1/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to.  The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 *    notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 *    notice, this list of conditions and the following disclaimer in the
29 *    documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 *    must display the following acknowledgement:
32 *    "This product includes cryptographic software written by
33 *     Eric Young (eay@cryptsoft.com)"
34 *    The word 'cryptographic' can be left out if the rouines from the library
35 *    being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 *    the apps directory (application code) you must include an acknowledgement:
38 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed.  i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.]
56 */
57/* ====================================================================
58 * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
59 *
60 * Redistribution and use in source and binary forms, with or without
61 * modification, are permitted provided that the following conditions
62 * are met:
63 *
64 * 1. Redistributions of source code must retain the above copyright
65 *    notice, this list of conditions and the following disclaimer.
66 *
67 * 2. Redistributions in binary form must reproduce the above copyright
68 *    notice, this list of conditions and the following disclaimer in
69 *    the documentation and/or other materials provided with the
70 *    distribution.
71 *
72 * 3. All advertising materials mentioning features or use of this
73 *    software must display the following acknowledgment:
74 *    "This product includes software developed by the OpenSSL Project
75 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76 *
77 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78 *    endorse or promote products derived from this software without
79 *    prior written permission. For written permission, please contact
80 *    openssl-core@openssl.org.
81 *
82 * 5. Products derived from this software may not be called "OpenSSL"
83 *    nor may "OpenSSL" appear in their names without prior written
84 *    permission of the OpenSSL Project.
85 *
86 * 6. Redistributions of any form whatsoever must retain the following
87 *    acknowledgment:
88 *    "This product includes software developed by the OpenSSL Project
89 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
95 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102 * OF THE POSSIBILITY OF SUCH DAMAGE.
103 * ====================================================================
104 *
105 * This product includes cryptographic software written by Eric Young
106 * (eay@cryptsoft.com).  This product includes software written by Tim
107 * Hudson (tjh@cryptsoft.com). */
108
109#include <openssl/bn.h>
110
111#include <assert.h>
112
113#include <openssl/cpu.h>
114#include <openssl/err.h>
115#include <openssl/mem.h>
116
117#include "internal.h"
118
119
120#if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64)
121#define OPENSSL_BN_ASM_MONT5
122#define RSAZ_ENABLED
123
124#include "rsaz_exp.h"
125#endif
126
127int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) {
128  int i, bits, ret = 0;
129  BIGNUM *v, *rr;
130
131  if ((p->flags & BN_FLG_CONSTTIME) != 0) {
132    /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
133    OPENSSL_PUT_ERROR(BN, BN_exp, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
134    return 0;
135  }
136
137  BN_CTX_start(ctx);
138  if (r == a || r == p) {
139    rr = BN_CTX_get(ctx);
140  } else {
141    rr = r;
142  }
143
144  v = BN_CTX_get(ctx);
145  if (rr == NULL || v == NULL) {
146    goto err;
147  }
148
149  if (BN_copy(v, a) == NULL) {
150    goto err;
151  }
152  bits = BN_num_bits(p);
153
154  if (BN_is_odd(p)) {
155    if (BN_copy(rr, a) == NULL) {
156      goto err;
157    }
158  } else {
159    if (!BN_one(rr)) {
160      goto err;
161    }
162  }
163
164  for (i = 1; i < bits; i++) {
165    if (!BN_sqr(v, v, ctx)) {
166      goto err;
167    }
168    if (BN_is_bit_set(p, i)) {
169      if (!BN_mul(rr, rr, v, ctx)) {
170        goto err;
171      }
172    }
173  }
174  ret = 1;
175
176err:
177  if (r != rr) {
178    BN_copy(r, rr);
179  }
180  BN_CTX_end(ctx);
181  return ret;
182}
183
184/* maximum precomputation table size for *variable* sliding windows */
185#define TABLE_SIZE 32
186
187typedef struct bn_recp_ctx_st {
188  BIGNUM N;  /* the divisor */
189  BIGNUM Nr; /* the reciprocal */
190  int num_bits;
191  int shift;
192  int flags;
193} BN_RECP_CTX;
194
195static void BN_RECP_CTX_init(BN_RECP_CTX *recp) {
196  BN_init(&recp->N);
197  BN_init(&recp->Nr);
198  recp->num_bits = 0;
199  recp->flags = 0;
200}
201
202static void BN_RECP_CTX_free(BN_RECP_CTX *recp) {
203  if (recp == NULL) {
204    return;
205  }
206
207  BN_free(&recp->N);
208  BN_free(&recp->Nr);
209}
210
211static int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *d, BN_CTX *ctx) {
212  if (!BN_copy(&(recp->N), d)) {
213    return 0;
214  }
215  BN_zero(&recp->Nr);
216  recp->num_bits = BN_num_bits(d);
217  recp->shift = 0;
218
219  return 1;
220}
221
222/* len is the expected size of the result We actually calculate with an extra
223 * word of precision, so we can do faster division if the remainder is not
224 * required.
