1/********************************************************************
2 * COPYRIGHT:
3 * Copyright (c) 2005-2012, International Business Machines Corporation and
4 * others. All Rights Reserved.
5 ********************************************************************/
6/************************************************************************
7*   Tests for the UText and UTextIterator text abstraction classses
8*
9************************************************************************/
10
11#include <string.h>
12#include <stdio.h>
13#include <stdlib.h>
14#include "unicode/utypes.h"
15#include "unicode/utext.h"
16#include "unicode/utf8.h"
17#include "unicode/ustring.h"
18#include "unicode/uchriter.h"
19#include "utxttest.h"
20
21static UBool  gFailed = FALSE;
22static int    gTestNum = 0;
23
24// Forward decl
25UText *openFragmentedUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status);
26
27#define TEST_ASSERT(x) \
28{ if ((x)==FALSE) {errln("Test #%d failure in file %s at line %d\n", gTestNum, __FILE__, __LINE__);\
29                     gFailed = TRUE;\
30   }}
31
32
33#define TEST_SUCCESS(status) \
34{ if (U_FAILURE(status)) {errln("Test #%d failure in file %s at line %d. Error = \"%s\"\n", \
35       gTestNum, __FILE__, __LINE__, u_errorName(status)); \
36       gFailed = TRUE;\
37   }}
38
39UTextTest::UTextTest() {
40}
41
42UTextTest::~UTextTest() {
43}
44
45
46void
47UTextTest::runIndexedTest(int32_t index, UBool exec,
48                          const char* &name, char* /*par*/) {
49    switch (index) {
50        case 0: name = "TextTest";
51            if (exec) TextTest();    break;
52        case 1: name = "ErrorTest";
53            if (exec) ErrorTest();   break;
54        case 2: name = "FreezeTest";
55            if (exec) FreezeTest();  break;
56        case 3: name = "Ticket5560";
57            if (exec) Ticket5560();  break;
58        case 4: name = "Ticket6847";
59            if (exec) Ticket6847();  break;
60        default: name = "";          break;
61    }
62}
63
64//
65// Quick and dirty random number generator.
66//   (don't use library so that results are portable.
67static uint32_t m_seed = 1;
68static uint32_t m_rand()
69{
70    m_seed = m_seed * 1103515245 + 12345;
71    return (uint32_t)(m_seed/65536) % 32768;
72}
73
74
75//
76//   TextTest()
77//
78//       Top Level function for UText testing.
79//       Specifies the strings to be tested, with the acutal testing itself
80//       being carried out in another function, TestString().
81//
82void  UTextTest::TextTest() {
83    int32_t i, j;
84
85    TestString("abcd\\U00010001xyz");
86    TestString("");
87
88    // Supplementary chars at start or end
89    TestString("\\U00010001");
90    TestString("abc\\U00010001");
91    TestString("\\U00010001abc");
92
93    // Test simple strings of lengths 1 to 60, looking for glitches at buffer boundaries
94    UnicodeString s;
95    for (i=1; i<60; i++) {
96        s.truncate(0);
97        for (j=0; j<i; j++) {
98            if (j+0x30 == 0x5c) {
99                // backslash.  Needs to be escaped
100                s.append((UChar)0x5c);
101            }
102            s.append(UChar(j+0x30));
103        }
104        TestString(s);
105    }
106
107   // Test strings with odd-aligned supplementary chars,
108   //    looking for glitches at buffer boundaries
109    for (i=1; i<60; i++) {
110        s.truncate(0);
111        s.append((UChar)0x41);
112        for (j=0; j<i; j++) {
113            s.append(UChar32(j+0x11000));
114        }
115        TestString(s);
116    }
117
118    // String of chars of randomly varying size in utf-8 representation.
119    //   Exercise the mapping, and the varying sized buffer.
120    //
121    s.truncate(0);
122    UChar32  c1 = 0;
123    UChar32  c2 = 0x100;
124    UChar32  c3 = 0xa000;
125    UChar32  c4 = 0x11000;
126    for (i=0; i<1000; i++) {
127        int len8 = m_rand()%4 + 1;
128        switch (len8) {
129            case 1:
130                c1 = (c1+1)%0x80;
131                // don't put 0 into string (0 terminated strings for some tests)
132                // don't put '\', will cause unescape() to fail.
