1/*
2******************************************************************************
3*   Copyright (C) 1997-2011, International Business Machines
4*   Corporation and others.  All Rights Reserved.
5******************************************************************************
6*   file name:  nfrule.cpp
7*   encoding:   US-ASCII
8*   tab size:   8 (not used)
9*   indentation:4
10*
11* Modification history
12* Date        Name      Comments
13* 10/11/2001  Doug      Ported from ICU4J
14*/
15
16#include "nfrule.h"
17
18#if U_HAVE_RBNF
19
20#include "unicode/rbnf.h"
21#include "unicode/tblcoll.h"
22#include "unicode/coleitr.h"
23#include "unicode/uchar.h"
24#include "nfrs.h"
25#include "nfrlist.h"
26#include "nfsubs.h"
27#include "patternprops.h"
28
29U_NAMESPACE_BEGIN
30
31NFRule::NFRule(const RuleBasedNumberFormat* _rbnf)
32  : baseValue((int32_t)0)
33  , radix(0)
34  , exponent(0)
35  , ruleText()
36  , sub1(NULL)
37  , sub2(NULL)
38  , formatter(_rbnf)
39{
40}
41
42NFRule::~NFRule()
43{
44  delete sub1;
45  delete sub2;
46}
47
48static const UChar gLeftBracket = 0x005b;
49static const UChar gRightBracket = 0x005d;
50static const UChar gColon = 0x003a;
51static const UChar gZero = 0x0030;
52static const UChar gNine = 0x0039;
53static const UChar gSpace = 0x0020;
54static const UChar gSlash = 0x002f;
55static const UChar gGreaterThan = 0x003e;
56static const UChar gLessThan = 0x003c;
57static const UChar gComma = 0x002c;
58static const UChar gDot = 0x002e;
59static const UChar gTick = 0x0027;
60//static const UChar gMinus = 0x002d;
61static const UChar gSemicolon = 0x003b;
62
63static const UChar gMinusX[] =                  {0x2D, 0x78, 0};    /* "-x" */
64static const UChar gXDotX[] =                   {0x78, 0x2E, 0x78, 0}; /* "x.x" */
65static const UChar gXDotZero[] =                {0x78, 0x2E, 0x30, 0}; /* "x.0" */
66static const UChar gZeroDotX[] =                {0x30, 0x2E, 0x78, 0}; /* "0.x" */
67
68static const UChar gLessLess[] =                {0x3C, 0x3C, 0};    /* "<<" */
69static const UChar gLessPercent[] =             {0x3C, 0x25, 0};    /* "<%" */
70static const UChar gLessHash[] =                {0x3C, 0x23, 0};    /* "<#" */
71static const UChar gLessZero[] =                {0x3C, 0x30, 0};    /* "<0" */
72static const UChar gGreaterGreater[] =          {0x3E, 0x3E, 0};    /* ">>" */
73static const UChar gGreaterPercent[] =          {0x3E, 0x25, 0};    /* ">%" */
74static const UChar gGreaterHash[] =             {0x3E, 0x23, 0};    /* ">#" */
75static const UChar gGreaterZero[] =             {0x3E, 0x30, 0};    /* ">0" */
76static const UChar gEqualPercent[] =            {0x3D, 0x25, 0};    /* "=%" */
77static const UChar gEqualHash[] =               {0x3D, 0x23, 0};    /* "=#" */
78static const UChar gEqualZero[] =               {0x3D, 0x30, 0};    /* "=0" */
79static const UChar gGreaterGreaterGreater[] =   {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */
80
81static const UChar * const tokenStrings[] = {
82    gLessLess, gLessPercent, gLessHash, gLessZero,
83    gGreaterGreater, gGreaterPercent,gGreaterHash, gGreaterZero,
84    gEqualPercent, gEqualHash, gEqualZero, NULL
85};
86
87void
88NFRule::makeRules(UnicodeString& description,
89                  const NFRuleSet *ruleSet,
90                  const NFRule *predecessor,
91                  const RuleBasedNumberFormat *rbnf,
92                  NFRuleList& rules,
93                  UErrorCode& status)
94{
95    // we know we're making at least one rule, so go ahead and
96    // new it up and initialize its basevalue and divisor
97    // (this also strips the rule descriptor, if any, off the
98    // descripton string)
99    NFRule* rule1 = new NFRule(rbnf);
100    /* test for NULL */
101    if (rule1 == 0) {
102        status = U_MEMORY_ALLOCATION_ERROR;
103        return;
104    }
105    rule1->parseRuleDescriptor(description, status);
106
107    // check the description to see whether there's text enclosed
108    // in brackets
109    int32_t brack1 = description.indexOf(gLeftBracket);
110    int32_t brack2 = description.indexOf(gRightBracket);
111
112    // if the description doesn't contain a matched pair of brackets,
113    // or if it's of a type that doesn't recognize bracketed text,
114    // then leave the description alone, initialize the rule's
115    // rule text and substitutions, and return that rule
116    if (brack1 == -1 || brack2 == -1 || brack1 > brack2
117        || rule1->getType() == kProperFractionRule
118        || rule1->getType() == kNegativeNumberRule) {
119        rule1->ruleText = description;
120        rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status);
121        rules.add(rule1);
122    } else {
123        // if the description does contain a matched pair of brackets,
124        // then it's really shorthand for two rules (with one exception)
125        NFRule* rule2 = NULL;
126        UnicodeString sbuf;
127
128        // we'll actually only split the rule into two rules if its
129        // base value is an even multiple of its divisor (or it's one
130        // of the special rules)
131        if ((rule1->baseValue > 0
132            && (rule1->baseValue % util64_pow(rule1->radix, rule1->exponent)) == 0)
133            || rule1->getType() == kImproperFractionRule
134            || rule1->getType() == kMasterRule) {
135
136            // if it passes that test, new up the second rule.  If the
137            // rule set both rules will belong to is a fraction rule
138            // set, they both have the same base value; otherwise,
139            // increment the original rule's base value ("rule1" actually
140            // goes SECOND in the rule set's rule list)
141            rule2 = new NFRule(rbnf);
142            /* test for NULL */
143            if (rule2 == 0) {
144                status = U_MEMORY_ALLOCATION_ERROR;
145                return;
146            }
147            if (rule1->baseValue >= 0) {
148                rule2->baseValue = rule1->baseValue;
149                if (!ruleSet->isFractionRuleSet()) {
150                    ++rule1->baseValue;
151                }
152            }
153
154            // if the description began with "x.x" and contains bracketed
155            // text, it describes both the improper fraction rule and
156            // the proper fraction rule
157            else if (rule1->getType() == kImproperFractionRule) {
158                rule2->setType(kProperFractionRule);
159            }
160
161            // if the description began with "x.0" and contains bracketed
162            // text, it describes both the master rule and the
163            // improper fraction rule
164            else if (rule1->getType() == kMasterRule) {
165                rule2->baseValue = rule1->baseValue;
166                rule1->setType(kImproperFractionRule);
167            }
168
169            // both rules have the same radix and exponent (i.e., the
170            // same divisor)
171            rule2->radix = rule1->radix;
172            rule2->exponent = rule1->exponent;
173
174            // rule2's rule text omits the stuff in brackets: initalize
175            // its rule text and substitutions accordingly
176            sbuf.append(description, 0, brack1);
177            if (brack2 + 1 < description.length()) {
178                sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
179            }
180            rule2->ruleText.setTo(sbuf);
181            rule2->extractSubstitutions(ruleSet, predecessor, rbnf, status);
182        }
183
184        // rule1's text includes the text in the brackets but omits
185        // the brackets themselves: initialize _its_ rule text and
186        // substitutions accordingly
187        sbuf.setTo(description, 0, brack1);
188        sbuf.append(description, brack1 + 1, brack2 - brack1 - 1);
189        if (brack2 + 1 < description.length()) {
190            sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
191        }
192        rule1->ruleText.setTo(sbuf);
193        rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status);
194
195        // if we only have one rule, return it; if we have two, return
196        // a two-element array containing them (notice that rule2 goes
197        // BEFORE rule1 in the list: in all cases, rule2 OMITS the
198        // material in the brackets and rule1 INCLUDES the material
199        // in the brackets)
200        if (rule2 != NULL) {
201            rules.add(rule2);
202        }
203        rules.add(rule1);
204    }
205}
206
207/**
208 * This function parses the rule's rule descriptor (i.e., the base
209 * value and/or other tokens that precede the rule's rule text
210 * in the description) and sets the rule's base value, radix, and
211 * exponent according to the descriptor.  (If the description doesn't
212 * include a rule descriptor, then this function sets everything to
213 * default values and the rule set sets the rule's real base value).