225 * r := 2^len / m */
226static int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx) {
227  int ret = -1;
228  BIGNUM *t;
229
230  BN_CTX_start(ctx);
231  t = BN_CTX_get(ctx);
232  if (t == NULL) {
233    goto err;
234  }
235
236  if (!BN_set_bit(t, len)) {
237    goto err;
238  }
239
240  if (!BN_div(r, NULL, t, m, ctx)) {
241    goto err;
242  }
243
244  ret = len;
245
246err:
247  BN_CTX_end(ctx);
248  return ret;
249}
250
251static int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m,
252                       BN_RECP_CTX *recp, BN_CTX *ctx) {
253  int i, j, ret = 0;
254  BIGNUM *a, *b, *d, *r;
255
256  BN_CTX_start(ctx);
257  a = BN_CTX_get(ctx);
258  b = BN_CTX_get(ctx);
259  if (dv != NULL) {
260    d = dv;
261  } else {
262    d = BN_CTX_get(ctx);
263  }
264
265  if (rem != NULL) {
266    r = rem;
267  } else {
268    r = BN_CTX_get(ctx);
269  }
270
271  if (a == NULL || b == NULL || d == NULL || r == NULL) {
272    goto err;
273  }
274
275  if (BN_ucmp(m, &(recp->N)) < 0) {
276    BN_zero(d);
277    if (!BN_copy(r, m)) {
278      return 0;
279    }
280    BN_CTX_end(ctx);
281    return 1;
282  }
283
284  /* We want the remainder
285   * Given input of ABCDEF / ab
286   * we need multiply ABCDEF by 3 digests of the reciprocal of ab */
287
288  /* i := max(BN_num_bits(m), 2*BN_num_bits(N)) */
289  i = BN_num_bits(m);
290  j = recp->num_bits << 1;
291  if (j > i) {
292    i = j;
293  }
294
295  /* Nr := round(2^i / N) */
296  if (i != recp->shift) {
297    recp->shift =
298        BN_reciprocal(&(recp->Nr), &(recp->N), i,
299                      ctx); /* BN_reciprocal returns i, or -1 for an error */
300  }
301
302  if (recp->shift == -1) {
303    goto err;
304  }
305
306  /* d := |round(round(m / 2^BN_num_bits(N)) * recp->Nr / 2^(i -
307   * BN_num_bits(N)))|
308   *    = |round(round(m / 2^BN_num_bits(N)) * round(2^i / N) / 2^(i -
309   * BN_num_bits(N)))|
310   *   <= |(m / 2^BN_num_bits(N)) * (2^i / N) * (2^BN_num_bits(N) / 2^i)|
311   *    = |m/N| */
312  if (!BN_rshift(a, m, recp->num_bits)) {
313    goto err;
314  }
315  if (!BN_mul(b, a, &(recp->Nr), ctx)) {
316    goto err;
317  }
318  if (!BN_rshift(d, b, i - recp->num_bits)) {
319    goto err;
320  }
321  d->neg = 0;
322
323  if (!BN_mul(b, &(recp->N), d, ctx)) {
324    goto err;
325  }
326  if (!BN_usub(r, m, b)) {
327    goto err;
328  }
329  r->neg = 0;
330
331  j = 0;
332  while (BN_ucmp(r, &(recp->N)) >= 0) {
333    if (j++ > 2) {
334      OPENSSL_PUT_ERROR(BN, BN_div_recp, BN_R_BAD_RECIPROCAL);
335      goto err;
336    }
337    if (!BN_usub(r, r, &(recp->N))) {
338      goto err;
339    }
340    if (!BN_add_word(d, 1)) {
341      goto err;
342    }
343  }
344
345  r->neg = BN_is_zero(r) ? 0 : m->neg;
346  d->neg = m->neg ^ recp->N.neg;
347  ret = 1;
348
349err:
350  BN_CTX_end(ctx);
351  return ret;
352}
353
354static int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y,
355                                 BN_RECP_CTX *recp, BN_CTX *ctx) {
356  int ret = 0;
357  BIGNUM *a;
358  const BIGNUM *ca;
359
360  BN_CTX_start(ctx);
361  a = BN_CTX_get(ctx);
362  if (a == NULL) {
363    goto err;
364  }
365
366  if (y != NULL) {
367    if (x == y) {
368      if (!BN_sqr(a, x, ctx)) {
369        goto err;
370      }
371    } else {
372      if (!BN_mul(a, x, y, ctx)) {
373        goto err;
374      }
375    }
376    ca = a;
377  } else {
378    ca = x; /* Just do the mod */
379  }
380
381  ret = BN_div_recp(NULL, r, ca, recp, ctx);
382
383err:
384  BN_CTX_end(ctx);
385  return ret;
386}
387
388/* BN_window_bits_for_exponent_size -- macro for sliding window mod_exp
389 * functions
390 *
391 * For window size 'w' (w >= 2) and a random 'b' bits exponent, the number of
392 * multiplications is a constant plus on average
393 *
394 *    2^(w-1) + (b-w)/(w+1);
395 *
396 * here 2^(w-1)  is for precomputing the table (we actually need entries only
397 * for windows that have the lowest bit set), and (b-w)/(w+1)  is an
398 * approximation for the expected number of w-bit windows, not counting the
399 * first one.
400 *
401 * Thus we should use
402 *
403 *    w >= 6  if        b > 671
404 *     w = 5  if  671 > b > 239
405 *     w = 4  if  239 > b >  79
406 *     w = 3  if   79 > b >  23
407 *    w <= 2  if   23 > b
408 *
409 * (with draws in between).  Very small exponents are often selected
410 * with low Hamming weight, so we use  w = 1  for b <= 23. */
411#define BN_window_bits_for_exponent_size(b) \
412		((b) > 671 ? 6 : \
413		 (b) > 239 ? 5 : \
414		 (b) >  79 ? 4 : \
415		 (b) >  23 ? 3 : 1)
416
417static int mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
418                        const BIGNUM *m, BN_CTX *ctx) {
419  int i, j, bits, ret = 0, wstart, wend, window, wvalue;
420  int start = 1;
421  BIGNUM *aa;
422  /* Table of variables obtained from 'ctx' */
423  BIGNUM *val[TABLE_SIZE];
424  BN_RECP_CTX recp;
425
426  if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) {
427    /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
428    OPENSSL_PUT_ERROR(BN, mod_exp_recp, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
429    return 0;
430  }
431
432  bits = BN_num_bits(p);
433
434  if (bits == 0) {
435    ret = BN_one(r);
436    return ret;
437  }
438
439  BN_CTX_start(ctx);
440  aa = BN_CTX_get(ctx);
441  val[0] = BN_CTX_get(ctx);
442  if (!aa || !val[0]) {
443    goto err;
444  }
445
446  BN_RECP_CTX_init(&recp);
447  if (m->neg) {
448    /* ignore sign of 'm' */
449    if (!BN_copy(aa, m)) {
450      goto err;
451    }
452    aa->neg = 0;
453    if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0) {
454      goto err;
455    }
456  } else {
457    if (BN_RECP_CTX_set(&recp, m, ctx) <= 0) {
458      goto err;
459    }
460  }
461
462  if (!BN_nnmod(val[0], a, m, ctx)) {
463    goto err; /* 1 */
464  }
465  if (BN_is_zero(val[0])) {
466    BN_zero(r);
467    ret = 1;
468    goto err;
469  }
470
471  window = BN_window_bits_for_exponent_size(bits);
472  if (window > 1) {
473    if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx)) {
474      goto err; /* 2 */
475    }
476    j = 1 << (window - 1);
477    for (i = 1; i < j; i++) {
478      if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
