
86    // The "next" row is also the first (lowest) coordinate. This computation
87    // may yield a negative value, but that's OK, the math will work out
88    // since the user of this buffer will compute the offset relative
89    // to the first_row_index and the negative rows will never be used.
90    *first_row_index = next_row_coordinate_ - num_rows_;
91
92    int cur_row = next_row_;
93    for (int i = 0; i < num_rows_; i++) {
94      row_addresses_[i] = &buffer_[cur_row * row_byte_width_];
95
96      // Advance to the next row, wrapping if necessary.
97      cur_row++;
98      if (cur_row == num_rows_)
99        cur_row = 0;
100    }
101    return &row_addresses_[0];
102  }
103
104 private:
105  // The buffer storing the rows. They are packed, each one row_byte_width_.
106  std::vector<unsigned char> buffer_;
107
108  // Number of bytes per row in the |buffer_|.
109  int row_byte_width_;
110
111  // The number of rows available in the buffer.
112  int num_rows_;
113
114  // The next row index we should write into. This wraps around as the
115  // circular buffer is used.
116  int next_row_;
117
118  // The y coordinate of the |next_row_|. This is incremented each time a
119  // new row is appended and does not wrap.
120  int next_row_coordinate_;
121
122  // Buffer used by GetRowAddresses().
123  std::vector<unsigned char*> row_addresses_;
124};
125
126// Convolves horizontally along a single row. The row data is given in
127// |src_data| and continues for the num_values() of the filter.
128template<bool has_alpha>
129void ConvolveHorizontally(const unsigned char* src_data,
130                          const ConvolutionFilter1D& filter,
131                          unsigned char* out_row) {
132  // Loop over each pixel on this row in the output image.
133  int num_values = filter.num_values();
134  for (int out_x = 0; out_x < num_values; out_x++) {
135    // Get the filter that determines the current output pixel.
136    int filter_offset, filter_length;
137    const ConvolutionFilter1D::Fixed* filter_values =
138        filter.FilterForValue(out_x, &filter_offset, &filter_length);
139
140    // Compute the first pixel in this row that the filter affects. It will
141    // touch |filter_length| pixels (4 bytes each) after this.
142    const unsigned char* row_to_filter = &src_data[filter_offset * 4];
143
144    // Apply the filter to the row to get the destination pixel in |accum|.
145    int accum[4] = {0};
146    for (int filter_x = 0; filter_x < filter_length; filter_x++) {
147      ConvolutionFilter1D::Fixed cur_filter = filter_values[filter_x];
148      accum[0] += cur_filter * row_to_filter[filter_x * 4 + 0];
149      accum[1] += cur_filter * row_to_filter[filter_x * 4 + 1];
150      accum[2] += cur_filter * row_to_filter[filter_x * 4 + 2];
151      if (has_alpha)
152        accum[3] += cur_filter * row_to_filter[filter_x * 4 + 3];
153    }
154
155    // Bring this value back in range. All of the filter scaling factors
156    // are in fixed point with kShiftBits bits of fractional part.
157    accum[0] >>= ConvolutionFilter1D::kShiftBits;
158    accum[1] >>= ConvolutionFilter1D::kShiftBits;
159    accum[2] >>= ConvolutionFilter1D::kShiftBits;
160    if (has_alpha)
161      accum[3] >>= ConvolutionFilter1D::kShiftBits;
162
163    // Store the new pixel.
164    out_row[out_x * 4 + 0] = ClampTo8(accum[0]);
165    out_row[out_x * 4 + 1] = ClampTo8(accum[1]);
166    out_row[out_x * 4 + 2] = ClampTo8(accum[2]);
167    if (has_alpha)
168      out_row[out_x * 4 + 3] = ClampTo8(accum[3]);
169  }
170}
171
172// Does vertical convolution to produce one output row. The filter values and
173// length are given in the first two parameters. These are applied to each
174// of the rows pointed to in the |source_data_rows| array, with each row
175// being |pixel_width| wide.
176//
177// The output must have room for |pixel_width * 4| bytes.
178template<bool has_alpha>
179void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values,
180                        int filter_length,
181                        unsigned char* const* source_data_rows,
182                        int pixel_width,
183                        unsigned char* out_row) {
184  // We go through each column in the output and do a vertical convolution,
185  // generating one output pixel each time.