214 * @param description The rule's description
215 * @return If "description" included a rule descriptor, this is
216 * "description" with the descriptor and any trailing whitespace
217 * stripped off.  Otherwise; it's "descriptor" unchangd.
218 */
219void
220NFRule::parseRuleDescriptor(UnicodeString& description, UErrorCode& status)
221{
222    // the description consists of a rule descriptor and a rule body,
223    // separated by a colon.  The rule descriptor is optional.  If
224    // it's omitted, just set the base value to 0.
225    int32_t p = description.indexOf(gColon);
226    if (p == -1) {
227        setBaseValue((int32_t)0, status);
228    } else {
229        // copy the descriptor out into its own string and strip it,
230        // along with any trailing whitespace, out of the original
231        // description
232        UnicodeString descriptor;
233        descriptor.setTo(description, 0, p);
234
235        ++p;
236        while (p < description.length() && PatternProps::isWhiteSpace(description.charAt(p))) {
237            ++p;
238        }
239        description.removeBetween(0, p);
240
241        // check first to see if the rule descriptor matches the token
242        // for one of the special rules.  If it does, set the base
243        // value to the correct identfier value
244        if (0 == descriptor.compare(gMinusX, 2)) {
245            setType(kNegativeNumberRule);
246        }
247        else if (0 == descriptor.compare(gXDotX, 3)) {
248            setType(kImproperFractionRule);
249        }
250        else if (0 == descriptor.compare(gZeroDotX, 3)) {
251            setType(kProperFractionRule);
252        }
253        else if (0 == descriptor.compare(gXDotZero, 3)) {
254            setType(kMasterRule);
255        }
256
257        // if the rule descriptor begins with a digit, it's a descriptor
258        // for a normal rule
259        // since we don't have Long.parseLong, and this isn't much work anyway,
260        // just build up the value as we encounter the digits.
261        else if (descriptor.charAt(0) >= gZero && descriptor.charAt(0) <= gNine) {
262            int64_t val = 0;
263            p = 0;
264            UChar c = gSpace;
265
266            // begin parsing the descriptor: copy digits
267            // into "tempValue", skip periods, commas, and spaces,
268            // stop on a slash or > sign (or at the end of the string),
269            // and throw an exception on any other character
270            int64_t ll_10 = 10;
271            while (p < descriptor.length()) {
272                c = descriptor.charAt(p);
273                if (c >= gZero && c <= gNine) {
274                    val = val * ll_10 + (int32_t)(c - gZero);
275                }
276                else if (c == gSlash || c == gGreaterThan) {
277                    break;
278                }
279                else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
280                }
281                else {
282                    // throw new IllegalArgumentException("Illegal character in rule descriptor");
283                    status = U_PARSE_ERROR;
284                    return;
285                }
286                ++p;
287            }
288
289            // we have the base value, so set it
290            setBaseValue(val, status);
291
292            // if we stopped the previous loop on a slash, we're
293            // now parsing the rule's radix.  Again, accumulate digits
294            // in tempValue, skip punctuation, stop on a > mark, and
295            // throw an exception on anything else
296            if (c == gSlash) {
297                val = 0;
298                ++p;
299                int64_t ll_10 = 10;
300                while (p < descriptor.length()) {
301                    c = descriptor.charAt(p);
302                    if (c >= gZero && c <= gNine) {
303                        val = val * ll_10 + (int32_t)(c - gZero);
304                    }
305                    else if (c == gGreaterThan) {
306                        break;
307                    }
308                    else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
309                    }
310                    else {
311                        // throw new IllegalArgumentException("Illegal character is rule descriptor");
312                        status = U_PARSE_ERROR;
313                        return;
314                    }
315                    ++p;
316                }
317
318                // tempValue now contain's the rule's radix.  Set it
319                // accordingly, and recalculate the rule's exponent
320                radix = (int32_t)val;
321                if (radix == 0) {
322                    // throw new IllegalArgumentException("Rule can't have radix of 0");
323                    status = U_PARSE_ERROR;
324                }
325
326                exponent = expectedExponent();
327            }
328
329            // if we stopped the previous loop on a > sign, then continue
330            // for as long as we still see > signs.  For each one,
331            // decrement the exponent (unless the exponent is already 0).
332            // If we see another character before reaching the end of
333            // the descriptor, that's also a syntax error.
334            if (c == gGreaterThan) {
335                while (p < descriptor.length()) {
336                    c = descriptor.charAt(p);
337                    if (c == gGreaterThan && exponent > 0) {
338                        --exponent;
339                    } else {
340                        // throw new IllegalArgumentException("Illegal character in rule descriptor");
341                        status = U_PARSE_ERROR;
342                        return;
343                    }
344                    ++p;
345                }
346            }
347        }
348    }
349
350    // finally, if the rule body begins with an apostrophe, strip it off
351    // (this is generally used to put whitespace at the beginning of
352    // a rule's rule text)
353    if (description.length() > 0 && description.charAt(0) == gTick) {
354        description.removeBetween(0, 1);
355    }
356
357    // return the description with all the stuff we've just waded through
358    // stripped off the front.  It now contains just the rule body.
359    // return description;
360}
361
362/**
363* Searches the rule's rule text for the substitution tokens,
364* creates the substitutions, and removes the substitution tokens
365* from the rule's rule text.