479          !BN_mod_mul_reciprocal(val[i], val[i - 1], aa, &recp, ctx)) {
480        goto err;
481      }
482    }
483  }
484
485  start = 1; /* This is used to avoid multiplication etc
486              * when there is only the value '1' in the
487              * buffer. */
488  wvalue = 0;        /* The 'value' of the window */
489  wstart = bits - 1; /* The top bit of the window */
490  wend = 0;          /* The bottom bit of the window */
491
492  if (!BN_one(r)) {
493    goto err;
494  }
495
496  for (;;) {
497    if (BN_is_bit_set(p, wstart) == 0) {
498      if (!start) {
499        if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) {
500          goto err;
501        }
502      }
503      if (wstart == 0) {
504        break;
505      }
506      wstart--;
507      continue;
508    }
509
510    /* We now have wstart on a 'set' bit, we now need to work out
511     * how bit a window to do.  To do this we need to scan
512     * forward until the last set bit before the end of the
513     * window */
514    wvalue = 1;
515    wend = 0;
516    for (i = 1; i < window; i++) {
517      if (wstart - i < 0) {
518        break;
519      }
520      if (BN_is_bit_set(p, wstart - i)) {
521        wvalue <<= (i - wend);
522        wvalue |= 1;
523        wend = i;
524      }
525    }
526
527    /* wend is the size of the current window */
528    j = wend + 1;
529    /* add the 'bytes above' */
530    if (!start) {
531      for (i = 0; i < j; i++) {
532        if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) {
533          goto err;
534        }
535      }
536    }
537
538    /* wvalue will be an odd number < 2^window */
539    if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx)) {
540      goto err;
541    }
542
543    /* move the 'window' down further */
544    wstart -= wend + 1;
545    wvalue = 0;
546    start = 0;
547    if (wstart < 0) {
548      break;
549    }
550  }
551  ret = 1;
552
553err:
554  BN_CTX_end(ctx);
555  BN_RECP_CTX_free(&recp);
556  return ret;
557}
558
559int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
560               BN_CTX *ctx) {
561  /* For even modulus  m = 2^k*m_odd,  it might make sense to compute
562   * a^p mod m_odd  and  a^p mod 2^k  separately (with Montgomery
563   * exponentiation for the odd part), using appropriate exponent
564   * reductions, and combine the results using the CRT.
565   *
566   * For now, we use Montgomery only if the modulus is odd; otherwise,
567   * exponentiation using the reciprocal-based quick remaindering
568   * algorithm is used.
569   *
570   * (Timing obtained with expspeed.c [computations  a^p mod m
571   * where  a, p, m  are of the same length: 256, 512, 1024, 2048,
572   * 4096, 8192 bits], compared to the running time of the
573   * standard algorithm:
574   *
575   *   BN_mod_exp_mont   33 .. 40 %  [AMD K6-2, Linux, debug configuration]
576   *                     55 .. 77 %  [UltraSparc processor, but
577   *                                  debug-solaris-sparcv8-gcc conf.]
578   *
579   *   BN_mod_exp_recp   50 .. 70 %  [AMD K6-2, Linux, debug configuration]
580   *                     62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc]
581   *
582   * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont
583   * at 2048 and more bits, but at 512 and 1024 bits, it was
584   * slower even than the standard algorithm!
585   *
586   * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations]
587   * should be obtained when the new Montgomery reduction code
588   * has been integrated into OpenSSL.) */
589
590  if (BN_is_odd(m)) {
591    if (a->top == 1 && !a->neg && BN_get_flags(p, BN_FLG_CONSTTIME) == 0) {
592      BN_ULONG A = a->d[0];
593      return BN_mod_exp_mont_word(r, A, p, m, ctx, NULL);
594    }
595
596    return BN_mod_exp_mont(r, a, p, m, ctx, NULL);
597  }
598
599  return mod_exp_recp(r, a, p, m, ctx);
600}
601
602int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
603                    const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) {
604  int i, j, bits, ret = 0, wstart, wend, window, wvalue;
605  int start = 1;
606  BIGNUM *d, *r;
607  const BIGNUM *aa;
608  /* Table of variables obtained from 'ctx' */
609  BIGNUM *val[TABLE_SIZE];
610  BN_MONT_CTX *mont = NULL;
611
612  if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) {
613    return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont);
614  }
615
616  if (!BN_is_odd(m)) {
617    OPENSSL_PUT_ERROR(BN, BN_mod_exp_mont, BN_R_CALLED_WITH_EVEN_MODULUS);
618    return 0;
619  }
620  bits = BN_num_bits(p);
621  if (bits == 0) {
622    ret = BN_one(rr);
623    return ret;
624  }
625
626  BN_CTX_start(ctx);
627  d = BN_CTX_get(ctx);
628  r = BN_CTX_get(ctx);
629  val[0] = BN_CTX_get(ctx);
630  if (!d || !r || !val[0]) {
631    goto err;
632  }
633
634  /* If this is not done, things will break in the montgomery part */
635
636  if (in_mont != NULL) {
637    mont = in_mont;
638  } else {
639    mont = BN_MONT_CTX_new();
640    if (mont == NULL) {
641      goto err;
642    }
643    if (!BN_MONT_CTX_set(mont, m, ctx)) {
644      goto err;
645    }
646  }
647
648  if (a->neg || BN_ucmp(a, m) >= 0) {
649    if (!BN_nnmod(val[0], a, m, ctx)) {
650      goto err;
651    }
652    aa = val[0];
653  } else {
654    aa = a;
655  }
656
657  if (BN_is_zero(aa)) {
658    BN_zero(rr);
659    ret = 1;
660    goto err;
661  }
662  if (!BN_to_montgomery(val[0], aa, mont, ctx)) {
663    goto err; /* 1 */
664  }
665
666  window = BN_window_bits_for_exponent_size(bits);
667  if (window > 1) {
668    if (!BN_mod_mul_montgomery(d, val[0], val[0], mont, ctx)) {
669      goto err; /* 2 */
670    }
671    j = 1 << (window - 1);
672    for (i = 1; i < j; i++) {
673      if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
674          !BN_mod_mul_montgomery(val[i], val[i - 1], d, mont, ctx)) {
675        goto err;
676      }
677    }
678  }
679
680  start = 1; /* This is used to avoid multiplication etc
681              * when there is only the value '1' in the
682              * buffer. */
683  wvalue = 0;        /* The 'value' of the window */
684  wstart = bits - 1; /* The top bit of the window */
685  wend = 0;          /* The bottom bit of the window */
686
