1/****************************************************************
2 *
3 * The author of this software is David M. Gay.
4 *
5 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
6 * Copyright (C) 2002, 2005, 2006, 2007, 2008, 2010, 2012 Apple Inc. All rights reserved.
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose without fee is hereby granted, provided that this entire notice
10 * is included in all copies of any software which is or includes a copy
11 * or modification of this software and in all copies of the supporting
12 * documentation for such software.
13 *
14 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
15 * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
16 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
17 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
18 *
19 ***************************************************************/
20
21/* Please send bug reports to David M. Gay (dmg at acm dot org,
22 * with " at " changed at "@" and " dot " changed to ".").    */
23
24/* On a machine with IEEE extended-precision registers, it is
25 * necessary to specify double-precision (53-bit) rounding precision
26 * before invoking strtod or dtoa.  If the machine uses (the equivalent
27 * of) Intel 80x87 arithmetic, the call
28 *    _control87(PC_53, MCW_PC);
29 * does this with many compilers.  Whether this or another call is
30 * appropriate depends on the compiler; for this to work, it may be
31 * necessary to #include "float.h" or another system-dependent header
32 * file.
33 */
34
35#include "config.h"
36#include "dtoa.h"
37
38#include "wtf/CPU.h"
39#include "wtf/MathExtras.h"
40#include "wtf/ThreadingPrimitives.h"
41#include "wtf/Vector.h"
42
43#if COMPILER(MSVC)
44#pragma warning(disable: 4244)
45#pragma warning(disable: 4245)
46#pragma warning(disable: 4554)
47#endif
48
49namespace WTF {
50
51Mutex* s_dtoaP5Mutex;
52
53typedef union {
54    double d;
55    uint32_t L[2];
56} U;
57
58#if CPU(BIG_ENDIAN) || CPU(MIDDLE_ENDIAN)
59#define word0(x) (x)->L[0]
60#define word1(x) (x)->L[1]
61#else
62#define word0(x) (x)->L[1]
63#define word1(x) (x)->L[0]
64#endif
65#define dval(x) (x)->d
66
67#define Exp_shift  20
68#define Exp_shift1 20
69#define Exp_msk1    0x100000
70#define Exp_msk11   0x100000
71#define Exp_mask  0x7ff00000
72#define P 53
73#define Bias 1023
74#define Emin (-1022)
75#define Exp_1  0x3ff00000
76#define Exp_11 0x3ff00000
77#define Ebits 11
78#define Frac_mask  0xfffff
79#define Frac_mask1 0xfffff
80#define Ten_pmax 22
81#define Bletch 0x10
82#define Bndry_mask  0xfffff
83#define Bndry_mask1 0xfffff
84#define LSB 1
85#define Sign_bit 0x80000000
86#define Log2P 1
87#define Tiny0 0
88#define Tiny1 1
89#define Quick_max 14
90#define Int_max 14
91
92#define rounded_product(a, b) a *= b
93#define rounded_quotient(a, b) a /= b
94
95#define Big0 (Frac_mask1 | Exp_msk1 * (DBL_MAX_EXP + Bias - 1))
96#define Big1 0xffffffff
97
98#if CPU(X86_64)
99// FIXME: should we enable this on all 64-bit CPUs?
100// 64-bit emulation provided by the compiler is likely to be slower than dtoa own code on 32-bit hardware.
101#define USE_LONG_LONG
102#endif
103
104#ifndef USE_LONG_LONG
105/* The following definition of Storeinc is appropriate for MIPS processors.
106 * An alternative that might be better on some machines is
107 *  *p++ = high << 16 | low & 0xffff;
108 */
109static ALWAYS_INLINE uint32_t* storeInc(uint32_t* p, uint16_t high, uint16_t low)
110{
111    uint16_t* p16 = reinterpret_cast<uint16_t*>(p);
112#if CPU(BIG_ENDIAN)
113    p16[0] = high;
114    p16[1] = low;
115#else
116    p16[1] = high;
117    p16[0] = low;
118#endif
119    return p + 1;
120}
121#endif
122
123struct BigInt {
124    BigInt() : sign(0) { }
125    int sign;
126
127    void clear()
128    {
129        sign = 0;
130        m_words.clear();
131    }
132
133    size_t size() const
134    {
135        return m_words.size();
136    }
137
138    void resize(size_t s)
139    {
140        m_words.resize(s);
141    }
142
143    uint32_t* words()
144    {
145        return m_words.data();
146    }
147
148    const uint32_t* words() const
149    {
150        return m_words.data();
151    }
152
153    void append(uint32_t w)
154    {
155        m_words.append(w);
156    }
157
158    Vector<uint32_t, 16> m_words;
159};
160
161static void multadd(BigInt& b, int m, int a)    /* multiply by m and add a */
162{
163#ifdef USE_LONG_LONG
164    unsigned long long carry;
165#else
166    uint32_t carry;
167#endif
168
169    int wds = b.size();
170    uint32_t* x = b.words();
171    int i = 0;
172    carry = a;
173    do {
174#ifdef USE_LONG_LONG
175        unsigned long long y = *x * (unsigned long long)m + carry;
176        carry = y >> 32;
177        *x++ = (uint32_t)y & 0xffffffffUL;
178#else
179        uint32_t xi = *x;
180        uint32_t y = (xi & 0xffff) * m + carry;
181        uint32_t z = (xi >> 16) * m + (y >> 16);
