1// Copyright 2010 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "config.h"
29
30#include "fast-dtoa.h"
31
32#include "cached-powers.h"
33#include "diy-fp.h"
34#include "double.h"
35
36namespace WTF {
37
38namespace double_conversion {
39
40    // The minimal and maximal target exponent define the range of w's binary
41    // exponent, where 'w' is the result of multiplying the input by a cached power
42    // of ten.
43    //
44    // A different range might be chosen on a different platform, to optimize digit
45    // generation, but a smaller range requires more powers of ten to be cached.
46    static const int kMinimalTargetExponent = -60;
47    static const int kMaximalTargetExponent = -32;
48
49
50    // Adjusts the last digit of the generated number, and screens out generated
51    // solutions that may be inaccurate. A solution may be inaccurate if it is
52    // outside the safe interval, or if we cannot prove that it is closer to the
53    // input than a neighboring representation of the same length.
54    //
55    // Input: * buffer containing the digits of too_high / 10^kappa
56    //        * the buffer's length
57    //        * distance_too_high_w == (too_high - w).f() * unit
58    //        * unsafe_interval == (too_high - too_low).f() * unit
59    //        * rest = (too_high - buffer * 10^kappa).f() * unit
60    //        * ten_kappa = 10^kappa * unit
61    //        * unit = the common multiplier
62    // Output: returns true if the buffer is guaranteed to contain the closest
63    //    representable number to the input.
64    //  Modifies the generated digits in the buffer to approach (round towards) w.
65    static bool RoundWeed(Vector<char> buffer,
66                          int length,
67                          uint64_t distance_too_high_w,
68                          uint64_t unsafe_interval,
69                          uint64_t rest,
70                          uint64_t ten_kappa,
71                          uint64_t unit) {
72        uint64_t small_distance = distance_too_high_w - unit;
73        uint64_t big_distance = distance_too_high_w + unit;
74        // Let w_low  = too_high - big_distance, and
75        //     w_high = too_high - small_distance.
76        // Note: w_low < w < w_high
77        //
78        // The real w (* unit) must lie somewhere inside the interval
79        // ]w_low; w_high[ (often written as "(w_low; w_high)")
80
81        // Basically the buffer currently contains a number in the unsafe interval
82        // ]too_low; too_high[ with too_low < w < too_high
83        //
84        //  too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
85        //                     ^v 1 unit            ^      ^                 ^      ^
86        //  boundary_high ---------------------     .      .                 .      .
87        //                     ^v 1 unit            .      .                 .      .
88        //   - - - - - - - - - - - - - - - - - - -  +  - - + - - - - - -     .      .
89        //                                          .      .         ^       .      .
90        //                                          .  big_distance  .       .      .
91        //                                          .      .         .       .    rest
92        //                              small_distance     .         .       .      .
93        //                                          v      .         .       .      .
94        //  w_high - - - - - - - - - - - - - - - - - -     .         .       .      .
95        //                     ^v 1 unit                   .         .       .      .
96        //  w ----------------------------------------     .         .       .      .
97        //                     ^v 1 unit                   v         .       .      .
98        //  w_low  - - - - - - - - - - - - - - - - - - - - -         .       .      .
99        //                                                           .       .      v
100        //  buffer --------------------------------------------------+-------+--------
101        //                                                           .       .
102        //                                                  safe_interval    .
103        //                                                           v       .
104        //   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -     .
105        //                     ^v 1 unit                                     .
106        //  boundary_low -------------------------                     unsafe_interval
107        //                     ^v 1 unit                                     v
108        //  too_low  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
109        //
110        //
111        // Note that the value of buffer could lie anywhere inside the range too_low
112        // to too_high.
113        //
114        // boundary_low, boundary_high and w are approximations of the real boundaries
115        // and v (the input number). They are guaranteed to be precise up to one unit.
116        // In fact the error is guaranteed to be strictly less than one unit.
117        //
118        // Anything that lies outside the unsafe interval is guaranteed not to round
119        // to v when read again.