186  for (int out_x = 0; out_x < pixel_width; out_x++) {
187    // Compute the number of bytes over in each row that the current column
188    // we're convolving starts at. The pixel will cover the next 4 bytes.
189    int byte_offset = out_x * 4;
190
191    // Apply the filter to one column of pixels.
192    int accum[4] = {0};
193    for (int filter_y = 0; filter_y < filter_length; filter_y++) {
194      ConvolutionFilter1D::Fixed cur_filter = filter_values[filter_y];
195      accum[0] += cur_filter * source_data_rows[filter_y][byte_offset + 0];
196      accum[1] += cur_filter * source_data_rows[filter_y][byte_offset + 1];
197      accum[2] += cur_filter * source_data_rows[filter_y][byte_offset + 2];
198      if (has_alpha)
199        accum[3] += cur_filter * source_data_rows[filter_y][byte_offset + 3];
200    }
201
202    // Bring this value back in range. All of the filter scaling factors
203    // are in fixed point with kShiftBits bits of precision.
204    accum[0] >>= ConvolutionFilter1D::kShiftBits;
205    accum[1] >>= ConvolutionFilter1D::kShiftBits;
206    accum[2] >>= ConvolutionFilter1D::kShiftBits;
207    if (has_alpha)
208      accum[3] >>= ConvolutionFilter1D::kShiftBits;
209
210    // Store the new pixel.
211    out_row[byte_offset + 0] = ClampTo8(accum[0]);
212    out_row[byte_offset + 1] = ClampTo8(accum[1]);
213    out_row[byte_offset + 2] = ClampTo8(accum[2]);
214    if (has_alpha) {
215      unsigned char alpha = ClampTo8(accum[3]);
216
217      // Make sure the alpha channel doesn't come out smaller than any of the
218      // color channels. We use premultipled alpha channels, so this should
219      // never happen, but rounding errors will cause this from time to time.
220      // These "impossible" colors will cause overflows (and hence random pixel
221      // values) when the resulting bitmap is drawn to the screen.
222      //
223      // We only need to do this when generating the final output row (here).
224      int max_color_channel = std::max(out_row[byte_offset + 0],
225          std::max(out_row[byte_offset + 1], out_row[byte_offset + 2]));
226      if (alpha < max_color_channel)
227        out_row[byte_offset + 3] = max_color_channel;
228      else
229        out_row[byte_offset + 3] = alpha;
230    } else {
231      // No alpha channel, the image is opaque.
232      out_row[byte_offset + 3] = 0xff;
233    }
234  }
235}
236
237void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values,
238                        int filter_length,
239                        unsigned char* const* source_data_rows,
240                        int pixel_width,
241                        unsigned char* out_row,
242                        bool source_has_alpha) {
243  if (source_has_alpha) {
244    ConvolveVertically<true>(filter_values, filter_length,
245                             source_data_rows,
246                             pixel_width,
247                             out_row);
248  } else {
249    ConvolveVertically<false>(filter_values, filter_length,
250                              source_data_rows,
251                              pixel_width,
252                              out_row);
253  }
254}
255
256}  // namespace
257
258// ConvolutionFilter1D ---------------------------------------------------------
259
260ConvolutionFilter1D::ConvolutionFilter1D()
261    : max_filter_(0) {
262}
263
264ConvolutionFilter1D::~ConvolutionFilter1D() {
265}
266
267void ConvolutionFilter1D::AddFilter(int filter_offset,
268                                    const float* filter_values,
269                                    int filter_length) {
270  SkASSERT(filter_length > 0);
271
272  std::vector<Fixed> fixed_values;
273  fixed_values.reserve(filter_length);
274
275  for (int i = 0; i < filter_length; ++i)
276    fixed_values.push_back(FloatToFixed(filter_values[i]));
277
278  AddFilter(filter_offset, &fixed_values[0], filter_length);
279}
280
281void ConvolutionFilter1D::AddFilter(int filter_offset,
282                                    const Fixed* filter_values,
283                                    int filter_length) {
284  // It is common for leading/trailing filter values to be zeros. In such
285  // cases it is beneficial to only store the central factors.
286  // For a scaling to 1/4th in each dimension using a Lanczos-2 filter on
287  // a 1080p image this optimization gives a ~10% speed improvement.
288  int filter_size = filter_length;
289  int first_non_zero = 0;
290  while (first_non_zero < filter_length && filter_values[first_non_zero] == 0)
291    first_non_zero++;
292
293  if (first_non_zero < filter_length) {
294    // Here we have at least one non-zero factor.