366* @param owner The rule set containing this rule
367* @param predecessor The rule preseding this one in "owners" rule list
368* @param ownersOwner The RuleBasedFormat that owns this rule
369*/
370void
371NFRule::extractSubstitutions(const NFRuleSet* ruleSet,
372                             const NFRule* predecessor,
373                             const RuleBasedNumberFormat* rbnf,
374                             UErrorCode& status)
375{
376    if (U_SUCCESS(status)) {
377        sub1 = extractSubstitution(ruleSet, predecessor, rbnf, status);
378        sub2 = extractSubstitution(ruleSet, predecessor, rbnf, status);
379    }
380}
381
382/**
383* Searches the rule's rule text for the first substitution token,
384* creates a substitution based on it, and removes the token from
385* the rule's rule text.
386* @param owner The rule set containing this rule
387* @param predecessor The rule preceding this one in the rule set's
388* rule list
389* @param ownersOwner The RuleBasedNumberFormat that owns this rule
390* @return The newly-created substitution.  This is never null; if
391* the rule text doesn't contain any substitution tokens, this will
392* be a NullSubstitution.
393*/
394NFSubstitution *
395NFRule::extractSubstitution(const NFRuleSet* ruleSet,
396                            const NFRule* predecessor,
397                            const RuleBasedNumberFormat* rbnf,
398                            UErrorCode& status)
399{
400    NFSubstitution* result = NULL;
401
402    // search the rule's rule text for the first two characters of
403    // a substitution token
404    int32_t subStart = indexOfAny(tokenStrings);
405    int32_t subEnd = subStart;
406
407    // if we didn't find one, create a null substitution positioned
408    // at the end of the rule text
409    if (subStart == -1) {
410        return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor,
411            ruleSet, rbnf, UnicodeString(), status);
412    }
413
414    // special-case the ">>>" token, since searching for the > at the
415    // end will actually find the > in the middle
416    if (ruleText.indexOf(gGreaterGreaterGreater, 3, 0) == subStart) {
417        subEnd = subStart + 2;
418
419        // otherwise the substitution token ends with the same character
420        // it began with
421    } else {
422        UChar c = ruleText.charAt(subStart);
423        subEnd = ruleText.indexOf(c, subStart + 1);
424        // special case for '<%foo<<'
425        if (c == gLessThan && subEnd != -1 && subEnd < ruleText.length() - 1 && ruleText.charAt(subEnd+1) == c) {
426            // ordinals use "=#,##0==%abbrev=" as their rule.  Notice that the '==' in the middle
427            // occurs because of the juxtaposition of two different rules.  The check for '<' is a hack
428            // to get around this.  Having the duplicate at the front would cause problems with
429            // rules like "<<%" to format, say, percents...
430            ++subEnd;
431        }
432   }
433
434    // if we don't find the end of the token (i.e., if we're on a single,
435    // unmatched token character), create a null substitution positioned
436    // at the end of the rule
437    if (subEnd == -1) {
438        return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor,
439            ruleSet, rbnf, UnicodeString(), status);
440    }
441
442    // if we get here, we have a real substitution token (or at least
443    // some text bounded by substitution token characters).  Use
444    // makeSubstitution() to create the right kind of substitution
445    UnicodeString subToken;
446    subToken.setTo(ruleText, subStart, subEnd + 1 - subStart);
447    result = NFSubstitution::makeSubstitution(subStart, this, predecessor, ruleSet,
448        rbnf, subToken, status);
449
450    // remove the substitution from the rule text
451    ruleText.removeBetween(subStart, subEnd+1);
452
453    return result;
454}
455
456/**
457 * Sets the rule's base value, and causes the radix and exponent
458 * to be recalculated.  This is used during construction when we
459 * don't know the rule's base value until after it's been
460 * constructed.  It should be used at any other time.
461 * @param The new base value for the rule.
462 */
463void
464NFRule::setBaseValue(int64_t newBaseValue, UErrorCode& status)
465{
466    // set the base value
467    baseValue = newBaseValue;
468
469    // if this isn't a special rule, recalculate the radix and exponent
470    // (the radix always defaults to 10; if it's supposed to be something
471    // else, it's cleaned up by the caller and the exponent is
472    // recalculated again-- the only function that does this is
473    // NFRule.parseRuleDescriptor() )
474    if (baseValue >= 1) {
475        radix = 10;
476        exponent = expectedExponent();
477
478        // this function gets called on a fully-constructed rule whose
479        // description didn't specify a base value.  This means it
480        // has substitutions, and some substitutions hold on to copies
481        // of the rule's divisor.  Fix their copies of the divisor.
482        if (sub1 != NULL) {
483            sub1->setDivisor(radix, exponent, status);
484        }
485        if (sub2 != NULL) {
486            sub2->setDivisor(radix, exponent, status);
487        }
488
489        // if this is a special rule, its radix and exponent are basically
490        // ignored.  Set them to "safe" default values
491    } else {
492        radix = 10;
493        exponent = 0;
494    }
495}
496
497/**
498* This calculates the rule's exponent based on its radix and base
499* value.  This will be the highest power the radix can be raised to
500* and still produce a result less than or equal to the base value.
501*/
502int16_t
503NFRule::expectedExponent() const
504{
505    // since the log of 0, or the log base 0 of something, causes an
506    // error, declare the exponent in these cases to be 0 (we also
507    // deal with the special-rule identifiers here)
508    if (radix == 0 || baseValue < 1) {
509        return 0;
510    }
511
512    // we get rounding error in some cases-- for example, log 1000 / log 10
513    // gives us 1.9999999996 instead of 2.  The extra logic here is to take
514    // that into account
515    int16_t tempResult = (int16_t)(uprv_log((double)baseValue) / uprv_log((double)radix));
516    int64_t temp = util64_pow(radix, tempResult + 1);
517    if (temp <= baseValue) {
518        tempResult += 1;
519    }
520    return tempResult;
521}
522
523/**
524 * Searches the rule's rule text for any of the specified strings.
525 * @param strings An array of strings to search the rule's rule
526 * text for
527 * @return The index of the first match in the rule's rule text
528 * (i.e., the first substring in the rule's rule text that matches
529 * _any_ of the strings in "strings").  If none of the strings in
530 * "strings" is found in the rule's rule text, returns -1.
531 */
532int32_t
533NFRule::indexOfAny(const UChar* const strings[]) const
534{
535    int result = -1;
536    for (int i = 0; strings[i]; i++) {
537        int32_t pos = ruleText.indexOf(*strings[i]);
538        if (pos != -1 && (result == -1 || pos < result)) {
539            result = pos;
540        }
541    }
542    return result;
543}
544
545//-----------------------------------------------------------------------
546// boilerplate
547//-----------------------------------------------------------------------
548
549/**
550* Tests two rules for equality.
551* @param that The rule to compare this one against
552* @return True is the two rules are functionally equivalent
553*/
554UBool
555NFRule::operator==(const NFRule& rhs) const
556{
557    return baseValue == rhs.baseValue
558        && radix == rhs.radix
559        && exponent == rhs.exponent
560        && ruleText == rhs.ruleText
561        && *sub1 == *rhs.sub1
562        && *sub2 == *rhs.sub2;
563}
564
565/**
566* Returns a textual representation of the rule.  This won't
567* necessarily be the same as the description that this rule
568* was created with, but it will produce the same result.