687  j = m->top; /* borrow j */
688  if (m->d[j - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
689    if (bn_wexpand(r, j) == NULL)
690      goto err;
691    /* 2^(top*BN_BITS2) - m */
692    r->d[0] = (0 - m->d[0]) & BN_MASK2;
693    for (i = 1; i < j; i++)
694      r->d[i] = (~m->d[i]) & BN_MASK2;
695    r->top = j;
696    /* Upper words will be zero if the corresponding words of 'm'
697     * were 0xfff[...], so decrement r->top accordingly. */
698    bn_correct_top(r);
699  } else if (!BN_to_montgomery(r, BN_value_one(), mont, ctx)) {
700    goto err;
701  }
702
703  for (;;) {
704    if (BN_is_bit_set(p, wstart) == 0) {
705      if (!start) {
706        if (!BN_mod_mul_montgomery(r, r, r, mont, ctx))
707          goto err;
708      }
709      if (wstart == 0) {
710        break;
711      }
712      wstart--;
713      continue;
714    }
715
716    /* We now have wstart on a 'set' bit, we now need to work out how bit a
717     * window to do.  To do this we need to scan forward until the last set bit
718     * before the end of the window */
719    j = wstart;
720    wvalue = 1;
721    wend = 0;
722    for (i = 1; i < window; i++) {
723      if (wstart - i < 0) {
724        break;
725      }
726      if (BN_is_bit_set(p, wstart - i)) {
727        wvalue <<= (i - wend);
728        wvalue |= 1;
729        wend = i;
730      }
731    }
732
733    /* wend is the size of the current window */
734    j = wend + 1;
735    /* add the 'bytes above' */
736    if (!start) {
737      for (i = 0; i < j; i++) {
738        if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
739          goto err;
740        }
741      }
742    }
743
744    /* wvalue will be an odd number < 2^window */
745    if (!BN_mod_mul_montgomery(r, r, val[wvalue >> 1], mont, ctx)) {
746      goto err;
747    }
748
749    /* move the 'window' down further */
750    wstart -= wend + 1;
751    wvalue = 0;
752    start = 0;
753    if (wstart < 0) {
754      break;
755    }
756  }
757
758  if (!BN_from_montgomery(rr, r, mont, ctx)) {
759    goto err;
760  }
761  ret = 1;
762
763err:
764  if (in_mont == NULL && mont != NULL) {
765    BN_MONT_CTX_free(mont);
766  }
767  BN_CTX_end(ctx);
768  return ret;
769}
770
771/* BN_mod_exp_mont_consttime() stores the precomputed powers in a specific
772 * layout so that accessing any of these table values shows the same access
773 * pattern as far as cache lines are concerned. The following functions are
774 * used to transfer a BIGNUM from/to that table. */
775static int copy_to_prebuf(const BIGNUM *b, int top, unsigned char *buf, int idx,
776                          int width) {
777  size_t i, j;
778
779  if (top > b->top) {
780    top = b->top; /* this works because 'buf' is explicitly zeroed */
781  }
782  for (i = 0, j = idx; i < top * sizeof b->d[0]; i++, j += width) {
783    buf[j] = ((unsigned char *)b->d)[i];
784  }
785
786  return 1;
787}
788
789static int copy_from_prebuf(BIGNUM *b, int top, unsigned char *buf, int idx,
790                            int width) {
791  size_t i, j;
792
793  if (bn_wexpand(b, top) == NULL) {
794    return 0;
795  }
796
797  for (i = 0, j = idx; i < top * sizeof b->d[0]; i++, j += width) {
798    ((unsigned char *)b->d)[i] = buf[j];
799  }
800
801  b->top = top;
802  bn_correct_top(b);
803  return 1;
804}
805
806/* BN_mod_exp_mont_conttime is based on the assumption that the L1 data cache
807 * line width of the target processor is at least the following value. */
808#define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH (64)
809#define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK \
810  (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
811
812/* Window sizes optimized for fixed window size modular exponentiation
813 * algorithm (BN_mod_exp_mont_consttime).
814 *
815 * To achieve the security goals of BN_mode_exp_mont_consttime, the maximum
816 * size of the window must not exceed
817 * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH).
818 *
819 * Window size thresholds are defined for cache line sizes of 32 and 64, cache
820 * line sizes where log_2(32)=5 and log_2(64)=6 respectively. A window size of
821 * 7 should only be used on processors that have a 128 byte or greater cache
822 * line size. */
823#if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64
824
825#define BN_window_bits_for_ctime_exponent_size(b) \
826  ((b) > 937 ? 6 : (b) > 306 ? 5 : (b) > 89 ? 4 : (b) > 22 ? 3 : 1)
827#define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6)
828
829#elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32
830
831#define BN_window_bits_for_ctime_exponent_size(b) \
832  ((b) > 306 ? 5 : (b) > 89 ? 4 : (b) > 22 ? 3 : 1)
833#define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5)
834
835#endif
836
837/* Given a pointer value, compute the next address that is a cache line
838 * multiple. */
839#define MOD_EXP_CTIME_ALIGN(x_)          \
840  ((unsigned char *)(x_) +               \
841   (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - \
842    (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK))))
843
844/* This variant of BN_mod_exp_mont() uses fixed windows and the special
845 * precomputation memory layout to limit data-dependency to a minimum
846 * to protect secret exponents (cf. the hyper-threading timing attacks
847 * pointed out by Colin Percival,
848 * http://www.daemonology.net/hyperthreading-considered-harmful/)
849 */
850int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
851                              const BIGNUM *m, BN_CTX *ctx,
852                              BN_MONT_CTX *in_mont) {
853  int i, bits, ret = 0, window, wvalue;
854  int top;
855  BN_MONT_CTX *mont = NULL;
856
857  int numPowers;
858  unsigned char *powerbufFree = NULL;
859  int powerbufLen = 0;
860  unsigned char *powerbuf = NULL;
861  BIGNUM tmp, am;
862
863  top = m->top;
864
865  if (!(m->d[0] & 1)) {
866    OPENSSL_PUT_ERROR(BN, BN_mod_exp_mont_consttime,
867                      BN_R_CALLED_WITH_EVEN_MODULUS);
868    return 0;
869  }
870  bits = BN_num_bits(p);
871  if (bits == 0) {
872    ret = BN_one(rr);
873    return ret;
874  }
875
876  BN_CTX_start(ctx);
877
878  /* Allocate a montgomery context if it was not supplied by the caller.