182        carry = z >> 16;
183        *x++ = (z << 16) + (y & 0xffff);
184#endif
185    } while (++i < wds);
186
187    if (carry)
188        b.append((uint32_t)carry);
189}
190
191static int hi0bits(uint32_t x)
192{
193    int k = 0;
194
195    if (!(x & 0xffff0000)) {
196        k = 16;
197        x <<= 16;
198    }
199    if (!(x & 0xff000000)) {
200        k += 8;
201        x <<= 8;
202    }
203    if (!(x & 0xf0000000)) {
204        k += 4;
205        x <<= 4;
206    }
207    if (!(x & 0xc0000000)) {
208        k += 2;
209        x <<= 2;
210    }
211    if (!(x & 0x80000000)) {
212        k++;
213        if (!(x & 0x40000000))
214            return 32;
215    }
216    return k;
217}
218
219static int lo0bits(uint32_t* y)
220{
221    int k;
222    uint32_t x = *y;
223
224    if (x & 7) {
225        if (x & 1)
226            return 0;
227        if (x & 2) {
228            *y = x >> 1;
229            return 1;
230        }
231        *y = x >> 2;
232        return 2;
233    }
234    k = 0;
235    if (!(x & 0xffff)) {
236        k = 16;
237        x >>= 16;
238    }
239    if (!(x & 0xff)) {
240        k += 8;
241        x >>= 8;
242    }
243    if (!(x & 0xf)) {
244        k += 4;
245        x >>= 4;
246    }
247    if (!(x & 0x3)) {
248        k += 2;
249        x >>= 2;
250    }
251    if (!(x & 1)) {
252        k++;
253        x >>= 1;
254        if (!x)
255            return 32;
256    }
257    *y = x;
258    return k;
259}
260
261static void i2b(BigInt& b, int i)
262{
263    b.sign = 0;
264    b.resize(1);
265    b.words()[0] = i;
266}
267
268static void mult(BigInt& aRef, const BigInt& bRef)
269{
270    const BigInt* a = &aRef;
271    const BigInt* b = &bRef;
272    BigInt c;
273    int wa, wb, wc;
274    const uint32_t* x = 0;
275    const uint32_t* xa;
276    const uint32_t* xb;
277    const uint32_t* xae;
278    const uint32_t* xbe;
279    uint32_t* xc;
280    uint32_t* xc0;
281    uint32_t y;
282#ifdef USE_LONG_LONG
283    unsigned long long carry, z;
284#else
285    uint32_t carry, z;
286#endif
287
288    if (a->size() < b->size()) {
289        const BigInt* tmp = a;
290        a = b;
291        b = tmp;
292    }
293
294    wa = a->size();
295    wb = b->size();
296    wc = wa + wb;
297    c.resize(wc);
298
299    for (xc = c.words(), xa = xc + wc; xc < xa; xc++)
300        *xc = 0;
301    xa = a->words();
302    xae = xa + wa;
303    xb = b->words();
304    xbe = xb + wb;
305    xc0 = c.words();
306#ifdef USE_LONG_LONG
307    for (; xb < xbe; xc0++) {
308        if ((y = *xb++)) {
309            x = xa;
310            xc = xc0;
311            carry = 0;
312            do {
313                z = *x++ * (unsigned long long)y + *xc + carry;
314                carry = z >> 32;
315                *xc++ = (uint32_t)z & 0xffffffffUL;
316            } while (x < xae);
317            *xc = (uint32_t)carry;
318        }
319    }
320#else
321    for (; xb < xbe; xb++, xc0++) {
322        if ((y = *xb & 0xffff)) {
323            x = xa;
324            xc = xc0;
325            carry = 0;
326            do {
327                z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
328                carry = z >> 16;
329                uint32_t z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
330                carry = z2 >> 16;
331                xc = storeInc(xc, z2, z);
332            } while (x < xae);
333            *xc = carry;
334        }
335        if ((y = *xb >> 16)) {
336            x = xa;
337            xc = xc0;
338            carry = 0;
339            uint32_t z2 = *xc;
340            do {
341                z = (*x & 0xffff) * y + (*xc >> 16) + carry;
342                carry = z >> 16;
343                xc = storeInc(xc, z, z2);
344                z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
345                carry = z2 >> 16;
346            } while (x < xae);
347            *xc = z2;
348        }
349    }
350#endif
351    for (xc0 = c.words(), xc = xc0 + wc; wc > 0 && !*--xc; --wc) { }
352    c.resize(wc);
353    aRef = c;
354}
355
356struct P5Node {
357    WTF_MAKE_NONCOPYABLE(P5Node); WTF_MAKE_FAST_ALLOCATED;
358public:
359    P5Node() { }
360    BigInt val;
361    P5Node* next;
362};
363
364static P5Node* p5s;
365static int p5sCount;
366
367static ALWAYS_INLINE void pow5mult(BigInt& b, int k)
368{
369    static int p05[3] = { 5, 25, 125 };
370
371    if (int i = k & 3)
372        multadd(b, p05[i - 1], 0);
373
374    if (!(k >>= 2))
375        return;
376
377    s_dtoaP5Mutex->lock();
378    P5Node* p5 = p5s;
379
380    if (!p5) {
381        /* first time */
382        p5 = new P5Node;
383        i2b(p5->val, 625);
384        p5->next = 0;
385        p5s = p5;
386        p5sCount = 1;
387    }
388
389    int p5sCountLocal = p5sCount;
390    s_dtoaP5Mutex->unlock();
391    int p5sUsed = 0;
392
393    for (;;) {