295    int last_non_zero = filter_length - 1;
296    while (last_non_zero >= 0 && filter_values[last_non_zero] == 0)
297      last_non_zero--;
298
299    filter_offset += first_non_zero;
300    filter_length = last_non_zero + 1 - first_non_zero;
301    SkASSERT(filter_length > 0);
302
303    for (int i = first_non_zero; i <= last_non_zero; i++)
304      filter_values_.push_back(filter_values[i]);
305  } else {
306    // Here all the factors were zeroes.
307    filter_length = 0;
308  }
309
310  FilterInstance instance;
311
312  // We pushed filter_length elements onto filter_values_
313  instance.data_location = (static_cast<int>(filter_values_.size()) -
314                            filter_length);
315  instance.offset = filter_offset;
316  instance.trimmed_length = filter_length;
317  instance.length = filter_size;
318  filters_.push_back(instance);
319
320  max_filter_ = std::max(max_filter_, filter_length);
321}
322
323const ConvolutionFilter1D::Fixed* ConvolutionFilter1D::GetSingleFilter(
324    int* specified_filter_length,
325    int* filter_offset,
326    int* filter_length) const {
327  const FilterInstance& filter = filters_[0];
328  *filter_offset = filter.offset;
329  *filter_length = filter.trimmed_length;
330  *specified_filter_length = filter.length;
331  if (filter.trimmed_length == 0)
332    return NULL;
333
334  return &filter_values_[filter.data_location];
335}
336
337typedef void (*ConvolveVertically_pointer)(
338    const ConvolutionFilter1D::Fixed* filter_values,
339    int filter_length,
340    unsigned char* const* source_data_rows,
341    int pixel_width,
342    unsigned char* out_row,
343    bool has_alpha);
344typedef void (*Convolve4RowsHorizontally_pointer)(
345    const unsigned char* src_data[4],
346    const ConvolutionFilter1D& filter,
347    unsigned char* out_row[4]);
348typedef void (*ConvolveHorizontally_pointer)(
349    const unsigned char* src_data,
350    const ConvolutionFilter1D& filter,
351    unsigned char* out_row,
352    bool has_alpha);
353
354struct ConvolveProcs {
355  // This is how many extra pixels may be read by the
356  // conolve*horizontally functions.
357  int extra_horizontal_reads;
358  ConvolveVertically_pointer convolve_vertically;
359  Convolve4RowsHorizontally_pointer convolve_4rows_horizontally;
360  ConvolveHorizontally_pointer convolve_horizontally;
361};
362
363void SetupSIMD(ConvolveProcs *procs) {
364#ifdef SIMD_SSE2
365  procs->extra_horizontal_reads = 3;
366  procs->convolve_vertically = &ConvolveVertically_SSE2;
367  procs->convolve_4rows_horizontally = &Convolve4RowsHorizontally_SSE2;
368  procs->convolve_horizontally = &ConvolveHorizontally_SSE2;
369#elif defined SIMD_MIPS_DSPR2
370  procs->extra_horizontal_reads = 3;
371  procs->convolve_vertically = &ConvolveVertically_mips_dspr2;
372  procs->convolve_horizontally = &ConvolveHorizontally_mips_dspr2;
373#endif
374}
375
376void BGRAConvolve2D(const unsigned char* source_data,
377                    int source_byte_row_stride,
378                    bool source_has_alpha,
379                    const ConvolutionFilter1D& filter_x,
380                    const ConvolutionFilter1D& filter_y,
381                    int output_byte_row_stride,
382                    unsigned char* output,
383                    bool use_simd_if_possible) {
384  ConvolveProcs simd;
385  simd.extra_horizontal_reads = 0;
386  simd.convolve_vertically = NULL;
387  simd.convolve_4rows_horizontally = NULL;
388  simd.convolve_horizontally = NULL;
389  if (use_simd_if_possible) {
390    SetupSIMD(&simd);
391  }
392
393  int max_y_filter_size = filter_y.max_filter();
394
395  // The next row in the input that we will generate a horizontally
396  // convolved row for. If the filter doesn't start at the beginning of the
397  // image (this is the case when we are only resizing a subset), then we
398  // don't want to generate any output rows before that. Compute the starting
399  // row for convolution as the first pixel for the first vertical filter.