133                if (c1==0x5c || c1==0) {
134                    c1++;
135                }
136                s.append(c1);
137                break;
138            case 2:
139                s.append(c2++);
140                break;
141            case 3:
142                s.append(c3++);
143                break;
144            case 4:
145                s.append(c4++);
146                break;
147        }
148    }
149    TestString(s);
150}
151
152
153//
154//  TestString()     Run a suite of UText tests on a string.
155//                   The test string is unescaped before use.
156//
157void UTextTest::TestString(const UnicodeString &s) {
158    int32_t       i;
159    int32_t       j;
160    UChar32       c;
161    int32_t       cpCount = 0;
162    UErrorCode    status  = U_ZERO_ERROR;
163    UText        *ut      = NULL;
164    int32_t       saLen;
165
166    UnicodeString sa = s.unescape();
167    saLen = sa.length();
168
169    //
170    // Build up a mapping between code points and UTF-16 code unit indexes.
171    //
172    m *cpMap = new m[sa.length() + 1];
173    j = 0;
174    for (i=0; i<sa.length(); i=sa.moveIndex32(i, 1)) {
175        c = sa.char32At(i);
176        cpMap[j].nativeIdx = i;
177        cpMap[j].cp = c;
178        j++;
179        cpCount++;
180    }
181    cpMap[j].nativeIdx = i;   // position following the last char in utf-16 string.
182
183
184    // UChar * test, null terminated
185    status = U_ZERO_ERROR;
186    UChar *buf = new UChar[saLen+1];
187    sa.extract(buf, saLen+1, status);
188    TEST_SUCCESS(status);
189    ut = utext_openUChars(NULL, buf, -1, &status);
190    TEST_SUCCESS(status);
191    TestAccess(sa, ut, cpCount, cpMap);
192    utext_close(ut);
193    delete [] buf;
194
195    // UChar * test, with length
196    status = U_ZERO_ERROR;
197    buf = new UChar[saLen+1];
198    sa.extract(buf, saLen+1, status);
199    TEST_SUCCESS(status);
200    ut = utext_openUChars(NULL, buf, saLen, &status);
201    TEST_SUCCESS(status);
202    TestAccess(sa, ut, cpCount, cpMap);
203    utext_close(ut);
204    delete [] buf;
205
206
207    // UnicodeString test
208    status = U_ZERO_ERROR;
209    ut = utext_openUnicodeString(NULL, &sa, &status);
210    TEST_SUCCESS(status);
211    TestAccess(sa, ut, cpCount, cpMap);
212    TestCMR(sa, ut, cpCount, cpMap, cpMap);
213    utext_close(ut);
214
215
216    // Const UnicodeString test
217    status = U_ZERO_ERROR;
218    ut = utext_openConstUnicodeString(NULL, &sa, &status);
219    TEST_SUCCESS(status);
220    TestAccess(sa, ut, cpCount, cpMap);
221    utext_close(ut);
222
223
224    // Replaceable test.  (UnicodeString inherits Replaceable)
225    status = U_ZERO_ERROR;
226    ut = utext_openReplaceable(NULL, &sa, &status);
227    TEST_SUCCESS(status);
228    TestAccess(sa, ut, cpCount, cpMap);
229    TestCMR(sa, ut, cpCount, cpMap, cpMap);
230    utext_close(ut);
231
232    // Character Iterator Tests
233    status = U_ZERO_ERROR;
234    const UChar *cbuf = sa.getBuffer();
235    CharacterIterator *ci = new UCharCharacterIterator(cbuf, saLen, status);
236    TEST_SUCCESS(status);
237    ut = utext_openCharacterIterator(NULL, ci, &status);
238    TEST_SUCCESS(status);
239    TestAccess(sa, ut, cpCount, cpMap);
240    utext_close(ut);
241    delete ci;
242
243
244    // Fragmented UnicodeString  (Chunk size of one)
245    //
246    status = U_ZERO_ERROR;
247    ut = openFragmentedUnicodeString(NULL, &sa, &status);
248    TEST_SUCCESS(status);
249    TestAccess(sa, ut, cpCount, cpMap);
250    utext_close(ut);
251
252    //
253    // UTF-8 test
254    //
255
256    // Convert the test string from UnicodeString to (char *) in utf-8 format
257    int32_t u8Len = sa.extract(0, sa.length(), NULL, 0, "utf-8");
258    char *u8String = new char[u8Len + 1];
259    sa.extract(0, sa.length(), u8String, u8Len+1, "utf-8");
260
261    // Build up the map of code point indices in the utf-8 string
262    m * u8Map = new m[sa.length() + 1];
263    i = 0;   // native utf-8 index
264    for (j=0; j<cpCount ; j++) {  // code point number
265        u8Map[j].nativeIdx = i;
266        U8_NEXT(u8String, i, u8Len, c)
267        u8Map[j].cp = c;
268    }
269    u8Map[cpCount].nativeIdx = u8Len;   // position following the last char in utf-8 string.