569* @return A textual description of the rule
570*/
571static void util_append64(UnicodeString& result, int64_t n)
572{
573    UChar buffer[256];
574    int32_t len = util64_tou(n, buffer, sizeof(buffer));
575    UnicodeString temp(buffer, len);
576    result.append(temp);
577}
578
579void
580NFRule::_appendRuleText(UnicodeString& result) const
581{
582    switch (getType()) {
583    case kNegativeNumberRule: result.append(gMinusX, 2); break;
584    case kImproperFractionRule: result.append(gXDotX, 3); break;
585    case kProperFractionRule: result.append(gZeroDotX, 3); break;
586    case kMasterRule: result.append(gXDotZero, 3); break;
587    default:
588        // for a normal rule, write out its base value, and if the radix is
589        // something other than 10, write out the radix (with the preceding
590        // slash, of course).  Then calculate the expected exponent and if
591        // if isn't the same as the actual exponent, write an appropriate
592        // number of > signs.  Finally, terminate the whole thing with
593        // a colon.
594        util_append64(result, baseValue);
595        if (radix != 10) {
596            result.append(gSlash);
597            util_append64(result, radix);
598        }
599        int numCarets = expectedExponent() - exponent;
600        for (int i = 0; i < numCarets; i++) {
601            result.append(gGreaterThan);
602        }
603        break;
604    }
605    result.append(gColon);
606    result.append(gSpace);
607
608    // if the rule text begins with a space, write an apostrophe
609    // (whitespace after the rule descriptor is ignored; the
610    // apostrophe is used to make the whitespace significant)
611    if (ruleText.charAt(0) == gSpace && sub1->getPos() != 0) {
612        result.append(gTick);
613    }
614
615    // now, write the rule's rule text, inserting appropriate
616    // substitution tokens in the appropriate places
617    UnicodeString ruleTextCopy;
618    ruleTextCopy.setTo(ruleText);
619
620    UnicodeString temp;
621    sub2->toString(temp);
622    ruleTextCopy.insert(sub2->getPos(), temp);
623    sub1->toString(temp);
624    ruleTextCopy.insert(sub1->getPos(), temp);
625
626    result.append(ruleTextCopy);
627
628    // and finally, top the whole thing off with a semicolon and
629    // return the result
630    result.append(gSemicolon);
631}
632
633//-----------------------------------------------------------------------
634// formatting
635//-----------------------------------------------------------------------
636
637/**
638* Formats the number, and inserts the resulting text into
639* toInsertInto.
640* @param number The number being formatted
641* @param toInsertInto The string where the resultant text should
642* be inserted
643* @param pos The position in toInsertInto where the resultant text
644* should be inserted
645*/
646void
647NFRule::doFormat(int64_t number, UnicodeString& toInsertInto, int32_t pos) const
648{
649    // first, insert the rule's rule text into toInsertInto at the
650    // specified position, then insert the results of the substitutions
651    // into the right places in toInsertInto (notice we do the
652    // substitutions in reverse order so that the offsets don't get
653    // messed up)
654    toInsertInto.insert(pos, ruleText);
655    sub2->doSubstitution(number, toInsertInto, pos);
656    sub1->doSubstitution(number, toInsertInto, pos);
657}
658
659/**
660* Formats the number, and inserts the resulting text into
661* toInsertInto.
662* @param number The number being formatted
663* @param toInsertInto The string where the resultant text should
664* be inserted
665* @param pos The position in toInsertInto where the resultant text
666* should be inserted
667*/
668void
669NFRule::doFormat(double number, UnicodeString& toInsertInto, int32_t pos) const
670{
671    // first, insert the rule's rule text into toInsertInto at the
672    // specified position, then insert the results of the substitutions
673    // into the right places in toInsertInto
674    // [again, we have two copies of this routine that do the same thing
675    // so that we don't sacrifice precision in a long by casting it
676    // to a double]
677    toInsertInto.insert(pos, ruleText);
678    sub2->doSubstitution(number, toInsertInto, pos);
679    sub1->doSubstitution(number, toInsertInto, pos);
680}
681
682/**
683* Used by the owning rule set to determine whether to invoke the
684* rollback rule (i.e., whether this rule or the one that precedes
685* it in the rule set's list should be used to format the number)
686* @param The number being formatted
687* @return True if the rule set should use the rule that precedes
688* this one in its list; false if it should use this rule
689*/
690UBool
691NFRule::shouldRollBack(double number) const
692{
693    // we roll back if the rule contains a modulus substitution,
694    // the number being formatted is an even multiple of the rule's
695    // divisor, and the rule's base value is NOT an even multiple
696    // of its divisor
697    // In other words, if the original description had
698    //    100: << hundred[ >>];
699    // that expands into
700    //    100: << hundred;
701    //    101: << hundred >>;
702    // internally.  But when we're formatting 200, if we use the rule
703    // at 101, which would normally apply, we get "two hundred zero".
704    // To prevent this, we roll back and use the rule at 100 instead.
705    // This is the logic that makes this happen: the rule at 101 has
706    // a modulus substitution, its base value isn't an even multiple
707    // of 100, and the value we're trying to format _is_ an even
708    // multiple of 100.  This is called the "rollback rule."
709    if ((sub1->isModulusSubstitution()) || (sub2->isModulusSubstitution())) {
710        int64_t re = util64_pow(radix, exponent);
711        return uprv_fmod(number, (double)re) == 0 && (baseValue % re) != 0;
712    }
713    return FALSE;
714}
715
716//-----------------------------------------------------------------------
717// parsing
718//-----------------------------------------------------------------------
719
720/**
721* Attempts to parse the string with this rule.
722* @param text The string being parsed
723* @param parsePosition On entry, the value is ignored and assumed to
724* be 0. On exit, this has been updated with the position of the first
725* character not consumed by matching the text against this rule
726* (if this rule doesn't match the text at all, the parse position
727* if left unchanged (presumably at 0) and the function returns
728* new Long(0)).
729* @param isFractionRule True if this rule is contained within a
730* fraction rule set.  This is only used if the rule has no
731* substitutions.
732* @return If this rule matched the text, this is the rule's base value
733* combined appropriately with the results of parsing the substitutions.
734* If nothing matched, this is new Long(0) and the parse position is
735* left unchanged.  The result will be an instance of Long if the
736* result is an integer and Double otherwise.  The result is never null.