879   * If this is not done, things will break in the montgomery part.
880   */
881  if (in_mont != NULL)
882    mont = in_mont;
883  else {
884    if ((mont = BN_MONT_CTX_new()) == NULL)
885      goto err;
886    if (!BN_MONT_CTX_set(mont, m, ctx))
887      goto err;
888  }
889
890#ifdef RSAZ_ENABLED
891  /* If the size of the operands allow it, perform the optimized
892   * RSAZ exponentiation. For further information see
893   * crypto/bn/rsaz_exp.c and accompanying assembly modules. */
894  if ((16 == a->top) && (16 == p->top) && (BN_num_bits(m) == 1024) &&
895      rsaz_avx2_eligible()) {
896    if (NULL == bn_wexpand(rr, 16))
897      goto err;
898    RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d, mont->n0[0]);
899    rr->top = 16;
900    rr->neg = 0;
901    bn_correct_top(rr);
902    ret = 1;
903    goto err;
904  } else if ((8 == a->top) && (8 == p->top) && (BN_num_bits(m) == 512)) {
905    if (NULL == bn_wexpand(rr, 8))
906      goto err;
907    RSAZ_512_mod_exp(rr->d, a->d, p->d, m->d, mont->n0[0], mont->RR.d);
908    rr->top = 8;
909    rr->neg = 0;
910    bn_correct_top(rr);
911    ret = 1;
912    goto err;
913  }
914#endif
915
916  /* Get the window size to use with size of p. */
917  window = BN_window_bits_for_ctime_exponent_size(bits);
918#if defined(OPENSSL_BN_ASM_MONT5)
919  if (window >= 5) {
920    window = 5; /* ~5% improvement for RSA2048 sign, and even for RSA4096 */
921    if ((top & 7) == 0)
922      powerbufLen += 2 * top * sizeof(m->d[0]);
923  }
924#endif
925  (void)0;
926
927  /* Allocate a buffer large enough to hold all of the pre-computed
928   * powers of am, am itself and tmp.
929   */
930  numPowers = 1 << window;
931  powerbufLen +=
932      sizeof(m->d[0]) *
933      (top * numPowers + ((2 * top) > numPowers ? (2 * top) : numPowers));
934#ifdef alloca
935  if (powerbufLen < 3072)
936    powerbufFree = alloca(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH);
937  else
938#endif
939      if ((powerbufFree = (unsigned char *)OPENSSL_malloc(
940               powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH)) == NULL)
941    goto err;
942
943  powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree);
944  memset(powerbuf, 0, powerbufLen);
945
946#ifdef alloca
947  if (powerbufLen < 3072)
948    powerbufFree = NULL;
949#endif
950
951  /* lay down tmp and am right after powers table */
952  tmp.d = (BN_ULONG *)(powerbuf + sizeof(m->d[0]) * top * numPowers);
953  am.d = tmp.d + top;
954  tmp.top = am.top = 0;
955  tmp.dmax = am.dmax = top;
956  tmp.neg = am.neg = 0;
957  tmp.flags = am.flags = BN_FLG_STATIC_DATA;
958
959/* prepare a^0 in Montgomery domain */
960/* by Shay Gueron's suggestion */
961  if (m->d[top - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
962    /* 2^(top*BN_BITS2) - m */
963    tmp.d[0] = (0 - m->d[0]) & BN_MASK2;
964    for (i = 1; i < top; i++)
965      tmp.d[i] = (~m->d[i]) & BN_MASK2;
966    tmp.top = top;
967  } else if (!BN_to_montgomery(&tmp, BN_value_one(), mont, ctx))
968    goto err;
969
970  /* prepare a^1 in Montgomery domain */
971  if (a->neg || BN_ucmp(a, m) >= 0) {
972    if (!BN_mod(&am, a, m, ctx))
973      goto err;
974    if (!BN_to_montgomery(&am, &am, mont, ctx))
975      goto err;
976  } else if (!BN_to_montgomery(&am, a, mont, ctx))
977    goto err;
978
979#if defined(OPENSSL_BN_ASM_MONT5)
980  /* This optimization uses ideas from http://eprint.iacr.org/2011/239,
981   * specifically optimization of cache-timing attack countermeasures
982   * and pre-computation optimization. */
983
984  /* Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as
985   * 512-bit RSA is hardly relevant, we omit it to spare size... */
986  if (window == 5 && top > 1) {
987    void bn_mul_mont_gather5(BN_ULONG * rp, const BN_ULONG * ap,
988                             const void * table, const BN_ULONG * np,
989                             const BN_ULONG * n0, int num, int power);
990    void bn_scatter5(const BN_ULONG * inp, size_t num, void * table,
991                     size_t power);
992    void bn_gather5(BN_ULONG * out, size_t num, void * table, size_t power);
993    void bn_power5(BN_ULONG * rp, const BN_ULONG * ap, const void * table,
994                   const BN_ULONG * np, const BN_ULONG * n0, int num,
995                   int power);
996    int bn_from_montgomery(BN_ULONG * rp, const BN_ULONG * ap,
997                           const BN_ULONG * not_used, const BN_ULONG * np,
998                           const BN_ULONG * n0, int num);
999
1000    BN_ULONG *np = mont->N.d, *n0 = mont->n0, *np2;
1001
1002    /* BN_to_montgomery can contaminate words above .top
1003     * [in BN_DEBUG[_DEBUG] build]... */
1004    for (i = am.top; i < top; i++)
1005      am.d[i] = 0;
1006    for (i = tmp.top; i < top; i++)
1007      tmp.d[i] = 0;
1008
1009    if (top & 7)
1010      np2 = np;
1011    else
1012      for (np2 = am.d + top, i = 0; i < top; i++)
1013        np2[2 * i] = np[i];
1014
1015    bn_scatter5(tmp.d, top, powerbuf, 0);
1016    bn_scatter5(am.d, am.top, powerbuf, 1);
1017    bn_mul_mont(tmp.d, am.d, am.d, np, n0, top);
1018    bn_scatter5(tmp.d, top, powerbuf, 2);
1019
1020    /* same as above, but uses squaring for 1/2 of operations */
1021    for (i = 4; i < 32; i *= 2) {
1022      bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1023      bn_scatter5(tmp.d, top, powerbuf, i);
1024    }
1025    for (i = 3; i < 8; i += 2) {
1026      int j;
1027      bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np2, n0, top, i - 1);
1028      bn_scatter5(tmp.d, top, powerbuf, i);
1029      for (j = 2 * i; j < 32; j *= 2) {
1030        bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1031        bn_scatter5(tmp.d, top, powerbuf, j);
1032      }
1033    }
1034    for (; i < 16; i += 2) {
1035      bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np2, n0, top, i - 1);
1036      bn_scatter5(tmp.d, top, powerbuf, i);
1037      bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1038      bn_scatter5(tmp.d, top, powerbuf, 2 * i);
1039    }
1040    for (; i < 32; i += 2) {
1041      bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np2, n0, top, i - 1);
1042      bn_scatter5(tmp.d, top, powerbuf, i);
1043    }
1044
1045    bits--;
1046    for (wvalue = 0, i = bits % 5; i >= 0; i--, bits--)
1047      wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1048    bn_gather5(tmp.d, top, powerbuf, wvalue);
1049
1050    /* At this point |bits| is 4 mod 5 and at least -1. (|bits| is the first bit
1051     * that has not been read yet.) */
1052    assert(bits >= -1 && (bits == -1 || bits % 5 == 4));
1053
1054    /* Scan the exponent one window at a time starting from the most
1055     * significant bits.