400  int filter_offset, filter_length;
401  const ConvolutionFilter1D::Fixed* filter_values =
402      filter_y.FilterForValue(0, &filter_offset, &filter_length);
403  int next_x_row = filter_offset;
404
405  // We loop over each row in the input doing a horizontal convolution. This
406  // will result in a horizontally convolved image. We write the results into
407  // a circular buffer of convolved rows and do vertical convolution as rows
408  // are available. This prevents us from having to store the entire
409  // intermediate image and helps cache coherency.
410  // We will need four extra rows to allow horizontal convolution could be done
411  // simultaneously. We also padding each row in row buffer to be aligned-up to
412  // 16 bytes.
413  // TODO(jiesun): We do not use aligned load from row buffer in vertical
414  // convolution pass yet. Somehow Windows does not like it.
415  int row_buffer_width = (filter_x.num_values() + 15) & ~0xF;
416  int row_buffer_height = max_y_filter_size +
417      (simd.convolve_4rows_horizontally ? 4 : 0);
418  CircularRowBuffer row_buffer(row_buffer_width,
419                               row_buffer_height,
420                               filter_offset);
421
422  // Loop over every possible output row, processing just enough horizontal
423  // convolutions to run each subsequent vertical convolution.
424  SkASSERT(output_byte_row_stride >= filter_x.num_values() * 4);
425  int num_output_rows = filter_y.num_values();
426
427  // We need to check which is the last line to convolve before we advance 4
428  // lines in one iteration.
429  int last_filter_offset, last_filter_length;
430
431  // SSE2 can access up to 3 extra pixels past the end of the
432  // buffer. At the bottom of the image, we have to be careful
433  // not to access data past the end of the buffer. Normally
434  // we fall back to the C++ implementation for the last row.
435  // If the last row is less than 3 pixels wide, we may have to fall
436  // back to the C++ version for more rows. Compute how many
437  // rows we need to avoid the SSE implementation for here.
438  filter_x.FilterForValue(filter_x.num_values() - 1, &last_filter_offset,
439                          &last_filter_length);
440  int avoid_simd_rows = 1 + simd.extra_horizontal_reads /
441      (last_filter_offset + last_filter_length);
442
443  filter_y.FilterForValue(num_output_rows - 1, &last_filter_offset,
444                          &last_filter_length);
445
446  for (int out_y = 0; out_y < num_output_rows; out_y++) {
447    filter_values = filter_y.FilterForValue(out_y,
448                                            &filter_offset, &filter_length);
449
450    // Generate output rows until we have enough to run the current filter.
451    while (next_x_row < filter_offset + filter_length) {
452      if (simd.convolve_4rows_horizontally &&
453          next_x_row + 3 < last_filter_offset + last_filter_length -
454          avoid_simd_rows) {
455        const unsigned char* src[4];
456        unsigned char* out_row[4];
457        for (int i = 0; i < 4; ++i) {
458          src[i] = &source_data[(next_x_row + i) * source_byte_row_stride];
459          out_row[i] = row_buffer.AdvanceRow();
460        }
461        simd.convolve_4rows_horizontally(src, filter_x, out_row);
462        next_x_row += 4;
463      } else {
464        // Check if we need to avoid SSE2 for this row.
465        if (simd.convolve_horizontally &&
466            next_x_row < last_filter_offset + last_filter_length -
467            avoid_simd_rows) {
468          simd.convolve_horizontally(
469              &source_data[next_x_row * source_byte_row_stride],
470              filter_x, row_buffer.AdvanceRow(), source_has_alpha);
471        } else {
472          if (source_has_alpha) {
473            ConvolveHorizontally<true>(
474                &source_data[next_x_row * source_byte_row_stride],
475                filter_x, row_buffer.AdvanceRow());
476          } else {
477            ConvolveHorizontally<false>(
478                &source_data[next_x_row * source_byte_row_stride],
479                filter_x, row_buffer.AdvanceRow());
480          }
481        }
482        next_x_row++;
483      }
484    }
485
486    // Compute where in the output image this row of final data will go.
487    unsigned char* cur_output_row = &output[out_y * output_byte_row_stride];
488
489    // Get the list of rows that the circular buffer has, in order.
490    int first_row_in_circular_buffer;
491    unsigned char* const* rows_to_convolve =
492        row_buffer.GetRowAddresses(&first_row_in_circular_buffer);
493
494    // Now compute the start of the subset of those rows that the filter
495    // needs.