394        if (k & 1)
395            mult(b, p5->val);
396
397        if (!(k >>= 1))
398            break;
399
400        if (++p5sUsed == p5sCountLocal) {
401            s_dtoaP5Mutex->lock();
402            if (p5sUsed == p5sCount) {
403                ASSERT(!p5->next);
404                p5->next = new P5Node;
405                p5->next->next = 0;
406                p5->next->val = p5->val;
407                mult(p5->next->val, p5->next->val);
408                ++p5sCount;
409            }
410
411            p5sCountLocal = p5sCount;
412            s_dtoaP5Mutex->unlock();
413        }
414        p5 = p5->next;
415    }
416}
417
418static ALWAYS_INLINE void lshift(BigInt& b, int k)
419{
420    int n = k >> 5;
421
422    int origSize = b.size();
423    int n1 = n + origSize + 1;
424
425    if (k &= 0x1f)
426        b.resize(b.size() + n + 1);
427    else
428        b.resize(b.size() + n);
429
430    const uint32_t* srcStart = b.words();
431    uint32_t* dstStart = b.words();
432    const uint32_t* src = srcStart + origSize - 1;
433    uint32_t* dst = dstStart + n1 - 1;
434    if (k) {
435        uint32_t hiSubword = 0;
436        int s = 32 - k;
437        for (; src >= srcStart; --src) {
438            *dst-- = hiSubword | *src >> s;
439            hiSubword = *src << k;
440        }
441        *dst = hiSubword;
442        ASSERT(dst == dstStart + n);
443
444        b.resize(origSize + n + !!b.words()[n1 - 1]);
445    }
446    else {
447        do {
448            *--dst = *src--;
449        } while (src >= srcStart);
450    }
451    for (dst = dstStart + n; dst != dstStart; )
452        *--dst = 0;
453
454    ASSERT(b.size() <= 1 || b.words()[b.size() - 1]);
455}
456
457static int cmp(const BigInt& a, const BigInt& b)
458{
459    const uint32_t *xa, *xa0, *xb, *xb0;
460    int i, j;
461
462    i = a.size();
463    j = b.size();
464    ASSERT(i <= 1 || a.words()[i - 1]);
465    ASSERT(j <= 1 || b.words()[j - 1]);
466    if (i -= j)
467        return i;
468    xa0 = a.words();
469    xa = xa0 + j;
470    xb0 = b.words();
471    xb = xb0 + j;
472    for (;;) {
473        if (*--xa != *--xb)
474            return *xa < *xb ? -1 : 1;
475        if (xa <= xa0)
476            break;
477    }
478    return 0;
479}
480
481static ALWAYS_INLINE void diff(BigInt& c, const BigInt& aRef, const BigInt& bRef)
482{
483    const BigInt* a = &aRef;
484    const BigInt* b = &bRef;
485    int i, wa, wb;
486    uint32_t* xc;
487
488    i = cmp(*a, *b);
489    if (!i) {
490        c.sign = 0;
491        c.resize(1);
492        c.words()[0] = 0;
493        return;
494    }
495    if (i < 0) {
496        const BigInt* tmp = a;
497        a = b;
498        b = tmp;
499        i = 1;
500    } else
501        i = 0;
502
503    wa = a->size();
504    const uint32_t* xa = a->words();
505    const uint32_t* xae = xa + wa;
506    wb = b->size();
507    const uint32_t* xb = b->words();
508    const uint32_t* xbe = xb + wb;
509
510    c.resize(wa);
511    c.sign = i;
512    xc = c.words();
513#ifdef USE_LONG_LONG
514    unsigned long long borrow = 0;
515    do {
516        unsigned long long y = (unsigned long long)*xa++ - *xb++ - borrow;
517        borrow = y >> 32 & (uint32_t)1;
518        *xc++ = (uint32_t)y & 0xffffffffUL;
519    } while (xb < xbe);
520    while (xa < xae) {
521        unsigned long long y = *xa++ - borrow;
522        borrow = y >> 32 & (uint32_t)1;
523        *xc++ = (uint32_t)y & 0xffffffffUL;
524    }
525#else
526    uint32_t borrow = 0;
527    do {
528        uint32_t y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
529        borrow = (y & 0x10000) >> 16;
530        uint32_t z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
531        borrow = (z & 0x10000) >> 16;
532        xc = storeInc(xc, z, y);
533    } while (xb < xbe);
534    while (xa < xae) {
535        uint32_t y = (*xa & 0xffff) - borrow;
536        borrow = (y & 0x10000) >> 16;
537        uint32_t z = (*xa++ >> 16) - borrow;
538        borrow = (z & 0x10000) >> 16;
539        xc = storeInc(xc, z, y);
540    }
541#endif
542    while (!*--xc)
543        wa--;
544    c.resize(wa);
545}
546
547static ALWAYS_INLINE void d2b(BigInt& b, U* d, int* e, int* bits)
548{
549    int de, k;
550    uint32_t* x;
551    uint32_t y, z;
552    int i;
553#define d0 word0(d)
554#define d1 word1(d)
555
556    b.sign = 0;
557    b.resize(1);
558    x = b.words();
559
560    z = d0 & Frac_mask;
561    d0 &= 0x7fffffff;    /* clear sign bit, which we ignore */
562    if ((de = (int)(d0 >> Exp_shift)))
563        z |= Exp_msk1;
564    if ((y = d1)) {
565        if ((k = lo0bits(&y))) {
566            x[0] = y | (z << (32 - k));
567            z >>= k;
568        } else
569            x[0] = y;
570        if (z) {
571            b.resize(2);
572            x[1] = z;
573        }
574
575        i = b.size();
576    } else {
577        k = lo0bits(&z);