1056     */
1057    if (top & 7) {
1058      while (bits >= 0) {
1059        for (wvalue = 0, i = 0; i < 5; i++, bits--)
1060          wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1061
1062        bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1063        bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1064        bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1065        bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1066        bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1067        bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue);
1068      }
1069    } else {
1070      const uint8_t *p_bytes = (const uint8_t *)p->d;
1071      int max_bits = p->top * BN_BITS2;
1072      assert(bits < max_bits);
1073      /* |p = 0| has been handled as a special case, so |max_bits| is at least
1074       * one word. */
1075      assert(max_bits >= 64);
1076
1077      /* If the first bit to be read lands in the last byte, unroll the first
1078       * iteration to avoid reading past the bounds of |p->d|. (After the first
1079       * iteration, we are guaranteed to be past the last byte.) Note |bits|
1080       * here is the top bit, inclusive. */
1081      if (bits - 4 >= max_bits - 8) {
1082        /* Read five bits from |bits-4| through |bits|, inclusive. */
1083        wvalue = p_bytes[p->top * BN_BYTES - 1];
1084        wvalue >>= (bits - 4) & 7;
1085        wvalue &= 0x1f;
1086        bits -= 5;
1087        bn_power5(tmp.d, tmp.d, powerbuf, np2, n0, top, wvalue);
1088      }
1089      while (bits >= 0) {
1090        /* Read five bits from |bits-4| through |bits|, inclusive. */
1091        int first_bit = bits - 4;
1092        wvalue = *(const uint16_t *) (p_bytes + (first_bit >> 3));
1093        wvalue >>= first_bit & 7;
1094        wvalue &= 0x1f;
1095        bits -= 5;
1096        bn_power5(tmp.d, tmp.d, powerbuf, np2, n0, top, wvalue);
1097      }
1098    }
1099
1100    ret = bn_from_montgomery(tmp.d, tmp.d, NULL, np2, n0, top);
1101    tmp.top = top;
1102    bn_correct_top(&tmp);
1103    if (ret) {
1104      if (!BN_copy(rr, &tmp))
1105        ret = 0;
1106      goto err; /* non-zero ret means it's not error */
1107    }
1108  } else
1109#endif
1110  {
1111    if (!copy_to_prebuf(&tmp, top, powerbuf, 0, numPowers))
1112      goto err;
1113    if (!copy_to_prebuf(&am, top, powerbuf, 1, numPowers))
1114      goto err;
1115
1116    /* If the window size is greater than 1, then calculate
1117     * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1)
1118     * (even powers could instead be computed as (a^(i/2))^2
1119     * to use the slight performance advantage of sqr over mul).
1120     */
1121    if (window > 1) {
1122      if (!BN_mod_mul_montgomery(&tmp, &am, &am, mont, ctx))
1123        goto err;
1124      if (!copy_to_prebuf(&tmp, top, powerbuf, 2, numPowers))
1125        goto err;
1126      for (i = 3; i < numPowers; i++) {
1127        /* Calculate a^i = a^(i-1) * a */
1128        if (!BN_mod_mul_montgomery(&tmp, &am, &tmp, mont, ctx))
1129          goto err;
1130        if (!copy_to_prebuf(&tmp, top, powerbuf, i, numPowers))
1131          goto err;
1132      }
1133    }
1134
1135    bits--;
1136    for (wvalue = 0, i = bits % window; i >= 0; i--, bits--)
1137      wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1138    if (!copy_from_prebuf(&tmp, top, powerbuf, wvalue, numPowers))
1139      goto err;
1140
1141    /* Scan the exponent one window at a time starting from the most
1142     * significant bits.