120        // Anything that lies inside the safe interval is guaranteed to round to v
121        // when read again.
122        // If the number inside the buffer lies inside the unsafe interval but not
123        // inside the safe interval then we simply do not know and bail out (returning
124        // false).
125        //
126        // Similarly we have to take into account the imprecision of 'w' when finding
127        // the closest representation of 'w'. If we have two potential
128        // representations, and one is closer to both w_low and w_high, then we know
129        // it is closer to the actual value v.
130        //
131        // By generating the digits of too_high we got the largest (closest to
132        // too_high) buffer that is still in the unsafe interval. In the case where
133        // w_high < buffer < too_high we try to decrement the buffer.
134        // This way the buffer approaches (rounds towards) w.
135        // There are 3 conditions that stop the decrementation process:
136        //   1) the buffer is already below w_high
137        //   2) decrementing the buffer would make it leave the unsafe interval
138        //   3) decrementing the buffer would yield a number below w_high and farther
139        //      away than the current number. In other words:
140        //              (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high
141        // Instead of using the buffer directly we use its distance to too_high.
142        // Conceptually rest ~= too_high - buffer
143        // We need to do the following tests in this order to avoid over- and
144        // underflows.
145        ASSERT(rest <= unsafe_interval);
146        while (rest < small_distance &&  // Negated condition 1
147               unsafe_interval - rest >= ten_kappa &&  // Negated condition 2
148               (rest + ten_kappa < small_distance ||  // buffer{-1} > w_high
149                small_distance - rest >= rest + ten_kappa - small_distance)) {
150                   buffer[length - 1]--;
151                   rest += ten_kappa;
152               }
153
154        // We have approached w+ as much as possible. We now test if approaching w-
155        // would require changing the buffer. If yes, then we have two possible
156        // representations close to w, but we cannot decide which one is closer.
157        if (rest < big_distance &&
158            unsafe_interval - rest >= ten_kappa &&
159            (rest + ten_kappa < big_distance ||
160             big_distance - rest > rest + ten_kappa - big_distance)) {
161                return false;
162            }
163
164        // Weeding test.
165        //   The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
166        //   Since too_low = too_high - unsafe_interval this is equivalent to
167        //      [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
168        //   Conceptually we have: rest ~= too_high - buffer
169        return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
170    }
171
172
173    // Rounds the buffer upwards if the result is closer to v by possibly adding
174    // 1 to the buffer. If the precision of the calculation is not sufficient to
175    // round correctly, return false.
176    // The rounding might shift the whole buffer in which case the kappa is
177    // adjusted. For example "99", kappa = 3 might become "10", kappa = 4.
178    //
179    // If 2*rest > ten_kappa then the buffer needs to be round up.
180    // rest can have an error of +/- 1 unit. This function accounts for the
181    // imprecision and returns false, if the rounding direction cannot be
182    // unambiguously determined.
183    //
184    // Precondition: rest < ten_kappa.
185    static bool RoundWeedCounted(Vector<char> buffer,
186                                 int length,
187                                 uint64_t rest,
188                                 uint64_t ten_kappa,
189                                 uint64_t unit,
190                                 int* kappa) {
191        ASSERT(rest < ten_kappa);
192        // The following tests are done in a specific order to avoid overflows. They
193        // will work correctly with any uint64 values of rest < ten_kappa and unit.
194        //
195        // If the unit is too big, then we don't know which way to round. For example
196        // a unit of 50 means that the real number lies within rest +/- 50. If
197        // 10^kappa == 40 then there is no way to tell which way to round.
198        if (unit >= ten_kappa) return false;
199        // Even if unit is just half the size of 10^kappa we are already completely
200        // lost. (And after the previous test we know that the expression will not
201        // over/underflow.)
202        if (ten_kappa - unit <= unit) return false;
203        // If 2 * (rest + unit) <= 10^kappa we can safely round down.
204        if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) {
205            return true;
206        }
207        // If 2 * (rest - unit) >= 10^kappa, then we can safely round up.