578        x[0] = z;
579        i = 1;
580        b.resize(1);
581        k += 32;
582    }
583    if (de) {
584        *e = de - Bias - (P - 1) + k;
585        *bits = P - k;
586    } else {
587        *e = 0 - Bias - (P - 1) + 1 + k;
588        *bits = (32 * i) - hi0bits(x[i - 1]);
589    }
590}
591#undef d0
592#undef d1
593
594static const double tens[] = {
595    1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
596    1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
597    1e20, 1e21, 1e22
598};
599
600static const double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
601
602#define Scale_Bit 0x10
603#define n_bigtens 5
604
605static ALWAYS_INLINE int quorem(BigInt& b, BigInt& S)
606{
607    size_t n;
608    uint32_t* bx;
609    uint32_t* bxe;
610    uint32_t q;
611    uint32_t* sx;
612    uint32_t* sxe;
613#ifdef USE_LONG_LONG
614    unsigned long long borrow, carry, y, ys;
615#else
616    uint32_t borrow, carry, y, ys;
617    uint32_t si, z, zs;
618#endif
619    ASSERT(b.size() <= 1 || b.words()[b.size() - 1]);
620    ASSERT(S.size() <= 1 || S.words()[S.size() - 1]);
621
622    n = S.size();
623    ASSERT_WITH_MESSAGE(b.size() <= n, "oversize b in quorem");
624    if (b.size() < n)
625        return 0;
626    sx = S.words();
627    sxe = sx + --n;
628    bx = b.words();
629    bxe = bx + n;
630    q = *bxe / (*sxe + 1);    /* ensure q <= true quotient */
631    ASSERT_WITH_MESSAGE(q <= 9, "oversized quotient in quorem");
632    if (q) {
633        borrow = 0;
634        carry = 0;
635        do {
636#ifdef USE_LONG_LONG
637            ys = *sx++ * (unsigned long long)q + carry;
638            carry = ys >> 32;
639            y = *bx - (ys & 0xffffffffUL) - borrow;
640            borrow = y >> 32 & (uint32_t)1;
641            *bx++ = (uint32_t)y & 0xffffffffUL;
642#else
643            si = *sx++;
644            ys = (si & 0xffff) * q + carry;
645            zs = (si >> 16) * q + (ys >> 16);
646            carry = zs >> 16;
647            y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
648            borrow = (y & 0x10000) >> 16;
649            z = (*bx >> 16) - (zs & 0xffff) - borrow;
650            borrow = (z & 0x10000) >> 16;
651            bx = storeInc(bx, z, y);
652#endif
653        } while (sx <= sxe);
654        if (!*bxe) {
655            bx = b.words();
656            while (--bxe > bx && !*bxe)
657                --n;
658            b.resize(n);
659        }
660    }
661    if (cmp(b, S) >= 0) {
662        q++;
663        borrow = 0;
664        carry = 0;
665        bx = b.words();
666        sx = S.words();
667        do {
668#ifdef USE_LONG_LONG
669            ys = *sx++ + carry;
670            carry = ys >> 32;
671            y = *bx - (ys & 0xffffffffUL) - borrow;
672            borrow = y >> 32 & (uint32_t)1;
673            *bx++ = (uint32_t)y & 0xffffffffUL;
674#else
675            si = *sx++;
676            ys = (si & 0xffff) + carry;
677            zs = (si >> 16) + (ys >> 16);
678            carry = zs >> 16;
679            y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
680            borrow = (y & 0x10000) >> 16;
681            z = (*bx >> 16) - (zs & 0xffff) - borrow;
682            borrow = (z & 0x10000) >> 16;
683            bx = storeInc(bx, z, y);
684#endif
685        } while (sx <= sxe);
686        bx = b.words();
687        bxe = bx + n;
688        if (!*bxe) {
689            while (--bxe > bx && !*bxe)
690                --n;
691            b.resize(n);
692        }
693    }
694    return q;
695}
696
697/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
698 *
699 * Inspired by "How to Print Floating-Point Numbers Accurately" by
700 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
701 *
702 * Modifications:
703 *    1. Rather than iterating, we use a simple numeric overestimate
704 *       to determine k = floor(log10(d)).  We scale relevant
705 *       quantities using O(log2(k)) rather than O(k) multiplications.
706 *    2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
707 *       try to generate digits strictly left to right.  Instead, we
708 *       compute with fewer bits and propagate the carry if necessary
709 *       when rounding the final digit up.  This is often faster.
710 *    3. Under the assumption that input will be rounded nearest,
711 *       mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
712 *       That is, we allow equality in stopping tests when the
713 *       round-nearest rule will give the same floating-point value
714 *       as would satisfaction of the stopping test with strict
715 *       inequality.
716 *    4. We remove common factors of powers of 2 from relevant
717 *       quantities.
718 *    5. When converting floating-point integers less than 1e16,
719 *       we use floating-point arithmetic rather than resorting
720 *       to multiple-precision integers.