496    unsigned char* const* first_row_for_filter =
497        &rows_to_convolve[filter_offset - first_row_in_circular_buffer];
498
499    if (simd.convolve_vertically) {
500      simd.convolve_vertically(filter_values, filter_length,
501                               first_row_for_filter,
502                               filter_x.num_values(), cur_output_row,
503                               source_has_alpha);
504    } else {
505      ConvolveVertically(filter_values, filter_length,
506                         first_row_for_filter,
507                         filter_x.num_values(), cur_output_row,
508                         source_has_alpha);
509    }
510  }
511}
512
513void SingleChannelConvolveX1D(const unsigned char* source_data,
514                              int source_byte_row_stride,
515                              int input_channel_index,
516                              int input_channel_count,
517                              const ConvolutionFilter1D& filter,
518                              const SkISize& image_size,
519                              unsigned char* output,
520                              int output_byte_row_stride,
521                              int output_channel_index,
522                              int output_channel_count,
523                              bool absolute_values) {
524  int filter_offset, filter_length, filter_size;
525  // Very much unlike BGRAConvolve2D, here we expect to have the same filter
526  // for all pixels.
527  const ConvolutionFilter1D::Fixed* filter_values =
528      filter.GetSingleFilter(&filter_size, &filter_offset, &filter_length);
529
530  if (filter_values == NULL || image_size.width() < filter_size) {
531    NOTREACHED();
532    return;
533  }
534
535  int centrepoint = filter_length / 2;
536  if (filter_size - filter_offset != 2 * filter_offset) {
537    // This means the original filter was not symmetrical AND
538    // got clipped from one side more than from the other.
539    centrepoint = filter_size / 2 - filter_offset;
540  }
541
542  const unsigned char* source_data_row = source_data;
543  unsigned char* output_row = output;
544
545  for (int r = 0; r < image_size.height(); ++r) {
546    unsigned char* target_byte = output_row + output_channel_index;
547    // Process the lead part, padding image to the left with the first pixel.
548    int c = 0;
549    for (; c < centrepoint; ++c, target_byte += output_channel_count) {
550      int accval = 0;
551      int i = 0;
552      int pixel_byte_index = input_channel_index;
553      for (; i < centrepoint - c; ++i)  // Padding part.
554        accval += filter_values[i] * source_data_row[pixel_byte_index];
555
556      for (; i < filter_length; ++i, pixel_byte_index += input_channel_count)
557        accval += filter_values[i] * source_data_row[pixel_byte_index];
558
559      *target_byte = BringBackTo8(accval, absolute_values);
560    }
561
562    // Now for the main event.
563    for (; c < image_size.width() - centrepoint;
564         ++c, target_byte += output_channel_count) {
565      int accval = 0;
566      int pixel_byte_index = (c - centrepoint) * input_channel_count +
567          input_channel_index;
568
569      for (int i = 0; i < filter_length;
570           ++i, pixel_byte_index += input_channel_count) {
571        accval += filter_values[i] * source_data_row[pixel_byte_index];
572      }
573
574      *target_byte = BringBackTo8(accval, absolute_values);
575    }
576
577    for (; c < image_size.width(); ++c, target_byte += output_channel_count) {
578      int accval = 0;
579      int overlap_taps = image_size.width() - c + centrepoint;
580      int pixel_byte_index = (c - centrepoint) * input_channel_count +
581          input_channel_index;
582      int i = 0;
583      for (; i < overlap_taps - 1; ++i, pixel_byte_index += input_channel_count)
584        accval += filter_values[i] * source_data_row[pixel_byte_index];
585
586      for (; i < filter_length; ++i)
587        accval += filter_values[i] * source_data_row[pixel_byte_index];
588
589      *target_byte = BringBackTo8(accval, absolute_values);
590    }
591
592    source_data_row += source_byte_row_stride;
593    output_row += output_byte_row_stride;
594  }
595}
596
597void SingleChannelConvolveY1D(const unsigned char* source_data,
598                              int source_byte_row_stride,
599                              int input_channel_index,
600                              int input_channel_count,
601                              const ConvolutionFilter1D& filter,
602                              const SkISize& image_size,
603                              unsigned char* output,
604                              int output_byte_row_stride,
605                              int output_channel_index,
606                              int output_channel_count,
607                              bool absolute_values) {
608  int filter_offset, filter_length, filter_size;
609  // Very much unlike BGRAConvolve2D, here we expect to have the same filter
610  // for all pixels.