208        if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) {
209            // Increment the last digit recursively until we find a non '9' digit.
210            buffer[length - 1]++;
211            for (int i = length - 1; i > 0; --i) {
212                if (buffer[i] != '0' + 10) break;
213                buffer[i] = '0';
214                buffer[i - 1]++;
215            }
216            // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the
217            // exception of the first digit all digits are now '0'. Simply switch the
218            // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and
219            // the power (the kappa) is increased.
220            if (buffer[0] == '0' + 10) {
221                buffer[0] = '1';
222                (*kappa) += 1;
223            }
224            return true;
225        }
226        return false;
227    }
228
229
230    static const uint32_t kTen4 = 10000;
231    static const uint32_t kTen5 = 100000;
232    static const uint32_t kTen6 = 1000000;
233    static const uint32_t kTen7 = 10000000;
234    static const uint32_t kTen8 = 100000000;
235    static const uint32_t kTen9 = 1000000000;
236
237    // Returns the biggest power of ten that is less than or equal to the given
238    // number. We furthermore receive the maximum number of bits 'number' has.
239    // If number_bits == 0 then 0^-1 is returned
240    // The number of bits must be <= 32.
241    // Precondition: number < (1 << (number_bits + 1)).
242    static void BiggestPowerTen(uint32_t number,
243                                int number_bits,
244                                uint32_t* power,
245                                int* exponent) {
246        ASSERT(number < (uint32_t)(1 << (number_bits + 1)));
247
248        switch (number_bits) {
249            case 32:
250            case 31:
251            case 30:
252                if (kTen9 <= number) {
253                    *power = kTen9;
254                    *exponent = 9;
255                    break;
256                }  // else fallthrough
257            case 29:
258            case 28:
259            case 27:
260                if (kTen8 <= number) {
261                    *power = kTen8;
262                    *exponent = 8;
263                    break;
264                }  // else fallthrough
265            case 26:
266            case 25:
267            case 24:
268                if (kTen7 <= number) {
269                    *power = kTen7;
270                    *exponent = 7;
271                    break;
272                }  // else fallthrough
273            case 23:
274            case 22:
275            case 21:
276            case 20:
277                if (kTen6 <= number) {
278                    *power = kTen6;
279                    *exponent = 6;
280                    break;
281                }  // else fallthrough
282            case 19:
283            case 18:
284            case 17:
285                if (kTen5 <= number) {
286                    *power = kTen5;
287                    *exponent = 5;
288                    break;
289                }  // else fallthrough
290            case 16:
291            case 15:
292            case 14:
293                if (kTen4 <= number) {
294                    *power = kTen4;
295                    *exponent = 4;
296                    break;
297                }  // else fallthrough
298            case 13:
299            case 12:
300            case 11:
301            case 10:
302                if (1000 <= number) {
303                    *power = 1000;
304                    *exponent = 3;
305                    break;
306                }  // else fallthrough
307            case 9:
308            case 8:
309            case 7:
310                if (100 <= number) {
311                    *power = 100;
312                    *exponent = 2;
313                    break;
314                }  // else fallthrough
315            case 6:
316            case 5:
317            case 4:
318                if (10 <= number) {
319                    *power = 10;
320                    *exponent = 1;
321                    break;
322                }  // else fallthrough
323            case 3:
324            case 2:
325            case 1:
326                if (1 <= number) {
327                    *power = 1;
328                    *exponent = 0;
329                    break;
330                }  // else fallthrough
331            case 0:
332                *power = 0;
333                *exponent = -1;
334                break;
335            default:
336                // Following assignments are here to silence compiler warnings.
337                *power = 0;
338                *exponent = 0;
339                UNREACHABLE();
340        }
341    }
342
343
344    // Generates the digits of input number w.
345    // w is a floating-point number (DiyFp), consisting of a significand and an
346    // exponent. Its exponent is bounded by kMinimalTargetExponent and
347    // kMaximalTargetExponent.
348    //       Hence -60 <= w.e() <= -32.