737*/
738#ifdef RBNF_DEBUG
739#include <stdio.h>
740
741static void dumpUS(FILE* f, const UnicodeString& us) {
742  int len = us.length();
743  char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1];
744  if (buf != NULL) {
745	  us.extract(0, len, buf);
746	  buf[len] = 0;
747	  fprintf(f, "%s", buf);
748	  uprv_free(buf); //delete[] buf;
749  }
750}
751#endif
752
753UBool
754NFRule::doParse(const UnicodeString& text,
755                ParsePosition& parsePosition,
756                UBool isFractionRule,
757                double upperBound,
758                Formattable& resVal) const
759{
760    // internally we operate on a copy of the string being parsed
761    // (because we're going to change it) and use our own ParsePosition
762    ParsePosition pp;
763    UnicodeString workText(text);
764
765    // check to see whether the text before the first substitution
766    // matches the text at the beginning of the string being
767    // parsed.  If it does, strip that off the front of workText;
768    // otherwise, dump out with a mismatch
769    UnicodeString prefix;
770    prefix.setTo(ruleText, 0, sub1->getPos());
771
772#ifdef RBNF_DEBUG
773    fprintf(stderr, "doParse %x ", this);
774    {
775        UnicodeString rt;
776        _appendRuleText(rt);
777        dumpUS(stderr, rt);
778    }
779
780    fprintf(stderr, " text: '", this);
781    dumpUS(stderr, text);
782    fprintf(stderr, "' prefix: '");
783    dumpUS(stderr, prefix);
784#endif
785    stripPrefix(workText, prefix, pp);
786    int32_t prefixLength = text.length() - workText.length();
787
788#ifdef RBNF_DEBUG
789    fprintf(stderr, "' pl: %d ppi: %d s1p: %d\n", prefixLength, pp.getIndex(), sub1->getPos());
790#endif
791
792    if (pp.getIndex() == 0 && sub1->getPos() != 0) {
793        // commented out because ParsePosition doesn't have error index in 1.1.x
794        // restored for ICU4C port
795        parsePosition.setErrorIndex(pp.getErrorIndex());
796        resVal.setLong(0);
797        return TRUE;
798    }
799
800    // this is the fun part.  The basic guts of the rule-matching
801    // logic is matchToDelimiter(), which is called twice.  The first
802    // time it searches the input string for the rule text BETWEEN
803    // the substitutions and tries to match the intervening text
804    // in the input string with the first substitution.  If that
805    // succeeds, it then calls it again, this time to look for the
806    // rule text after the second substitution and to match the
807    // intervening input text against the second substitution.
808    //
809    // For example, say we have a rule that looks like this:
810    //    first << middle >> last;
811    // and input text that looks like this:
812    //    first one middle two last
813    // First we use stripPrefix() to match "first " in both places and
814    // strip it off the front, leaving
815    //    one middle two last
816    // Then we use matchToDelimiter() to match " middle " and try to
817    // match "one" against a substitution.  If it's successful, we now
818    // have
819    //    two last
820    // We use matchToDelimiter() a second time to match " last" and
821    // try to match "two" against a substitution.  If "two" matches
822    // the substitution, we have a successful parse.
823    //
824    // Since it's possible in many cases to find multiple instances
825    // of each of these pieces of rule text in the input string,
826    // we need to try all the possible combinations of these
827    // locations.  This prevents us from prematurely declaring a mismatch,
828    // and makes sure we match as much input text as we can.
829    int highWaterMark = 0;
830    double result = 0;
831    int start = 0;
832    double tempBaseValue = (double)(baseValue <= 0 ? 0 : baseValue);
833
834    UnicodeString temp;
835    do {
836        // our partial parse result starts out as this rule's base
837        // value.  If it finds a successful match, matchToDelimiter()
838        // will compose this in some way with what it gets back from
839        // the substitution, giving us a new partial parse result
840        pp.setIndex(0);
841
842        temp.setTo(ruleText, sub1->getPos(), sub2->getPos() - sub1->getPos());
843        double partialResult = matchToDelimiter(workText, start, tempBaseValue,
844            temp, pp, sub1,
845            upperBound);
846
847        // if we got a successful match (or were trying to match a
848        // null substitution), pp is now pointing at the first unmatched
849        // character.  Take note of that, and try matchToDelimiter()
850        // on the input text again
851        if (pp.getIndex() != 0 || sub1->isNullSubstitution()) {
852            start = pp.getIndex();
853
854            UnicodeString workText2;
855            workText2.setTo(workText, pp.getIndex(), workText.length() - pp.getIndex());
856            ParsePosition pp2;
857
858            // the second matchToDelimiter() will compose our previous
859            // partial result with whatever it gets back from its
860            // substitution if there's a successful match, giving us
861            // a real result
862            temp.setTo(ruleText, sub2->getPos(), ruleText.length() - sub2->getPos());
863            partialResult = matchToDelimiter(workText2, 0, partialResult,
864                temp, pp2, sub2,
865                upperBound);
866
867            // if we got a successful match on this second
868            // matchToDelimiter() call, update the high-water mark
869            // and result (if necessary)
870            if (pp2.getIndex() != 0 || sub2->isNullSubstitution()) {
871                if (prefixLength + pp.getIndex() + pp2.getIndex() > highWaterMark) {
872                    highWaterMark = prefixLength + pp.getIndex() + pp2.getIndex();
873                    result = partialResult;
874                }
875            }
876            // commented out because ParsePosition doesn't have error index in 1.1.x
877            // restored for ICU4C port
878            else {
879                int32_t temp = pp2.getErrorIndex() + sub1->getPos() + pp.getIndex();
880                if (temp> parsePosition.getErrorIndex()) {
881                    parsePosition.setErrorIndex(temp);
882                }
883            }
884        }
885        // commented out because ParsePosition doesn't have error index in 1.1.x
886        // restored for ICU4C port
887        else {
888            int32_t temp = sub1->getPos() + pp.getErrorIndex();
889            if (temp > parsePosition.getErrorIndex()) {
890                parsePosition.setErrorIndex(temp);
891            }
892        }
893        // keep trying to match things until the outer matchToDelimiter()
894        // call fails to make a match (each time, it picks up where it
895        // left off the previous time)
896    } while (sub1->getPos() != sub2->getPos()
897        && pp.getIndex() > 0
898        && pp.getIndex() < workText.length()
899        && pp.getIndex() != start);
900
901    // update the caller's ParsePosition with our high-water mark
902    // (i.e., it now points at the first character this function
903    // didn't match-- the ParsePosition is therefore unchanged if
904    // we didn't match anything)
905    parsePosition.setIndex(highWaterMark);
906    // commented out because ParsePosition doesn't have error index in 1.1.x
907    // restored for ICU4C port
908    if (highWaterMark > 0) {
909        parsePosition.setErrorIndex(0);
910    }
911
912    // this is a hack for one unusual condition: Normally, whether this
913    // rule belong to a fraction rule set or not is handled by its
914    // substitutions.  But if that rule HAS NO substitutions, then
915    // we have to account for it here.  By definition, if the matching
916    // rule in a fraction rule set has no substitutions, its numerator
917    // is 1, and so the result is the reciprocal of its base value.
918    if (isFractionRule &&
919        highWaterMark > 0 &&
920        sub1->isNullSubstitution()) {
921        result = 1 / result;
922    }
923
924    resVal.setDouble(result);
925    return TRUE; // ??? do we need to worry if it is a long or a double?
926}
927
928/**
929* This function is used by parse() to match the text being parsed
930* against a possible prefix string.  This function
931* matches characters from the beginning of the string being parsed
932* to characters from the prospective prefix.  If they match, pp is
933* updated to the first character not matched, and the result is
934* the unparsed part of the string.  If they don't match, the whole
935* string is returned, and pp is left unchanged.