721 *    6. When asked to produce fewer than 15 digits, we first try
722 *       to get by with floating-point arithmetic; we resort to
723 *       multiple-precision integer arithmetic only if we cannot
724 *       guarantee that the floating-point calculation has given
725 *       the correctly rounded result.  For k requested digits and
726 *       "uniformly" distributed input, the probability is
727 *       something like 10^(k-15) that we must resort to the int32_t
728 *       calculation.
729 *
730 * Note: 'leftright' translates to 'generate shortest possible string'.
731 */
732template<bool roundingNone, bool roundingSignificantFigures, bool roundingDecimalPlaces, bool leftright>
733void dtoa(DtoaBuffer result, double dd, int ndigits, bool& signOut, int& exponentOut, unsigned& precisionOut)
734{
735    // Exactly one rounding mode must be specified.
736    ASSERT(roundingNone + roundingSignificantFigures + roundingDecimalPlaces == 1);
737    // roundingNone only allowed (only sensible?) with leftright set.
738    ASSERT(!roundingNone || leftright);
739
740    ASSERT(std::isfinite(dd));
741
742    int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1 = 0,
743        j, j1, k, k0, k_check, m2, m5, s2, s5,
744        spec_case;
745    int32_t L;
746    int denorm;
747    uint32_t x;
748    BigInt b, delta, mlo, mhi, S;
749    U d2, eps, u;
750    double ds;
751    char* s;
752    char* s0;
753
754    u.d = dd;
755
756    /* Infinity or NaN */
757    ASSERT((word0(&u) & Exp_mask) != Exp_mask);
758
759    // JavaScript toString conversion treats -0 as 0.
760    if (!dval(&u)) {
761        signOut = false;
762        exponentOut = 0;
763        precisionOut = 1;
764        result[0] = '0';
765        result[1] = '\0';
766        return;
767    }
768
769    if (word0(&u) & Sign_bit) {
770        signOut = true;
771        word0(&u) &= ~Sign_bit; // clear sign bit
772    } else
773        signOut = false;
774
775    d2b(b, &u, &be, &bbits);
776    if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask >> Exp_shift1)))) {
777        dval(&d2) = dval(&u);
778        word0(&d2) &= Frac_mask1;
779        word0(&d2) |= Exp_11;
780
781        /* log(x)    ~=~ log(1.5) + (x-1.5)/1.5
782         * log10(x)     =  log(x) / log(10)
783         *        ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
784         * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
785         *
786         * This suggests computing an approximation k to log10(d) by
787         *
788         * k = (i - Bias)*0.301029995663981
789         *    + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
790         *
791         * We want k to be too large rather than too small.
792         * The error in the first-order Taylor series approximation
793         * is in our favor, so we just round up the constant enough
794         * to compensate for any error in the multiplication of
795         * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
796         * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
797         * adding 1e-13 to the constant term more than suffices.
798         * Hence we adjust the constant term to 0.1760912590558.
799         * (We could get a more accurate k by invoking log10,
800         *  but this is probably not worthwhile.)
801         */
802
803        i -= Bias;
804        denorm = 0;
805    } else {
806        /* d is denormalized */
807
808        i = bbits + be + (Bias + (P - 1) - 1);
809        x = (i > 32) ? (word0(&u) << (64 - i)) | (word1(&u) >> (i - 32))
810                : word1(&u) << (32 - i);
811        dval(&d2) = x;
812        word0(&d2) -= 31 * Exp_msk1; /* adjust exponent */
813        i -= (Bias + (P - 1) - 1) + 1;
814        denorm = 1;
815    }
816    ds = (dval(&d2) - 1.5) * 0.289529654602168 + 0.1760912590558 + (i * 0.301029995663981);
817    k = (int)ds;
818    if (ds < 0. && ds != k)
819        k--;    /* want k = floor(ds) */
820    k_check = 1;
821    if (k >= 0 && k <= Ten_pmax) {
822        if (dval(&u) < tens[k])
823            k--;
824        k_check = 0;
825    }
826    j = bbits - i - 1;
827    if (j >= 0) {
828        b2 = 0;
829        s2 = j;
830    } else {
831        b2 = -j;
832        s2 = 0;
833    }
834    if (k >= 0) {
835        b5 = 0;
836        s5 = k;
837        s2 += k;
838    } else {
839        b2 -= k;
840        b5 = -k;
841        s5 = 0;
842    }
843
844    if (roundingNone) {
845        ilim = ilim1 = -1;
846        i = 18;
847        ndigits = 0;
848    }
849    if (roundingSignificantFigures) {
850        if (ndigits <= 0)
851            ndigits = 1;
852        ilim = ilim1 = i = ndigits;
853    }
854    if (roundingDecimalPlaces) {
855        i = ndigits + k + 1;
856        ilim = i;
857        ilim1 = i - 1;
858        if (i <= 0)
859            i = 1;
860    }
861
862    s = s0 = result;
863
864    if (ilim >= 0 && ilim <= Quick_max) {
865        /* Try to get by with floating-point arithmetic. */
866
867        i = 0;
868        dval(&d2) = dval(&u);
869        k0 = k;
870        ilim0 = ilim;
871        ieps = 2; /* conservative */
872        if (k > 0) {
873            ds = tens[k & 0xf];
874            j = k >> 4;
875            if (j & Bletch) {
876                /* prevent overflows */
877                j &= Bletch - 1;
878                dval(&u) /= bigtens[n_bigtens - 1];
879                ieps++;
880            }
881            for (; j; j >>= 1, i++) {
882                if (j & 1) {
883                    ieps++;
884                    ds *= bigtens[i];
885                }
886            }
887            dval(&u) /= ds;
888        } else if ((j1 = -k)) {
889            dval(&u) *= tens[j1 & 0xf];
890            for (j = j1 >> 4; j; j >>= 1, i++) {
891                if (j & 1) {
892                    ieps++;
893                    dval(&u) *= bigtens[i];
894                }
895            }
896        }
897        if (k_check && dval(&u) < 1. && ilim > 0) {
898            if (ilim1 <= 0)
899                goto fastFailed;
900            ilim = ilim1;
901            k--;
902            dval(&u) *= 10.;
903            ieps++;
904        }
905        dval(&eps) = (ieps * dval(&u)) + 7.;
906        word0(&eps) -= (P - 1) * Exp_msk1;
907        if (!ilim) {
908            S.clear();
909            mhi.clear();
910            dval(&u) -= 5.;
911            if (dval(&u) > dval(&eps))
912                goto oneDigit;
913            if (dval(&u) < -dval(&eps))
914                goto noDigits;
915            goto fastFailed;
916        }
917        if (leftright) {
918            /* Use Steele & White method of only
919             * generating digits needed.