349    //
350    // Returns false if it fails, in which case the generated digits in the buffer
351    // should not be used.
352    // Preconditions:
353    //  * low, w and high are correct up to 1 ulp (unit in the last place). That
354    //    is, their error must be less than a unit of their last digits.
355    //  * low.e() == w.e() == high.e()
356    //  * low < w < high, and taking into account their error: low~ <= high~
357    //  * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
358    // Postconditions: returns false if procedure fails.
359    //   otherwise:
360    //     * buffer is not null-terminated, but len contains the number of digits.
361    //     * buffer contains the shortest possible decimal digit-sequence
362    //       such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
363    //       correct values of low and high (without their error).
364    //     * if more than one decimal representation gives the minimal number of
365    //       decimal digits then the one closest to W (where W is the correct value
366    //       of w) is chosen.
367    // Remark: this procedure takes into account the imprecision of its input
368    //   numbers. If the precision is not enough to guarantee all the postconditions
369    //   then false is returned. This usually happens rarely (~0.5%).
370    //
371    // Say, for the sake of example, that
372    //   w.e() == -48, and w.f() == 0x1234567890abcdef
373    // w's value can be computed by w.f() * 2^w.e()
374    // We can obtain w's integral digits by simply shifting w.f() by -w.e().
375    //  -> w's integral part is 0x1234
376    //  w's fractional part is therefore 0x567890abcdef.
377    // Printing w's integral part is easy (simply print 0x1234 in decimal).
378    // In order to print its fraction we repeatedly multiply the fraction by 10 and
379    // get each digit. Example the first digit after the point would be computed by
380    //   (0x567890abcdef * 10) >> 48. -> 3
381    // The whole thing becomes slightly more complicated because we want to stop
382    // once we have enough digits. That is, once the digits inside the buffer
383    // represent 'w' we can stop. Everything inside the interval low - high
384    // represents w. However we have to pay attention to low, high and w's
385    // imprecision.
386    static bool DigitGen(DiyFp low,
387                         DiyFp w,
388                         DiyFp high,
389                         Vector<char> buffer,
390                         int* length,
391                         int* kappa) {
392        ASSERT(low.e() == w.e() && w.e() == high.e());
393        ASSERT(low.f() + 1 <= high.f() - 1);
394        ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
395        // low, w and high are imprecise, but by less than one ulp (unit in the last
396        // place).
397        // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
398        // the new numbers are outside of the interval we want the final
399        // representation to lie in.
400        // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
401        // numbers that are certain to lie in the interval. We will use this fact
402        // later on.
403        // We will now start by generating the digits within the uncertain
404        // interval. Later we will weed out representations that lie outside the safe
405        // interval and thus _might_ lie outside the correct interval.
406        uint64_t unit = 1;
407        DiyFp too_low = DiyFp(low.f() - unit, low.e());
408        DiyFp too_high = DiyFp(high.f() + unit, high.e());
409        // too_low and too_high are guaranteed to lie outside the interval we want the
410        // generated number in.
411        DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);
412        // We now cut the input number into two parts: the integral digits and the
413        // fractionals. We will not write any decimal separator though, but adapt
414        // kappa instead.
415        // Reminder: we are currently computing the digits (stored inside the buffer)
416        // such that:   too_low < buffer * 10^kappa < too_high
417        // We use too_high for the digit_generation and stop as soon as possible.
418        // If we stop early we effectively round down.
419        DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
420        // Division by one is a shift.
421        uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e());
422        // Modulo by one is an and.
423        uint64_t fractionals = too_high.f() & (one.f() - 1);
424        uint32_t divisor;
425        int divisor_exponent;
426        BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
427                        &divisor, &divisor_exponent);
428        *kappa = divisor_exponent + 1;
429        *length = 0;
430        // Loop invariant: buffer = too_high / 10^kappa  (integer division)
431        // The invariant holds for the first iteration: kappa has been initialized
432        // with the divisor exponent + 1. And the divisor is the biggest power of ten
433        // that is smaller than integrals.