936* @param text The string being parsed
937* @param prefix The text to match against
938* @param pp On entry, ignored and assumed to be 0.  On exit, points
939* to the first unmatched character (assuming the whole prefix matched),
940* or is unchanged (if the whole prefix didn't match).
941* @return If things match, this is the unparsed part of "text";
942* if they didn't match, this is "text".
943*/
944void
945NFRule::stripPrefix(UnicodeString& text, const UnicodeString& prefix, ParsePosition& pp) const
946{
947    // if the prefix text is empty, dump out without doing anything
948    if (prefix.length() != 0) {
949    	UErrorCode status = U_ZERO_ERROR;
950        // use prefixLength() to match the beginning of
951        // "text" against "prefix".  This function returns the
952        // number of characters from "text" that matched (or 0 if
953        // we didn't match the whole prefix)
954        int32_t pfl = prefixLength(text, prefix, status);
955        if (U_FAILURE(status)) { // Memory allocation error.
956        	return;
957        }
958        if (pfl != 0) {
959            // if we got a successful match, update the parse position
960            // and strip the prefix off of "text"
961            pp.setIndex(pp.getIndex() + pfl);
962            text.remove(0, pfl);
963        }
964    }
965}
966
967/**
968* Used by parse() to match a substitution and any following text.
969* "text" is searched for instances of "delimiter".  For each instance
970* of delimiter, the intervening text is tested to see whether it
971* matches the substitution.  The longest match wins.
972* @param text The string being parsed
973* @param startPos The position in "text" where we should start looking
974* for "delimiter".
975* @param baseValue A partial parse result (often the rule's base value),
976* which is combined with the result from matching the substitution
977* @param delimiter The string to search "text" for.
978* @param pp Ignored and presumed to be 0 on entry.  If there's a match,
979* on exit this will point to the first unmatched character.
980* @param sub If we find "delimiter" in "text", this substitution is used
981* to match the text between the beginning of the string and the
982* position of "delimiter."  (If "delimiter" is the empty string, then
983* this function just matches against this substitution and updates
984* everything accordingly.)
985* @param upperBound When matching the substitution, it will only
986* consider rules with base values lower than this value.
987* @return If there's a match, this is the result of composing
988* baseValue with the result of matching the substitution.  Otherwise,
989* this is new Long(0).  It's never null.  If the result is an integer,
990* this will be an instance of Long; otherwise, it's an instance of
991* Double.
992*
993* !!! note {dlf} in point of fact, in the java code the caller always converts
994* the result to a double, so we might as well return one.
995*/
996double
997NFRule::matchToDelimiter(const UnicodeString& text,
998                         int32_t startPos,
999                         double _baseValue,
1000                         const UnicodeString& delimiter,
1001                         ParsePosition& pp,
1002                         const NFSubstitution* sub,
1003                         double upperBound) const
1004{
1005	UErrorCode status = U_ZERO_ERROR;
1006    // if "delimiter" contains real (i.e., non-ignorable) text, search
1007    // it for "delimiter" beginning at "start".  If that succeeds, then
1008    // use "sub"'s doParse() method to match the text before the
1009    // instance of "delimiter" we just found.
1010    if (!allIgnorable(delimiter, status)) {
1011    	if (U_FAILURE(status)) { //Memory allocation error.
1012    		return 0;
1013    	}
1014        ParsePosition tempPP;
1015        Formattable result;
1016
1017        // use findText() to search for "delimiter".  It returns a two-
1018        // element array: element 0 is the position of the match, and
1019        // element 1 is the number of characters that matched
1020        // "delimiter".
1021        int32_t dLen;
1022        int32_t dPos = findText(text, delimiter, startPos, &dLen);
1023
1024        // if findText() succeeded, isolate the text preceding the
1025        // match, and use "sub" to match that text
1026        while (dPos >= 0) {
1027            UnicodeString subText;
1028            subText.setTo(text, 0, dPos);
1029            if (subText.length() > 0) {
1030                UBool success = sub->doParse(subText, tempPP, _baseValue, upperBound,
1031#if UCONFIG_NO_COLLATION
1032                    FALSE,
1033#else
1034                    formatter->isLenient(),
1035#endif
1036                    result);
1037
1038                // if the substitution could match all the text up to
1039                // where we found "delimiter", then this function has
1040                // a successful match.  Bump the caller's parse position
1041                // to point to the first character after the text
1042                // that matches "delimiter", and return the result
1043                // we got from parsing the substitution.
1044                if (success && tempPP.getIndex() == dPos) {
1045                    pp.setIndex(dPos + dLen);
1046                    return result.getDouble();
1047                }
1048                // commented out because ParsePosition doesn't have error index in 1.1.x
1049                // restored for ICU4C port
1050                else {
1051                    if (tempPP.getErrorIndex() > 0) {
1052                        pp.setErrorIndex(tempPP.getErrorIndex());
1053                    } else {
1054                        pp.setErrorIndex(tempPP.getIndex());
1055                    }
1056                }
1057            }
1058
1059            // if we didn't match the substitution, search for another
1060            // copy of "delimiter" in "text" and repeat the loop if
1061            // we find it
1062            tempPP.setIndex(0);
1063            dPos = findText(text, delimiter, dPos + dLen, &dLen);
1064        }
1065        // if we make it here, this was an unsuccessful match, and we
1066        // leave pp unchanged and return 0
1067        pp.setIndex(0);
1068        return 0;
1069
1070        // if "delimiter" is empty, or consists only of ignorable characters
1071        // (i.e., is semantically empty), thwe we obviously can't search
1072        // for "delimiter".  Instead, just use "sub" to parse as much of
1073        // "text" as possible.
1074    } else {
1075        ParsePosition tempPP;
1076        Formattable result;
1077
1078        // try to match the whole string against the substitution
1079        UBool success = sub->doParse(text, tempPP, _baseValue, upperBound,
1080#if UCONFIG_NO_COLLATION
1081            FALSE,
1082#else
1083            formatter->isLenient(),
1084#endif
1085            result);
1086        if (success && (tempPP.getIndex() != 0 || sub->isNullSubstitution())) {
1087            // if there's a successful match (or it's a null
1088            // substitution), update pp to point to the first
1089            // character we didn't match, and pass the result from
1090            // sub.doParse() on through to the caller
1091            pp.setIndex(tempPP.getIndex());
1092            return result.getDouble();
1093        }
1094        // commented out because ParsePosition doesn't have error index in 1.1.x
1095        // restored for ICU4C port
1096        else {
1097            pp.setErrorIndex(tempPP.getErrorIndex());
1098        }
1099
1100        // and if we get to here, then nothing matched, so we return
1101        // 0 and leave pp alone
1102        return 0;
1103    }
1104}
1105
1106/**
1107* Used by stripPrefix() to match characters.  If lenient parse mode
1108* is off, this just calls startsWith().  If lenient parse mode is on,
1109* this function uses CollationElementIterators to match characters in
1110* the strings (only primary-order differences are significant in
1111* determining whether there's a match).