1143     */
1144    while (bits >= 0) {
1145      wvalue = 0; /* The 'value' of the window */
1146
1147      /* Scan the window, squaring the result as we go */
1148      for (i = 0; i < window; i++, bits--) {
1149        if (!BN_mod_mul_montgomery(&tmp, &tmp, &tmp, mont, ctx))
1150          goto err;
1151        wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1152      }
1153
1154      /* Fetch the appropriate pre-computed value from the pre-buf */
1155      if (!copy_from_prebuf(&am, top, powerbuf, wvalue, numPowers))
1156        goto err;
1157
1158      /* Multiply the result into the intermediate result */
1159      if (!BN_mod_mul_montgomery(&tmp, &tmp, &am, mont, ctx))
1160        goto err;
1161    }
1162  }
1163
1164  /* Convert the final result from montgomery to standard format */
1165  if (!BN_from_montgomery(rr, &tmp, mont, ctx))
1166    goto err;
1167  ret = 1;
1168err:
1169  if ((in_mont == NULL) && (mont != NULL))
1170    BN_MONT_CTX_free(mont);
1171  if (powerbuf != NULL) {
1172    OPENSSL_cleanse(powerbuf, powerbufLen);
1173    if (powerbufFree)
1174      OPENSSL_free(powerbufFree);
1175  }
1176  BN_CTX_end(ctx);
1177  return (ret);
1178}
1179
1180int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p,
1181                         const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) {
1182  BN_MONT_CTX *mont = NULL;
1183  int b, bits, ret = 0;
1184  int r_is_one;
1185  BN_ULONG w, next_w;
1186  BIGNUM *d, *r, *t;
1187  BIGNUM *swap_tmp;
1188#define BN_MOD_MUL_WORD(r, w, m)   \
1189  (BN_mul_word(r, (w)) &&          \
1190   (/* BN_ucmp(r, (m)) < 0 ? 1 :*/ \
1191    (BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1))))
1192  /* BN_MOD_MUL_WORD is only used with 'w' large, so the BN_ucmp test is
1193   * probably more overhead than always using BN_mod (which uses BN_copy if a
1194   * similar test returns true). We can use BN_mod and do not need BN_nnmod
1195   * because our accumulator is never negative (the result of BN_mod does not
1196   * depend on the sign of the modulus). */
1197#define BN_TO_MONTGOMERY_WORD(r, w, mont) \
1198  (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx))
1199
1200  if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) {
1201    /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
1202    OPENSSL_PUT_ERROR(BN, BN_mod_exp_mont_word,
1203        ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1204    return 0;
1205  }
1206
1207  if (!BN_is_odd(m)) {
1208    OPENSSL_PUT_ERROR(BN, BN_mod_exp_mont_word, BN_R_CALLED_WITH_EVEN_MODULUS);
1209    return 0;
1210  }
1211
1212  if (m->top == 1) {
1213    a %= m->d[0]; /* make sure that 'a' is reduced */
1214  }
1215
1216  bits = BN_num_bits(p);
1217  if (bits == 0) {
1218    /* x**0 mod 1 is still zero. */
1219    if (BN_is_one(m)) {
1220      ret = 1;
1221      BN_zero(rr);
1222    } else {
1223      ret = BN_one(rr);
1224    }
1225    return ret;
1226  }
1227  if (a == 0) {
1228    BN_zero(rr);
1229    ret = 1;
1230    return ret;
1231  }
1232
1233  BN_CTX_start(ctx);
1234  d = BN_CTX_get(ctx);
1235  r = BN_CTX_get(ctx);
1236  t = BN_CTX_get(ctx);
1237  if (d == NULL || r == NULL || t == NULL) {
1238    goto err;
1239  }
1240
1241  if (in_mont != NULL)
1242    mont = in_mont;
1243  else {
1244    if ((mont = BN_MONT_CTX_new()) == NULL) {
1245      goto err;
1246    }
1247    if (!BN_MONT_CTX_set(mont, m, ctx)) {
1248      goto err;
1249    }
1250  }
1251
1252  r_is_one = 1; /* except for Montgomery factor */
1253
1254  /* bits-1 >= 0 */
1255
1256  /* The result is accumulated in the product r*w. */
1257  w = a; /* bit 'bits-1' of 'p' is always set */
1258  for (b = bits - 2; b >= 0; b--) {
1259    /* First, square r*w. */
1260    next_w = w * w;
1261    if ((next_w / w) != w) {
1262      /* overflow */
1263      if (r_is_one) {
1264        if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) {
1265          goto err;
1266        }
1267        r_is_one = 0;
1268      } else {
1269        if (!BN_MOD_MUL_WORD(r, w, m)) {
1270          goto err;
1271        }
1272      }
1273      next_w = 1;
1274    }
1275
1276    w = next_w;
1277    if (!r_is_one) {
1278      if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
1279        goto err;
1280      }
1281    }
1282
1283    /* Second, multiply r*w by 'a' if exponent bit is set. */
1284    if (BN_is_bit_set(p, b)) {
1285      next_w = w * a;
1286      if ((next_w / a) != w) {
1287        /* overflow */
1288        if (r_is_one) {
1289          if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) {
1290            goto err;
1291          }
1292          r_is_one = 0;
1293        } else {
1294          if (!BN_MOD_MUL_WORD(r, w, m)) {
1295            goto err;
1296          }
1297        }
1298        next_w = a;
1299      }
1300      w = next_w;
1301    }
1302  }
1303
1304  /* Finally, set r:=r*w. */
1305  if (w != 1) {
1306    if (r_is_one) {
1307      if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) {
1308        goto err;
1309      }
1310      r_is_one = 0;
1311    } else {
1312      if (!BN_MOD_MUL_WORD(r, w, m)) {
1313        goto err;
1314      }
1315    }
1316  }
1317
1318  if (r_is_one) {
1319    /* can happen only if a == 1*/
1320    if (!BN_one(rr)) {
1321      goto err;
1322    }
1323  } else {
1324    if (!BN_from_montgomery(rr, r, mont, ctx)) {
1325      goto err;
1326    }
1327  }
1328  ret = 1;
1329
1330err:
1331  if (in_mont == NULL && mont != NULL) {
1332    BN_MONT_CTX_free(mont);
1333  }
1334  BN_CTX_end(ctx);
1335  return ret;
1336}
1337
1338#define TABLE_SIZE 32
1339
1340int BN_mod_exp2_mont(BIGNUM *rr, const BIGNUM *a1, const BIGNUM *p1,
1341                     const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m,
1342                     BN_CTX *ctx, BN_MONT_CTX *in_mont) {
1343  int i, j, bits, b, bits1, bits2, ret = 0, wpos1, wpos2, window1, window2,
1344                                   wvalue1, wvalue2;
1345  int r_is_one = 1;
1346  BIGNUM *d, *r;
1347  const BIGNUM *a_mod_m;
1348  /* Tables of variables obtained from 'ctx' */
1349  BIGNUM *val1[TABLE_SIZE], *val2[TABLE_SIZE];
1350  BN_MONT_CTX *mont = NULL;
1351
1352  if (!(m->d[0] & 1)) {
1353    OPENSSL_PUT_ERROR(BN, BN_mod_exp2_mont, BN_R_CALLED_WITH_EVEN_MODULUS);
1354    return 0;
1355  }
1356  bits1 = BN_num_bits(p1);
1357  bits2 = BN_num_bits(p2);
1358  if (bits1 == 0 && bits2 == 0) {
1359    ret = BN_one(rr);
1360    return ret;
1361  }
1362
1363  bits = (bits1 > bits2) ? bits1 : bits2;
1364
1365  BN_CTX_start(ctx);
1366  d = BN_CTX_get(ctx);
1367  r = BN_CTX_get(ctx);
1368  val1[0] = BN_CTX_get(ctx);
1369  val2[0] = BN_CTX_get(ctx);
1370  if (!d || !r || !val1[0] || !val2[0]) {
1371    goto err;
1372  }
1373
1374  if (in_mont != NULL) {
1375    mont = in_mont;
1376  } else {
1377    mont = BN_MONT_CTX_new();
1378    if (mont == NULL) {
1379      goto err;
1380    }
1381    if (!BN_MONT_CTX_set(mont, m, ctx)) {
1382      goto err;
1383    }
1384  }
1385
1386  window1 = BN_window_bits_for_exponent_size(bits1);
1387  window2 = BN_window_bits_for_exponent_size(bits2);
1388
1389  /* Build table for a1:   val1[i] := a1^(2*i + 1) mod m  for i = 0 ..