920             */
921            dval(&eps) = (0.5 / tens[ilim - 1]) - dval(&eps);
922            for (i = 0;;) {
923                L = (long int)dval(&u);
924                dval(&u) -= L;
925                *s++ = '0' + (int)L;
926                if (dval(&u) < dval(&eps))
927                    goto ret;
928                if (1. - dval(&u) < dval(&eps))
929                    goto bumpUp;
930                if (++i >= ilim)
931                    break;
932                dval(&eps) *= 10.;
933                dval(&u) *= 10.;
934            }
935        } else {
936            /* Generate ilim digits, then fix them up. */
937            dval(&eps) *= tens[ilim - 1];
938            for (i = 1;; i++, dval(&u) *= 10.) {
939                L = (int32_t)(dval(&u));
940                if (!(dval(&u) -= L))
941                    ilim = i;
942                *s++ = '0' + (int)L;
943                if (i == ilim) {
944                    if (dval(&u) > 0.5 + dval(&eps))
945                        goto bumpUp;
946                    if (dval(&u) < 0.5 - dval(&eps)) {
947                        while (*--s == '0') { }
948                        s++;
949                        goto ret;
950                    }
951                    break;
952                }
953            }
954        }
955fastFailed:
956        s = s0;
957        dval(&u) = dval(&d2);
958        k = k0;
959        ilim = ilim0;
960    }
961
962    /* Do we have a "small" integer? */
963
964    if (be >= 0 && k <= Int_max) {
965        /* Yes. */
966        ds = tens[k];
967        if (ndigits < 0 && ilim <= 0) {
968            S.clear();
969            mhi.clear();
970            if (ilim < 0 || dval(&u) <= 5 * ds)
971                goto noDigits;
972            goto oneDigit;
973        }
974        for (i = 1;; i++, dval(&u) *= 10.) {
975            L = (int32_t)(dval(&u) / ds);
976            dval(&u) -= L * ds;
977            *s++ = '0' + (int)L;
978            if (!dval(&u)) {
979                break;
980            }
981            if (i == ilim) {
982                dval(&u) += dval(&u);
983                if (dval(&u) > ds || (dval(&u) == ds && (L & 1))) {
984bumpUp:
985                    while (*--s == '9')
986                        if (s == s0) {
987                            k++;
988                            *s = '0';
989                            break;
990                        }
991                    ++*s++;
992                }
993                break;
994            }
995        }
996        goto ret;
997    }
998
999    m2 = b2;
1000    m5 = b5;
1001    mhi.clear();
1002    mlo.clear();
1003    if (leftright) {
1004        i = denorm ? be + (Bias + (P - 1) - 1 + 1) : 1 + P - bbits;
1005        b2 += i;
1006        s2 += i;
1007        i2b(mhi, 1);
1008    }
1009    if (m2 > 0 && s2 > 0) {
1010        i = m2 < s2 ? m2 : s2;
1011        b2 -= i;
1012        m2 -= i;
1013        s2 -= i;
1014    }
1015    if (b5 > 0) {
1016        if (leftright) {
1017            if (m5 > 0) {
1018                pow5mult(mhi, m5);
1019                mult(b, mhi);
1020            }
1021            if ((j = b5 - m5))
1022                pow5mult(b, j);
1023        } else
1024            pow5mult(b, b5);
1025    }
1026    i2b(S, 1);
1027    if (s5 > 0)
1028        pow5mult(S, s5);
1029
1030    /* Check for special case that d is a normalized power of 2. */
1031
1032    spec_case = 0;
1033    if ((roundingNone || leftright) && (!word1(&u) && !(word0(&u) & Bndry_mask) && word0(&u) & (Exp_mask & ~Exp_msk1))) {
1034        /* The special case */
1035        b2 += Log2P;
1036        s2 += Log2P;
1037        spec_case = 1;
1038    }
1039
1040    /* Arrange for convenient computation of quotients:
1041     * shift left if necessary so divisor has 4 leading 0 bits.
1042     *
1043     * Perhaps we should just compute leading 28 bits of S once
1044     * and for all and pass them and a shift to quorem, so it
1045     * can do shifts and ors to compute the numerator for q.