611  const ConvolutionFilter1D::Fixed* filter_values =
612      filter.GetSingleFilter(&filter_size, &filter_offset, &filter_length);
613
614  if (filter_values == NULL || image_size.height() < filter_size) {
615    NOTREACHED();
616    return;
617  }
618
619  int centrepoint = filter_length / 2;
620  if (filter_size - filter_offset != 2 * filter_offset) {
621    // This means the original filter was not symmetrical AND
622    // got clipped from one side more than from the other.
623    centrepoint = filter_size / 2 - filter_offset;
624  }
625
626  for (int c = 0; c < image_size.width(); ++c) {
627    unsigned char* target_byte = output + c * output_channel_count +
628        output_channel_index;
629    int r = 0;
630
631    for (; r < centrepoint; ++r, target_byte += output_byte_row_stride) {
632      int accval = 0;
633      int i = 0;
634      int pixel_byte_index = c * input_channel_count + input_channel_index;
635
636      for (; i < centrepoint - r; ++i)  // Padding part.
637        accval += filter_values[i] * source_data[pixel_byte_index];
638
639      for (; i < filter_length; ++i, pixel_byte_index += source_byte_row_stride)
640        accval += filter_values[i] * source_data[pixel_byte_index];
641
642      *target_byte = BringBackTo8(accval, absolute_values);
643    }
644
645    for (; r < image_size.height() - centrepoint;
646         ++r, target_byte += output_byte_row_stride) {
647      int accval = 0;
648      int pixel_byte_index = (r - centrepoint) * source_byte_row_stride +
649          c * input_channel_count + input_channel_index;
650      for (int i = 0; i < filter_length;
651           ++i, pixel_byte_index += source_byte_row_stride) {
652        accval += filter_values[i] * source_data[pixel_byte_index];
653      }
654
655      *target_byte = BringBackTo8(accval, absolute_values);
656    }
657
658    for (; r < image_size.height();
659         ++r, target_byte += output_byte_row_stride) {
660      int accval = 0;
661      int overlap_taps = image_size.height() - r + centrepoint;
662      int pixel_byte_index = (r - centrepoint) * source_byte_row_stride +
663          c * input_channel_count + input_channel_index;
664      int i = 0;
665      for (; i < overlap_taps - 1;
666           ++i, pixel_byte_index += source_byte_row_stride) {
667        accval += filter_values[i] * source_data[pixel_byte_index];
668      }
669
670      for (; i < filter_length; ++i)
671        accval += filter_values[i] * source_data[pixel_byte_index];
672
673      *target_byte = BringBackTo8(accval, absolute_values);
674    }
675  }
676}
677
678void SetUpGaussianConvolutionKernel(ConvolutionFilter1D* filter,
679                                    float kernel_sigma,
680                                    bool derivative) {
681  DCHECK(filter != NULL);
682  DCHECK_GT(kernel_sigma, 0.0);
683  const int tail_length = static_cast<int>(4.0f * kernel_sigma + 0.5f);
684  const int kernel_size = tail_length * 2 + 1;
685  const float sigmasq = kernel_sigma * kernel_sigma;
686  std::vector<float> kernel_weights(kernel_size, 0.0);
687  float kernel_sum = 1.0f;
688
689  kernel_weights[tail_length] = 1.0f;
690
691  for (int ii = 1; ii <= tail_length; ++ii) {
692    float v = std::exp(-0.5f * ii * ii / sigmasq);
693    kernel_weights[tail_length + ii] = v;
694    kernel_weights[tail_length - ii] = v;
695    kernel_sum += 2.0f * v;
696  }
697
698  for (int i = 0; i < kernel_size; ++i)
699    kernel_weights[i] /= kernel_sum;
700
701  if (derivative) {
702    kernel_weights[tail_length] = 0.0;
703    for (int ii = 1; ii <= tail_length; ++ii) {
704      float v = sigmasq * kernel_weights[tail_length + ii] / ii;
705      kernel_weights[tail_length + ii] = v;
706      kernel_weights[tail_length - ii] = -v;
707    }
708  }
709
710  filter->AddFilter(0, &kernel_weights[0], kernel_weights.size());
711}
712
713}  // namespace skia
714