1390   * 2^(window1-1) */
1391  if (a1->neg || BN_ucmp(a1, m) >= 0) {
1392    if (!BN_mod(val1[0], a1, m, ctx)) {
1393      goto err;
1394    }
1395    a_mod_m = val1[0];
1396  } else {
1397    a_mod_m = a1;
1398  }
1399
1400  if (BN_is_zero(a_mod_m)) {
1401    BN_zero(rr);
1402    ret = 1;
1403    goto err;
1404  }
1405
1406  if (!BN_to_montgomery(val1[0], a_mod_m, mont, ctx)) {
1407    goto err;
1408  }
1409
1410  if (window1 > 1) {
1411    if (!BN_mod_mul_montgomery(d, val1[0], val1[0], mont, ctx)) {
1412      goto err;
1413    }
1414
1415    j = 1 << (window1 - 1);
1416    for (i = 1; i < j; i++) {
1417      if (((val1[i] = BN_CTX_get(ctx)) == NULL) ||
1418          !BN_mod_mul_montgomery(val1[i], val1[i - 1], d, mont, ctx)) {
1419        goto err;
1420      }
1421    }
1422  }
1423
1424  /* Build table for a2:   val2[i] := a2^(2*i + 1) mod m  for i = 0 ..
1425   * 2^(window2-1) */
1426  if (a2->neg || BN_ucmp(a2, m) >= 0) {
1427    if (!BN_mod(val2[0], a2, m, ctx)) {
1428      goto err;
1429    }
1430    a_mod_m = val2[0];
1431  } else {
1432    a_mod_m = a2;
1433  }
1434
1435  if (BN_is_zero(a_mod_m)) {
1436    BN_zero(rr);
1437    ret = 1;
1438    goto err;
1439  }
1440
1441  if (!BN_to_montgomery(val2[0], a_mod_m, mont, ctx)) {
1442    goto err;
1443  }
1444
1445  if (window2 > 1) {
1446    if (!BN_mod_mul_montgomery(d, val2[0], val2[0], mont, ctx)) {
1447      goto err;
1448    }
1449
1450    j = 1 << (window2 - 1);
1451    for (i = 1; i < j; i++) {
1452      if (((val2[i] = BN_CTX_get(ctx)) == NULL) ||
1453          !BN_mod_mul_montgomery(val2[i], val2[i - 1], d, mont, ctx)) {
1454        goto err;
1455      }
1456    }
1457  }
1458
1459  /* Now compute the power product, using independent windows. */
1460  r_is_one = 1;
1461  wvalue1 = 0; /* The 'value' of the first window */
1462  wvalue2 = 0; /* The 'value' of the second window */
1463  wpos1 = 0;   /* If wvalue1 > 0, the bottom bit of the first window */
1464  wpos2 = 0;   /* If wvalue2 > 0, the bottom bit of the second window */
1465
1466  if (!BN_to_montgomery(r, BN_value_one(), mont, ctx)) {
1467    goto err;
1468  }
1469
1470  for (b = bits - 1; b >= 0; b--) {
1471    if (!r_is_one) {
1472      if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
1473        goto err;
1474      }
1475    }
1476
1477    if (!wvalue1 && BN_is_bit_set(p1, b)) {
1478      /* consider bits b-window1+1 .. b for this window */
1479      i = b - window1 + 1;
1480      while (!BN_is_bit_set(p1, i)) /* works for i<0 */
1481        i++;
1482      wpos1 = i;
1483      wvalue1 = 1;
1484      for (i = b - 1; i >= wpos1; i--) {
1485        wvalue1 <<= 1;
1486        if (BN_is_bit_set(p1, i))
1487          wvalue1++;
1488      }
1489    }
1490
1491    if (!wvalue2 && BN_is_bit_set(p2, b)) {
1492      /* consider bits b-window2+1 .. b for this window */
1493      i = b - window2 + 1;
1494      while (!BN_is_bit_set(p2, i))
1495        i++;
1496      wpos2 = i;
1497      wvalue2 = 1;
1498      for (i = b - 1; i >= wpos2; i--) {
1499        wvalue2 <<= 1;
1500        if (BN_is_bit_set(p2, i))
1501          wvalue2++;
1502      }
1503    }
1504
1505    if (wvalue1 && b == wpos1) {
1506      /* wvalue1 is odd and < 2^window1 */
1507      if (!BN_mod_mul_montgomery(r, r, val1[wvalue1 >> 1], mont, ctx)) {
1508        goto err;
1509      }
1510      wvalue1 = 0;
1511      r_is_one = 0;
1512    }
1513
1514    if (wvalue2 && b == wpos2) {
1515      /* wvalue2 is odd and < 2^window2 */
1516      if (!BN_mod_mul_montgomery(r, r, val2[wvalue2 >> 1], mont, ctx)) {
1517        goto err;
1518      }
1519      wvalue2 = 0;
1520      r_is_one = 0;
1521    }
1522  }
1523
1524  if (!BN_from_montgomery(rr, r, mont, ctx)) {
1525    goto err;
1526  }
1527  ret = 1;
1528
1529err:
1530  if (in_mont == NULL && mont != NULL) {
1531    BN_MONT_CTX_free(mont);
1532  }
1533  BN_CTX_end(ctx);
1534  return ret;
1535}
1536