270
271    // Do the test itself
272    status = U_ZERO_ERROR;
273    ut = utext_openUTF8(NULL, u8String, -1, &status);
274    TEST_SUCCESS(status);
275    TestAccess(sa, ut, cpCount, u8Map);
276    utext_close(ut);
277
278
279
280    delete []cpMap;
281    delete []u8Map;
282    delete []u8String;
283}
284
285//  TestCMR   test Copy, Move and Replace operations.
286//              us         UnicodeString containing the test text.
287//              ut         UText containing the same test text.
288//              cpCount    number of code points in the test text.
289//              nativeMap  Mapping from code points to native indexes for the UText.
290//              u16Map     Mapping from code points to UTF-16 indexes, for use with the UnicodeString.
291//
292//     This function runs a whole series of opertions on each incoming UText.
293//     The UText is deep-cloned prior to each operation, so that the original UText remains unchanged.
294//
295void UTextTest::TestCMR(const UnicodeString &us, UText *ut, int cpCount, m *nativeMap, m *u16Map) {
296    TEST_ASSERT(utext_isWritable(ut) == TRUE);
297
298    int  srcLengthType;       // Loop variables for selecting the postion and length
299    int  srcPosType;          //   of the block to operate on within the source text.
300    int  destPosType;
301
302    int  srcIndex  = 0;       // Code Point indexes of the block to operate on for
303    int  srcLength = 0;       //   a specific test.
304
305    int  destIndex = 0;       // Code point index of the destination for a copy/move test.
306
307    int32_t  nativeStart = 0; // Native unit indexes for a test.
308    int32_t  nativeLimit = 0;
309    int32_t  nativeDest  = 0;
310
311    int32_t  u16Start    = 0; // UTF-16 indexes for a test.
312    int32_t  u16Limit    = 0; //   used when performing the same operation in a Unicode String
313    int32_t  u16Dest     = 0;
314
315    // Iterate over a whole series of source index, length and a target indexes.
316    // This is done with code point indexes; these will be later translated to native
317    //   indexes using the cpMap.
318    for (srcLengthType=1; srcLengthType<=3; srcLengthType++) {
319        switch (srcLengthType) {
320            case 1: srcLength = 1; break;
321            case 2: srcLength = 5; break;
322            case 3: srcLength = cpCount / 3;
323        }
324        for (srcPosType=1; srcPosType<=5; srcPosType++) {
325            switch (srcPosType) {
326                case 1: srcIndex = 0; break;
327                case 2: srcIndex = 1; break;
328                case 3: srcIndex = cpCount - srcLength; break;
329                case 4: srcIndex = cpCount - srcLength - 1; break;
330                case 5: srcIndex = cpCount / 2; break;
331            }
332            if (srcIndex < 0 || srcIndex + srcLength > cpCount) {
333                // filter out bogus test cases -
334                //   those with a source range that falls of an edge of the string.
335                continue;
336            }
337
338            //
339            // Copy and move tests.
340            //   iterate over a variety of destination positions.
341            //
342            for (destPosType=1; destPosType<=4; destPosType++) {
343                switch (destPosType) {
344                    case 1: destIndex = 0; break;
345                    case 2: destIndex = 1; break;
346                    case 3: destIndex = srcIndex - 1; break;
347                    case 4: destIndex = srcIndex + srcLength + 1; break;
348                    case 5: destIndex = cpCount-1; break;
349                    case 6: destIndex = cpCount; break;
350                }
351                if (destIndex<0 || destIndex>cpCount) {
352                    // filter out bogus test cases.