434        while (*kappa > 0) {
435            int digit = integrals / divisor;
436            buffer[*length] = '0' + digit;
437            (*length)++;
438            integrals %= divisor;
439            (*kappa)--;
440            // Note that kappa now equals the exponent of the divisor and that the
441            // invariant thus holds again.
442            uint64_t rest =
443            (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
444            // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
445            // Reminder: unsafe_interval.e() == one.e()
446            if (rest < unsafe_interval.f()) {
447                // Rounding down (by not emitting the remaining digits) yields a number
448                // that lies within the unsafe interval.
449                return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
450                                 unsafe_interval.f(), rest,
451                                 static_cast<uint64_t>(divisor) << -one.e(), unit);
452            }
453            divisor /= 10;
454        }
455
456        // The integrals have been generated. We are at the point of the decimal
457        // separator. In the following loop we simply multiply the remaining digits by
458        // 10 and divide by one. We just need to pay attention to multiply associated
459        // data (like the interval or 'unit'), too.
460        // Note that the multiplication by 10 does not overflow, because w.e >= -60
461        // and thus one.e >= -60.
462        ASSERT(one.e() >= -60);
463        ASSERT(fractionals < one.f());
464        ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
465        while (true) {
466            fractionals *= 10;
467            unit *= 10;
468            unsafe_interval.set_f(unsafe_interval.f() * 10);
469            // Integer division by one.
470            int digit = static_cast<int>(fractionals >> -one.e());
471            buffer[*length] = '0' + digit;
472            (*length)++;
473            fractionals &= one.f() - 1;  // Modulo by one.
474            (*kappa)--;
475            if (fractionals < unsafe_interval.f()) {
476                return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,
477                                 unsafe_interval.f(), fractionals, one.f(), unit);
478            }
479        }
480    }
481
482
483
484    // Generates (at most) requested_digits digits of input number w.
485    // w is a floating-point number (DiyFp), consisting of a significand and an
486    // exponent. Its exponent is bounded by kMinimalTargetExponent and
487    // kMaximalTargetExponent.
488    //       Hence -60 <= w.e() <= -32.
489    //
490    // Returns false if it fails, in which case the generated digits in the buffer
491    // should not be used.
492    // Preconditions:
493    //  * w is correct up to 1 ulp (unit in the last place). That
494    //    is, its error must be strictly less than a unit of its last digit.
495    //  * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
496    //
497    // Postconditions: returns false if procedure fails.
498    //   otherwise:
499    //     * buffer is not null-terminated, but length contains the number of
500    //       digits.
501    //     * the representation in buffer is the most precise representation of
502    //       requested_digits digits.
503    //     * buffer contains at most requested_digits digits of w. If there are less
504    //       than requested_digits digits then some trailing '0's have been removed.
505    //     * kappa is such that
506    //            w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2.
507    //
508    // Remark: This procedure takes into account the imprecision of its input
509    //   numbers. If the precision is not enough to guarantee all the postconditions
510    //   then false is returned. This usually happens rarely, but the failure-rate
511    //   increases with higher requested_digits.
512    static bool DigitGenCounted(DiyFp w,
513                                int requested_digits,
514                                Vector<char> buffer,
515                                int* length,
516                                int* kappa) {
517        ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
518        ASSERT(kMinimalTargetExponent >= -60);
519        ASSERT(kMaximalTargetExponent <= -32);
520        // w is assumed to have an error less than 1 unit. Whenever w is scaled we
521        // also scale its error.
522        uint64_t w_error = 1;
523        // We cut the input number into two parts: the integral digits and the
524        // fractional digits. We don't emit any decimal separator, but adapt kappa
525        // instead. Example: instead of writing "1.2" we put "12" into the buffer and
526        // increase kappa by 1.
527        DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
528        // Division by one is a shift.
529        uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e());
530        // Modulo by one is an and.