1112* @param str The string being tested
1113* @param prefix The text we're hoping to see at the beginning
1114* of "str"
1115* @return If "prefix" is found at the beginning of "str", this
1116* is the number of characters in "str" that were matched (this
1117* isn't necessarily the same as the length of "prefix" when matching
1118* text with a collator).  If there's no match, this is 0.
1119*/
1120int32_t
1121NFRule::prefixLength(const UnicodeString& str, const UnicodeString& prefix, UErrorCode& status) const
1122{
1123    // if we're looking for an empty prefix, it obviously matches
1124    // zero characters.  Just go ahead and return 0.
1125    if (prefix.length() == 0) {
1126        return 0;
1127    }
1128
1129#if !UCONFIG_NO_COLLATION
1130    // go through all this grief if we're in lenient-parse mode
1131    if (formatter->isLenient()) {
1132        // get the formatter's collator and use it to create two
1133        // collation element iterators, one over the target string
1134        // and another over the prefix (right now, we'll throw an
1135        // exception if the collator we get back from the formatter
1136        // isn't a RuleBasedCollator, because RuleBasedCollator defines
1137        // the CollationElementIterator protocol.  Hopefully, this
1138        // will change someday.)
1139        RuleBasedCollator* collator = (RuleBasedCollator*)formatter->getCollator();
1140        CollationElementIterator* strIter = collator->createCollationElementIterator(str);
1141        CollationElementIterator* prefixIter = collator->createCollationElementIterator(prefix);
1142        // Check for memory allocation error.
1143        if (collator == NULL || strIter == NULL || prefixIter == NULL) {
1144        	delete collator;
1145        	delete strIter;
1146        	delete prefixIter;
1147        	status = U_MEMORY_ALLOCATION_ERROR;
1148        	return 0;
1149        }
1150
1151        UErrorCode err = U_ZERO_ERROR;
1152
1153        // The original code was problematic.  Consider this match:
1154        // prefix = "fifty-"
1155        // string = " fifty-7"
1156        // The intent is to match string up to the '7', by matching 'fifty-' at position 1
1157        // in the string.  Unfortunately, we were getting a match, and then computing where
1158        // the match terminated by rematching the string.  The rematch code was using as an
1159        // initial guess the substring of string between 0 and prefix.length.  Because of
1160        // the leading space and trailing hyphen (both ignorable) this was succeeding, leaving
1161        // the position before the hyphen in the string.  Recursing down, we then parsed the
1162        // remaining string '-7' as numeric.  The resulting number turned out as 43 (50 - 7).
1163        // This was not pretty, especially since the string "fifty-7" parsed just fine.
1164        //
1165        // We have newer APIs now, so we can use calls on the iterator to determine what we
1166        // matched up to.  If we terminate because we hit the last element in the string,
1167        // our match terminates at this length.  If we terminate because we hit the last element
1168        // in the target, our match terminates at one before the element iterator position.
1169
1170        // match collation elements between the strings
1171        int32_t oStr = strIter->next(err);
1172        int32_t oPrefix = prefixIter->next(err);
1173
1174        while (oPrefix != CollationElementIterator::NULLORDER) {
1175            // skip over ignorable characters in the target string
1176            while (CollationElementIterator::primaryOrder(oStr) == 0
1177                && oStr != CollationElementIterator::NULLORDER) {
1178                oStr = strIter->next(err);
1179            }
1180
1181            // skip over ignorable characters in the prefix
1182            while (CollationElementIterator::primaryOrder(oPrefix) == 0
1183                && oPrefix != CollationElementIterator::NULLORDER) {
1184                oPrefix = prefixIter->next(err);
1185            }
1186
1187            // dlf: move this above following test, if we consume the
1188            // entire target, aren't we ok even if the source was also
1189            // entirely consumed?
1190
1191            // if skipping over ignorables brought to the end of
1192            // the prefix, we DID match: drop out of the loop
1193            if (oPrefix == CollationElementIterator::NULLORDER) {
1194                break;
1195            }
1196
1197            // if skipping over ignorables brought us to the end
1198            // of the target string, we didn't match and return 0
1199            if (oStr == CollationElementIterator::NULLORDER) {
1200                delete prefixIter;
1201                delete strIter;
1202                return 0;
1203            }
1204
1205            // match collation elements from the two strings
1206            // (considering only primary differences).  If we
1207            // get a mismatch, dump out and return 0
1208            if (CollationElementIterator::primaryOrder(oStr)
1209                != CollationElementIterator::primaryOrder(oPrefix)) {
1210                delete prefixIter;
1211                delete strIter;
1212                return 0;
1213
1214                // otherwise, advance to the next character in each string
1215                // and loop (we drop out of the loop when we exhaust
1216                // collation elements in the prefix)
1217            } else {
1218                oStr = strIter->next(err);
1219                oPrefix = prefixIter->next(err);
1220            }
1221        }
1222
1223        int32_t result = strIter->getOffset();
1224        if (oStr != CollationElementIterator::NULLORDER) {
1225            --result; // back over character that we don't want to consume;
1226        }
1227
1228#ifdef RBNF_DEBUG
1229        fprintf(stderr, "prefix length: %d\n", result);
1230#endif
1231        delete prefixIter;
1232        delete strIter;
1233
1234        return result;
1235#if 0
1236        //----------------------------------------------------------------
1237        // JDK 1.2-specific API call
1238        // return strIter.getOffset();
1239        //----------------------------------------------------------------
1240        // JDK 1.1 HACK (take out for 1.2-specific code)
1241
1242        // if we make it to here, we have a successful match.  Now we
1243        // have to find out HOW MANY characters from the target string
1244        // matched the prefix (there isn't necessarily a one-to-one
1245        // mapping between collation elements and characters).
1246        // In JDK 1.2, there's a simple getOffset() call we can use.
1247        // In JDK 1.1, on the other hand, we have to go through some
1248        // ugly contortions.  First, use the collator to compare the
1249        // same number of characters from the prefix and target string.
1250        // If they're equal, we're done.
1251        collator->setStrength(Collator::PRIMARY);
1252        if (str.length() >= prefix.length()) {
1253            UnicodeString temp;
1254            temp.setTo(str, 0, prefix.length());
1255            if (collator->equals(temp, prefix)) {
1256#ifdef RBNF_DEBUG
1257                fprintf(stderr, "returning: %d\n", prefix.length());
1258#endif
1259                return prefix.length();
1260            }
1261        }
1262
1263        // if they're not equal, then we have to compare successively
1264        // larger and larger substrings of the target string until we
1265        // get to one that matches the prefix.  At that point, we know
1266        // how many characters matched the prefix, and we can return.
1267        int32_t p = 1;
1268        while (p <= str.length()) {
1269            UnicodeString temp;
1270            temp.setTo(str, 0, p);
1271            if (collator->equals(temp, prefix)) {
1272                return p;
1273            } else {
1274                ++p;
1275            }
1276        }
1277
1278        // SHOULD NEVER GET HERE!!!