353                    continue;
354                }
355
356                nativeStart = nativeMap[srcIndex].nativeIdx;
357                nativeLimit = nativeMap[srcIndex+srcLength].nativeIdx;
358                nativeDest  = nativeMap[destIndex].nativeIdx;
359
360                u16Start    = u16Map[srcIndex].nativeIdx;
361                u16Limit    = u16Map[srcIndex+srcLength].nativeIdx;
362                u16Dest     = u16Map[destIndex].nativeIdx;
363
364                gFailed = FALSE;
365                TestCopyMove(us, ut, FALSE,
366                    nativeStart, nativeLimit, nativeDest,
367                    u16Start, u16Limit, u16Dest);
368
369                TestCopyMove(us, ut, TRUE,
370                    nativeStart, nativeLimit, nativeDest,
371                    u16Start, u16Limit, u16Dest);
372
373                if (gFailed) {
374                    return;
375                }
376            }
377
378            //
379            //  Replace tests.
380            //
381            UnicodeString fullRepString("This is an arbitrary string that will be used as replacement text");
382            for (int32_t replStrLen=0; replStrLen<20; replStrLen++) {
383                UnicodeString repStr(fullRepString, 0, replStrLen);
384                TestReplace(us, ut,
385                    nativeStart, nativeLimit,
386                    u16Start, u16Limit,
387                    repStr);
388                if (gFailed) {
389                    return;
390                }
391            }
392
393        }
394    }
395
396}
397
398//
399//   TestCopyMove    run a single test case for utext_copy.
400//                   Test cases are created in TestCMR and dispatched here for execution.
401//
402void UTextTest::TestCopyMove(const UnicodeString &us, UText *ut, UBool move,
403                    int32_t nativeStart, int32_t nativeLimit, int32_t nativeDest,
404                    int32_t u16Start, int32_t u16Limit, int32_t u16Dest)
405{
406    UErrorCode      status   = U_ZERO_ERROR;
407    UText          *targetUT = NULL;
408    gTestNum++;
409    gFailed = FALSE;
410
411    //
412    //  clone the UText.  The test will be run in the cloned copy
413    //  so that we don't alter the original.
414    //
415    targetUT = utext_clone(NULL, ut, TRUE, FALSE, &status);
416    TEST_SUCCESS(status);
417    UnicodeString targetUS(us);    // And copy the reference string.
418
419    // do the test operation first in the reference
420    targetUS.copy(u16Start, u16Limit, u16Dest);
421    if (move) {
422        // delete out the source range.
423        if (u16Limit < u16Dest) {
424            targetUS.removeBetween(u16Start, u16Limit);
425        } else {
426            int32_t amtCopied = u16Limit - u16Start;
427            targetUS.removeBetween(u16Start+amtCopied, u16Limit+amtCopied);
428        }
429    }
430
431    // Do the same operation in the UText under test
432    utext_copy(targetUT, nativeStart, nativeLimit, nativeDest, move, &status);
433    if (nativeDest > nativeStart && nativeDest < nativeLimit) {
434        TEST_ASSERT(status == U_INDEX_OUTOFBOUNDS_ERROR);
435    } else {
436        TEST_SUCCESS(status);
437
438        // Compare the results of the two parallel tests
439        int32_t  usi = 0;    // UnicodeString postion, utf-16 index.
440        int64_t  uti = 0;    // UText position, native index.
441        int32_t  cpi;        // char32 position (code point index)
442        UChar32  usc;        // code point from Unicode String
443        UChar32  utc;        // code point from UText
444        utext_setNativeIndex(targetUT, 0);
445        for (cpi=0; ; cpi++) {
446            usc = targetUS.char32At(usi);
447            utc = utext_next32(targetUT);
448            if (utc < 0) {
449                break;
450            }
451            TEST_ASSERT(uti == usi);
452            TEST_ASSERT(utc == usc);
453            usi = targetUS.moveIndex32(usi, 1);
454            uti = utext_getNativeIndex(targetUT);
455            if (gFailed) {
456                goto cleanupAndReturn;
457            }
458        }
459        int64_t expectedNativeLength = utext_nativeLength(ut);
460        if (move == FALSE) {
461            expectedNativeLength += nativeLimit - nativeStart;
462        }
463        uti = utext_getNativeIndex(targetUT);
464        TEST_ASSERT(uti == expectedNativeLength);
465    }
466
467cleanupAndReturn:
468    utext_close(targetUT);
469}
470
471
472//
473//  TestReplace   Test a single Replace operation.