1046     */
1047    if ((i = ((s5 ? 32 - hi0bits(S.words()[S.size() - 1]) : 1) + s2) & 0x1f))
1048        i = 32 - i;
1049    if (i > 4) {
1050        i -= 4;
1051        b2 += i;
1052        m2 += i;
1053        s2 += i;
1054    } else if (i < 4) {
1055        i += 28;
1056        b2 += i;
1057        m2 += i;
1058        s2 += i;
1059    }
1060    if (b2 > 0)
1061        lshift(b, b2);
1062    if (s2 > 0)
1063        lshift(S, s2);
1064    if (k_check) {
1065        if (cmp(b, S) < 0) {
1066            k--;
1067            multadd(b, 10, 0);    /* we botched the k estimate */
1068            if (leftright)
1069                multadd(mhi, 10, 0);
1070            ilim = ilim1;
1071        }
1072    }
1073    if (ilim <= 0 && roundingDecimalPlaces) {
1074        if (ilim < 0)
1075            goto noDigits;
1076        multadd(S, 5, 0);
1077        // For IEEE-754 unbiased rounding this check should be <=, such that 0.5 would flush to zero.
1078        if (cmp(b, S) < 0)
1079            goto noDigits;
1080        goto oneDigit;
1081    }
1082    if (leftright) {
1083        if (m2 > 0)
1084            lshift(mhi, m2);
1085
1086        /* Compute mlo -- check for special case
1087         * that d is a normalized power of 2.
1088         */
1089
1090        mlo = mhi;
1091        if (spec_case)
1092            lshift(mhi, Log2P);
1093
1094        for (i = 1;;i++) {
1095            dig = quorem(b, S) + '0';
1096            /* Do we yet have the shortest decimal string
1097             * that will round to d?
1098             */
1099            j = cmp(b, mlo);
1100            diff(delta, S, mhi);
1101            j1 = delta.sign ? 1 : cmp(b, delta);
1102#ifdef DTOA_ROUND_BIASED
1103            if (j < 0 || !j) {
1104#else
1105            // FIXME: ECMA-262 specifies that equidistant results round away from
1106            // zero, which probably means we shouldn't be on the unbiased code path
1107            // (the (word1(&u) & 1) clause is looking highly suspicious). I haven't
1108            // yet understood this code well enough to make the call, but we should
1109            // probably be enabling DTOA_ROUND_BIASED. I think the interesting corner
1110            // case to understand is probably "Math.pow(0.5, 24).toString()".
1111            // I believe this value is interesting because I think it is precisely
1112            // representable in binary floating point, and its decimal representation
1113            // has a single digit that Steele & White reduction can remove, with the
1114            // value 5 (thus equidistant from the next numbers above and below).
1115            // We produce the correct answer using either codepath, and I don't as
1116            // yet understand why. :-)
1117            if (!j1 && !(word1(&u) & 1)) {
1118                if (dig == '9')
1119                    goto round9up;
1120                if (j > 0)
1121                    dig++;
1122                *s++ = dig;
1123                goto ret;
1124            }
1125            if (j < 0 || (!j && !(word1(&u) & 1))) {
1126#endif
1127                if ((b.words()[0] || b.size() > 1) && (j1 > 0)) {
1128                    lshift(b, 1);
1129                    j1 = cmp(b, S);
1130                    // For IEEE-754 round-to-even, this check should be (j1 > 0 || (!j1 && (dig & 1))),
1131                    // but ECMA-262 specifies that equidistant values (e.g. (.5).toFixed()) should
1132                    // be rounded away from zero.
1133                    if (j1 >= 0) {
1134                        if (dig == '9')
1135                            goto round9up;
1136                        dig++;
1137                    }
1138                }
1139                *s++ = dig;
1140                goto ret;
1141            }
1142            if (j1 > 0) {
1143                if (dig == '9') { /* possible if i == 1 */
1144round9up:
1145                    *s++ = '9';
1146                    goto roundoff;
1147                }
1148                *s++ = dig + 1;
1149                goto ret;
1150            }
1151            *s++ = dig;
1152            if (i == ilim)
1153                break;
1154            multadd(b, 10, 0);
1155            multadd(mlo, 10, 0);
1156            multadd(mhi, 10, 0);
1157        }
1158    } else {
1159        for (i = 1;; i++) {
1160            *s++ = dig = quorem(b, S) + '0';
1161            if (!b.words()[0] && b.size() <= 1)
1162                goto ret;
1163            if (i >= ilim)
1164                break;
1165            multadd(b, 10, 0);
1166        }
1167    }
1168
1169    /* Round off last digit */
1170
1171    lshift(b, 1);
1172    j = cmp(b, S);
1173    // For IEEE-754 round-to-even, this check should be (j > 0 || (!j && (dig & 1))),
1174    // but ECMA-262 specifies that equidistant values (e.g. (.5).toFixed()) should
1175    // be rounded away from zero.