531        uint64_t fractionals = w.f() & (one.f() - 1);
532        uint32_t divisor;
533        int divisor_exponent;
534        BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
535                        &divisor, &divisor_exponent);
536        *kappa = divisor_exponent + 1;
537        *length = 0;
538
539        // Loop invariant: buffer = w / 10^kappa  (integer division)
540        // The invariant holds for the first iteration: kappa has been initialized
541        // with the divisor exponent + 1. And the divisor is the biggest power of ten
542        // that is smaller than 'integrals'.
543        while (*kappa > 0) {
544            int digit = integrals / divisor;
545            buffer[*length] = '0' + digit;
546            (*length)++;
547            requested_digits--;
548            integrals %= divisor;
549            (*kappa)--;
550            // Note that kappa now equals the exponent of the divisor and that the
551            // invariant thus holds again.
552            if (requested_digits == 0) break;
553            divisor /= 10;
554        }
555
556        if (requested_digits == 0) {
557            uint64_t rest =
558            (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
559            return RoundWeedCounted(buffer, *length, rest,
560                                    static_cast<uint64_t>(divisor) << -one.e(), w_error,
561                                    kappa);
562        }
563
564        // The integrals have been generated. We are at the point of the decimal
565        // separator. In the following loop we simply multiply the remaining digits by
566        // 10 and divide by one. We just need to pay attention to multiply associated
567        // data (the 'unit'), too.
568        // Note that the multiplication by 10 does not overflow, because w.e >= -60
569        // and thus one.e >= -60.
570        ASSERT(one.e() >= -60);
571        ASSERT(fractionals < one.f());
572        ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
573        while (requested_digits > 0 && fractionals > w_error) {
574            fractionals *= 10;
575            w_error *= 10;
576            // Integer division by one.
577            int digit = static_cast<int>(fractionals >> -one.e());
578            buffer[*length] = '0' + digit;
579            (*length)++;
580            requested_digits--;
581            fractionals &= one.f() - 1;  // Modulo by one.
582            (*kappa)--;
583        }
584        if (requested_digits != 0) return false;
585        return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error,
586                                kappa);
587    }
588
589
590    // Provides a decimal representation of v.
591    // Returns true if it succeeds, otherwise the result cannot be trusted.
592    // There will be *length digits inside the buffer (not null-terminated).
593    // If the function returns true then
594    //        v == (double) (buffer * 10^decimal_exponent).
595    // The digits in the buffer are the shortest representation possible: no
596    // 0.09999999999999999 instead of 0.1. The shorter representation will even be
597    // chosen even if the longer one would be closer to v.
598    // The last digit will be closest to the actual v. That is, even if several
599    // digits might correctly yield 'v' when read again, the closest will be
600    // computed.
601    static bool Grisu3(double v,
602                       Vector<char> buffer,
603                       int* length,
604                       int* decimal_exponent) {
605        DiyFp w = Double(v).AsNormalizedDiyFp();
606        // boundary_minus and boundary_plus are the boundaries between v and its
607        // closest floating-point neighbors. Any number strictly between
608        // boundary_minus and boundary_plus will round to v when convert to a double.
609        // Grisu3 will never output representations that lie exactly on a boundary.
610        DiyFp boundary_minus, boundary_plus;
611        Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
612        ASSERT(boundary_plus.e() == w.e());
613        DiyFp ten_mk;  // Cached power of ten: 10^-k
614        int mk;        // -k
615        int ten_mk_minimal_binary_exponent =
616        kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
617        int ten_mk_maximal_binary_exponent =
618        kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
619        PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
620                                                               ten_mk_minimal_binary_exponent,
621                                                               ten_mk_maximal_binary_exponent,
622                                                               &ten_mk, &mk);
623        ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
624                DiyFp::kSignificandSize) &&
625               (kMaximalTargetExponent >= w.e() + ten_mk.e() +
626                DiyFp::kSignificandSize));
627        // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
628        // 64 bit significand and ten_mk is thus only precise up to 64 bits.
629
630        // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
631        // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
632        // off by a small amount.