474//
475void UTextTest::TestReplace(
476            const UnicodeString &us,     // reference UnicodeString in which to do the replace
477            UText         *ut,                // UnicodeText object under test.
478            int32_t       nativeStart,        // Range to be replaced, in UText native units.
479            int32_t       nativeLimit,
480            int32_t       u16Start,           // Range to be replaced, in UTF-16 units
481            int32_t       u16Limit,           //    for use in the reference UnicodeString.
482            const UnicodeString &repStr)      // The replacement string
483{
484    UErrorCode      status   = U_ZERO_ERROR;
485    UText          *targetUT = NULL;
486    gTestNum++;
487    gFailed = FALSE;
488
489    //
490    //  clone the target UText.  The test will be run in the cloned copy
491    //  so that we don't alter the original.
492    //
493    targetUT = utext_clone(NULL, ut, TRUE, FALSE, &status);
494    TEST_SUCCESS(status);
495    UnicodeString targetUS(us);    // And copy the reference string.
496
497    //
498    // Do the replace operation in the Unicode String, to
499    //   produce a reference result.
500    //
501    targetUS.replace(u16Start, u16Limit-u16Start, repStr);
502
503    //
504    // Do the replace on the UText under test
505    //
506    const UChar *rs = repStr.getBuffer();
507    int32_t  rsLen = repStr.length();
508    int32_t actualDelta = utext_replace(targetUT, nativeStart, nativeLimit, rs, rsLen, &status);
509    int32_t expectedDelta = repStr.length() - (nativeLimit - nativeStart);
510    TEST_ASSERT(actualDelta == expectedDelta);
511
512    //
513    // Compare the results
514    //
515    int32_t  usi = 0;    // UnicodeString postion, utf-16 index.
516    int64_t  uti = 0;    // UText position, native index.
517    int32_t  cpi;        // char32 position (code point index)
518    UChar32  usc;        // code point from Unicode String
519    UChar32  utc;        // code point from UText
520    int64_t  expectedNativeLength = 0;
521    utext_setNativeIndex(targetUT, 0);
522    for (cpi=0; ; cpi++) {
523        usc = targetUS.char32At(usi);
524        utc = utext_next32(targetUT);
525        if (utc < 0) {
526            break;
527        }
528        TEST_ASSERT(uti == usi);
529        TEST_ASSERT(utc == usc);
530        usi = targetUS.moveIndex32(usi, 1);
531        uti = utext_getNativeIndex(targetUT);
532        if (gFailed) {
533            goto cleanupAndReturn;
534        }
535    }
536    expectedNativeLength = utext_nativeLength(ut) + expectedDelta;
537    uti = utext_getNativeIndex(targetUT);
538    TEST_ASSERT(uti == expectedNativeLength);
539
540cleanupAndReturn:
541    utext_close(targetUT);
542}
543
544//
545//  TestAccess      Test the read only access functions on a UText, including cloning.
546//                  The text is accessed in a variety of ways, and compared with
547//                  the reference UnicodeString.
548//
549void UTextTest::TestAccess(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) {
550    // Run the standard tests on the caller-supplied UText.
551    TestAccessNoClone(us, ut, cpCount, cpMap);
552
553    // Re-run tests on a shallow clone.
554    utext_setNativeIndex(ut, 0);
555    UErrorCode status = U_ZERO_ERROR;
556    UText *shallowClone = utext_clone(NULL, ut, FALSE /*deep*/, FALSE /*readOnly*/, &status);
557    TEST_SUCCESS(status);
558    TestAccessNoClone(us, shallowClone, cpCount, cpMap);
559
560    //
561    // Rerun again on a deep clone.
562    // Note that text providers are not required to provide deep cloning,
563    //   so unsupported errors are ignored.
564    //
565    status = U_ZERO_ERROR;
566    utext_setNativeIndex(shallowClone, 0);
567    UText *deepClone = utext_clone(NULL, shallowClone, TRUE, FALSE, &status);
568    utext_close(shallowClone);
569    if (status != U_UNSUPPORTED_ERROR) {
570        TEST_SUCCESS(status);
571        TestAccessNoClone(us, deepClone, cpCount, cpMap);
572    }
573    utext_close(deepClone);
574}
575
576
577//
578//  TestAccessNoClone()    Test the read only access functions on a UText.