1176    if (j >= 0) {
1177roundoff:
1178        while (*--s == '9')
1179            if (s == s0) {
1180                k++;
1181                *s++ = '1';
1182                goto ret;
1183            }
1184        ++*s++;
1185    } else {
1186        while (*--s == '0') { }
1187        s++;
1188    }
1189    goto ret;
1190noDigits:
1191    exponentOut = 0;
1192    precisionOut = 1;
1193    result[0] = '0';
1194    result[1] = '\0';
1195    return;
1196oneDigit:
1197    *s++ = '1';
1198    k++;
1199    goto ret;
1200ret:
1201    ASSERT(s > result);
1202    *s = 0;
1203    exponentOut = k;
1204    precisionOut = s - result;
1205}
1206
1207void dtoa(DtoaBuffer result, double dd, bool& sign, int& exponent, unsigned& precision)
1208{
1209    // flags are roundingNone, leftright.
1210    dtoa<true, false, false, true>(result, dd, 0, sign, exponent, precision);
1211}
1212
1213void dtoaRoundSF(DtoaBuffer result, double dd, int ndigits, bool& sign, int& exponent, unsigned& precision)
1214{
1215    // flag is roundingSignificantFigures.
1216    dtoa<false, true, false, false>(result, dd, ndigits, sign, exponent, precision);
1217}
1218
1219void dtoaRoundDP(DtoaBuffer result, double dd, int ndigits, bool& sign, int& exponent, unsigned& precision)
1220{
1221    // flag is roundingDecimalPlaces.
1222    dtoa<false, false, true, false>(result, dd, ndigits, sign, exponent, precision);
1223}
1224
1225const char* numberToString(double d, NumberToStringBuffer buffer)
1226{
1227    double_conversion::StringBuilder builder(buffer, NumberToStringBufferLength);
1228    const double_conversion::DoubleToStringConverter& converter = double_conversion::DoubleToStringConverter::EcmaScriptConverter();
1229    converter.ToShortest(d, &builder);
1230    return builder.Finalize();
1231}
1232
1233static inline const char* formatStringTruncatingTrailingZerosIfNeeded(NumberToStringBuffer buffer, double_conversion::StringBuilder& builder)
1234{
1235    size_t length = builder.position();
1236    size_t decimalPointPosition = 0;
1237    for (; decimalPointPosition < length; ++decimalPointPosition) {
1238        if (buffer[decimalPointPosition] == '.')
1239            break;
1240    }
1241
1242    // No decimal seperator found, early exit.
1243    if (decimalPointPosition == length)
1244        return builder.Finalize();
1245
1246    size_t truncatedLength = length - 1;
1247    for (; truncatedLength > decimalPointPosition; --truncatedLength) {
1248        if (buffer[truncatedLength] != '0')
1249            break;
1250    }
1251
1252    // No trailing zeros found to strip.
1253    if (truncatedLength == length - 1)
1254        return builder.Finalize();
1255
1256    // If we removed all trailing zeros, remove the decimal point as well.
1257    if (truncatedLength == decimalPointPosition) {
1258        ASSERT(truncatedLength > 0);
1259        --truncatedLength;
1260    }
1261
1262    // Truncate the StringBuilder, and return the final result.
1263    builder.SetPosition(truncatedLength + 1);
1264    return builder.Finalize();
1265}
1266
1267const char* numberToFixedPrecisionString(double d, unsigned significantFigures, NumberToStringBuffer buffer, bool truncateTrailingZeros)
1268{
1269    // Mimic String::format("%.[precision]g", ...), but use dtoas rounding facilities.
1270    // "g": Signed value printed in f or e format, whichever is more compact for the given value and precision.
1271    // The e format is used only when the exponent of the value is less than –4 or greater than or equal to the
1272    // precision argument. Trailing zeros are truncated, and the decimal point appears only if one or more digits follow it.
1273    // "precision": The precision specifies the maximum number of significant digits printed.
1274    double_conversion::StringBuilder builder(buffer, NumberToStringBufferLength);
1275    const double_conversion::DoubleToStringConverter& converter = double_conversion::DoubleToStringConverter::EcmaScriptConverter();
1276    converter.ToPrecision(d, significantFigures, &builder);
1277    if (!truncateTrailingZeros)
1278        return builder.Finalize();
1279    return formatStringTruncatingTrailingZerosIfNeeded(buffer, builder);
1280}
1281
1282const char* numberToFixedWidthString(double d, unsigned decimalPlaces, NumberToStringBuffer buffer)
1283{
1284    // Mimic String::format("%.[precision]f", ...), but use dtoas rounding facilities.
1285    // "f": Signed value having the form [ – ]dddd.dddd, where dddd is one or more decimal digits.
1286    // The number of digits before the decimal point depends on the magnitude of the number, and
1287    // the number of digits after the decimal point depends on the requested precision.
1288    // "precision": The precision value specifies the number of digits after the decimal point.
1289    // If a decimal point appears, at least one digit appears before it.
1290    // The value is rounded to the appropriate number of digits.
1291    double_conversion::StringBuilder builder(buffer, NumberToStringBufferLength);
1292    const double_conversion::DoubleToStringConverter& converter = double_conversion::DoubleToStringConverter::EcmaScriptConverter();
1293    converter.ToFixed(d, decimalPlaces, &builder);
1294    return builder.Finalize();
1295}
1296
1297namespace Internal {
1298
1299double parseDoubleFromLongString(const UChar* string, size_t length, size_t& parsedLength)
1300{
1301    Vector<LChar> conversionBuffer(length);
1302    for (size_t i = 0; i < length; ++i)
1303        conversionBuffer[i] = isASCII(string[i]) ? string[i] : 0;
1304    return parseDouble(conversionBuffer.data(), length, parsedLength);
1305}
1306
1307} // namespace Internal
1308
1309} // namespace WTF
1310