1279        return 0;
1280        //----------------------------------------------------------------
1281#endif
1282
1283        // If lenient parsing is turned off, forget all that crap above.
1284        // Just use String.startsWith() and be done with it.
1285  } else
1286#endif
1287  {
1288      if (str.startsWith(prefix)) {
1289          return prefix.length();
1290      } else {
1291          return 0;
1292      }
1293  }
1294}
1295
1296/**
1297* Searches a string for another string.  If lenient parsing is off,
1298* this just calls indexOf().  If lenient parsing is on, this function
1299* uses CollationElementIterator to match characters, and only
1300* primary-order differences are significant in determining whether
1301* there's a match.
1302* @param str The string to search
1303* @param key The string to search "str" for
1304* @param startingAt The index into "str" where the search is to
1305* begin
1306* @return A two-element array of ints.  Element 0 is the position
1307* of the match, or -1 if there was no match.  Element 1 is the
1308* number of characters in "str" that matched (which isn't necessarily
1309* the same as the length of "key")
1310*/
1311int32_t
1312NFRule::findText(const UnicodeString& str,
1313                 const UnicodeString& key,
1314                 int32_t startingAt,
1315                 int32_t* length) const
1316{
1317#if !UCONFIG_NO_COLLATION
1318    // if lenient parsing is turned off, this is easy: just call
1319    // String.indexOf() and we're done
1320    if (!formatter->isLenient()) {
1321        *length = key.length();
1322        return str.indexOf(key, startingAt);
1323
1324        // but if lenient parsing is turned ON, we've got some work
1325        // ahead of us
1326    } else
1327#endif
1328    {
1329        //----------------------------------------------------------------
1330        // JDK 1.1 HACK (take out of 1.2-specific code)
1331
1332        // in JDK 1.2, CollationElementIterator provides us with an
1333        // API to map between character offsets and collation elements
1334        // and we can do this by marching through the string comparing
1335        // collation elements.  We can't do that in JDK 1.1.  Insted,
1336        // we have to go through this horrible slow mess:
1337        int32_t p = startingAt;
1338        int32_t keyLen = 0;
1339
1340        // basically just isolate smaller and smaller substrings of
1341        // the target string (each running to the end of the string,
1342        // and with the first one running from startingAt to the end)
1343        // and then use prefixLength() to see if the search key is at
1344        // the beginning of each substring.  This is excruciatingly
1345        // slow, but it will locate the key and tell use how long the
1346        // matching text was.
1347        UnicodeString temp;
1348        UErrorCode status = U_ZERO_ERROR;
1349        while (p < str.length() && keyLen == 0) {
1350            temp.setTo(str, p, str.length() - p);
1351            keyLen = prefixLength(temp, key, status);
1352            if (U_FAILURE(status)) {
1353            	break;
1354            }
1355            if (keyLen != 0) {
1356                *length = keyLen;
1357                return p;
1358            }
1359            ++p;
1360        }
1361        // if we make it to here, we didn't find it.  Return -1 for the
1362        // location.  The length should be ignored, but set it to 0,
1363        // which should be "safe"
1364        *length = 0;
1365        return -1;
1366
1367        //----------------------------------------------------------------
1368        // JDK 1.2 version of this routine
1369        //RuleBasedCollator collator = (RuleBasedCollator)formatter.getCollator();
1370        //
1371        //CollationElementIterator strIter = collator.getCollationElementIterator(str);
1372        //CollationElementIterator keyIter = collator.getCollationElementIterator(key);
1373        //
1374        //int keyStart = -1;
1375        //
1376        //str.setOffset(startingAt);
1377        //
1378        //int oStr = strIter.next();
1379        //int oKey = keyIter.next();
1380        //while (oKey != CollationElementIterator.NULLORDER) {
1381        //    while (oStr != CollationElementIterator.NULLORDER &&
1382        //                CollationElementIterator.primaryOrder(oStr) == 0)
1383        //        oStr = strIter.next();
1384        //
1385        //    while (oKey != CollationElementIterator.NULLORDER &&
1386        //                CollationElementIterator.primaryOrder(oKey) == 0)
1387        //        oKey = keyIter.next();
1388        //
1389        //    if (oStr == CollationElementIterator.NULLORDER) {
1390        //        return new int[] { -1, 0 };
1391        //    }
1392        //
1393        //    if (oKey == CollationElementIterator.NULLORDER) {
1394        //        break;
1395        //    }
1396        //
1397        //    if (CollationElementIterator.primaryOrder(oStr) ==
1398        //            CollationElementIterator.primaryOrder(oKey)) {
1399        //        keyStart = strIter.getOffset();
1400        //        oStr = strIter.next();
1401        //        oKey = keyIter.next();
1402        //    } else {
1403        //        if (keyStart != -1) {
1404        //            keyStart = -1;
1405        //            keyIter.reset();
1406        //        } else {
1407        //            oStr = strIter.next();
1408        //        }
1409        //    }
1410        //}
1411        //
1412        //if (oKey == CollationElementIterator.NULLORDER) {
1413        //    return new int[] { keyStart, strIter.getOffset() - keyStart };
1414        //} else {
1415        //    return new int[] { -1, 0 };
1416        //}
1417    }
1418}
1419
1420/**
1421* Checks to see whether a string consists entirely of ignorable
1422* characters.
1423* @param str The string to test.
1424* @return true if the string is empty of consists entirely of
1425* characters that the number formatter's collator says are
1426* ignorable at the primary-order level.  false otherwise.
1427*/
1428UBool
1429NFRule::allIgnorable(const UnicodeString& str, UErrorCode& status) const
1430{
1431    // if the string is empty, we can just return true
1432    if (str.length() == 0) {
1433        return TRUE;
1434    }
1435
1436#if !UCONFIG_NO_COLLATION
1437    // if lenient parsing is turned on, walk through the string with
1438    // a collation element iterator and make sure each collation
1439    // element is 0 (ignorable) at the primary level
1440    if (formatter->isLenient()) {
1441        RuleBasedCollator* collator = (RuleBasedCollator*)(formatter->getCollator());
1442        CollationElementIterator* iter = collator->createCollationElementIterator(str);
1443
1444        // Memory allocation error check.
1445        if (collator == NULL || iter == NULL) {
1446        	delete collator;
1447        	delete iter;
1448        	status = U_MEMORY_ALLOCATION_ERROR;
1449        	return FALSE;
1450        }
1451
1452        UErrorCode err = U_ZERO_ERROR;
1453        int32_t o = iter->next(err);
1454        while (o != CollationElementIterator::NULLORDER
1455            && CollationElementIterator::primaryOrder(o) == 0) {
1456            o = iter->next(err);
1457        }
1458
1459        delete iter;
1460        return o == CollationElementIterator::NULLORDER;
1461    }
1462#endif
1463
1464    // if lenient parsing is turned off, there is no such thing as
1465    // an ignorable character: return true only if the string is empty
1466    return FALSE;
1467}
1468
1469U_NAMESPACE_END
1470
1471/* U_HAVE_RBNF */
1472#endif
1473
1474
1475