633        // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
634        // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
635        //           (f-1) * 2^e < w*10^k < (f+1) * 2^e
636        DiyFp scaled_w = DiyFp::Times(w, ten_mk);
637        ASSERT(scaled_w.e() ==
638               boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
639        // In theory it would be possible to avoid some recomputations by computing
640        // the difference between w and boundary_minus/plus (a power of 2) and to
641        // compute scaled_boundary_minus/plus by subtracting/adding from
642        // scaled_w. However the code becomes much less readable and the speed
643        // enhancements are not terriffic.
644        DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
645        DiyFp scaled_boundary_plus  = DiyFp::Times(boundary_plus,  ten_mk);
646
647        // DigitGen will generate the digits of scaled_w. Therefore we have
648        // v == (double) (scaled_w * 10^-mk).
649        // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
650        // integer than it will be updated. For instance if scaled_w == 1.23 then
651        // the buffer will be filled with "123" und the decimal_exponent will be
652        // decreased by 2.
653        int kappa;
654        bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
655                               buffer, length, &kappa);
656        *decimal_exponent = -mk + kappa;
657        return result;
658    }
659
660
661    // The "counted" version of grisu3 (see above) only generates requested_digits
662    // number of digits. This version does not generate the shortest representation,
663    // and with enough requested digits 0.1 will at some point print as 0.9999999...
664    // Grisu3 is too imprecise for real halfway cases (1.5 will not work) and
665    // therefore the rounding strategy for halfway cases is irrelevant.
666    static bool Grisu3Counted(double v,
667                              int requested_digits,
668                              Vector<char> buffer,
669                              int* length,
670                              int* decimal_exponent) {
671        DiyFp w = Double(v).AsNormalizedDiyFp();
672        DiyFp ten_mk;  // Cached power of ten: 10^-k
673        int mk;        // -k
674        int ten_mk_minimal_binary_exponent =
675        kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
676        int ten_mk_maximal_binary_exponent =
677        kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
678        PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
679                                                               ten_mk_minimal_binary_exponent,
680                                                               ten_mk_maximal_binary_exponent,
681                                                               &ten_mk, &mk);
682        ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
683                DiyFp::kSignificandSize) &&
684               (kMaximalTargetExponent >= w.e() + ten_mk.e() +
685                DiyFp::kSignificandSize));
686        // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
687        // 64 bit significand and ten_mk is thus only precise up to 64 bits.
688
689        // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
690        // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
691        // off by a small amount.
692        // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
693        // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
694        //           (f-1) * 2^e < w*10^k < (f+1) * 2^e
695        DiyFp scaled_w = DiyFp::Times(w, ten_mk);
696
697        // We now have (double) (scaled_w * 10^-mk).
698        // DigitGen will generate the first requested_digits digits of scaled_w and
699        // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It
700        // will not always be exactly the same since DigitGenCounted only produces a
701        // limited number of digits.)
702        int kappa;
703        bool result = DigitGenCounted(scaled_w, requested_digits,
704                                      buffer, length, &kappa);
705        *decimal_exponent = -mk + kappa;
706        return result;
707    }
708
709
710    bool FastDtoa(double v,
711                  FastDtoaMode mode,
712                  int requested_digits,
713                  Vector<char> buffer,
714                  int* length,
715                  int* decimal_point) {
716        ASSERT(v > 0);
717        ASSERT(!Double(v).IsSpecial());
718
719        bool result = false;
720        int decimal_exponent = 0;
721        switch (mode) {
722            case FAST_DTOA_SHORTEST:
723                result = Grisu3(v, buffer, length, &decimal_exponent);
724                break;
725            case FAST_DTOA_PRECISION:
726                result = Grisu3Counted(v, requested_digits,
727                                       buffer, length, &decimal_exponent);
728                break;
729            default:
730                UNREACHABLE();
731        }
732        if (result) {
733            *decimal_point = *length + decimal_exponent;
734            buffer[*length] = '\0';
735        }
736        return result;
737    }
738
739}  // namespace double_conversion
740
741} // namespace WTF
742