579//                         The text is accessed in a variety of ways, and compared with
580//                         the reference UnicodeString.
581//
582void UTextTest::TestAccessNoClone(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) {
583    UErrorCode  status = U_ZERO_ERROR;
584    gTestNum++;
585
586    //
587    //  Check the length from the UText
588    //
589    int64_t expectedLen = cpMap[cpCount].nativeIdx;
590    int64_t utlen = utext_nativeLength(ut);
591    TEST_ASSERT(expectedLen == utlen);
592
593    //
594    //  Iterate forwards, verify that we get the correct code points
595    //   at the correct native offsets.
596    //
597    int         i = 0;
598    int64_t     index;
599    int64_t     expectedIndex = 0;
600    int64_t     foundIndex = 0;
601    UChar32     expectedC;
602    UChar32     foundC;
603    int64_t     len;
604
605    for (i=0; i<cpCount; i++) {
606        expectedIndex = cpMap[i].nativeIdx;
607        foundIndex    = utext_getNativeIndex(ut);
608        TEST_ASSERT(expectedIndex == foundIndex);
609        expectedC     = cpMap[i].cp;
610        foundC        = utext_next32(ut);
611        TEST_ASSERT(expectedC == foundC);
612        foundIndex    = utext_getPreviousNativeIndex(ut);
613        TEST_ASSERT(expectedIndex == foundIndex);
614        if (gFailed) {
615            return;
616        }
617    }
618    foundC = utext_next32(ut);
619    TEST_ASSERT(foundC == U_SENTINEL);
620
621    // Repeat above, using macros
622    utext_setNativeIndex(ut, 0);
623    for (i=0; i<cpCount; i++) {
624        expectedIndex = cpMap[i].nativeIdx;
625        foundIndex    = UTEXT_GETNATIVEINDEX(ut);
626        TEST_ASSERT(expectedIndex == foundIndex);
627        expectedC     = cpMap[i].cp;
628        foundC        = UTEXT_NEXT32(ut);
629        TEST_ASSERT(expectedC == foundC);
630        if (gFailed) {
631            return;
632        }
633    }
634    foundC = UTEXT_NEXT32(ut);
635    TEST_ASSERT(foundC == U_SENTINEL);
636
637    //
638    //  Forward iteration (above) should have left index at the
639    //   end of the input, which should == length().
640    //
641    len = utext_nativeLength(ut);
642    foundIndex  = utext_getNativeIndex(ut);
643    TEST_ASSERT(len == foundIndex);
644
645    //
646    // Iterate backwards over entire test string
647    //
648    len = utext_getNativeIndex(ut);
649    utext_setNativeIndex(ut, len);
650    for (i=cpCount-1; i>=0; i--) {
651        expectedC     = cpMap[i].cp;
652        expectedIndex = cpMap[i].nativeIdx;
653        int64_t prevIndex = utext_getPreviousNativeIndex(ut);
654        foundC        = utext_previous32(ut);
655        foundIndex    = utext_getNativeIndex(ut);
656        TEST_ASSERT(expectedIndex == foundIndex);
657        TEST_ASSERT(expectedC == foundC);
658        TEST_ASSERT(prevIndex == foundIndex);
659        if (gFailed) {
660            return;
661        }
662    }
663
664    //
665    //  Backwards iteration, above, should have left our iterator
666    //   position at zero, and continued backwards iterationshould fail.
667    //
668    foundIndex = utext_getNativeIndex(ut);
669    TEST_ASSERT(foundIndex == 0);
670    foundIndex = utext_getPreviousNativeIndex(ut);
671    TEST_ASSERT(foundIndex == 0);
672
673
674    foundC = utext_previous32(ut);
675    TEST_ASSERT(foundC == U_SENTINEL);
676    foundIndex = utext_getNativeIndex(ut);
677    TEST_ASSERT(foundIndex == 0);
678    foundIndex = utext_getPreviousNativeIndex(ut);
679    TEST_ASSERT(foundIndex == 0);
680
681
682    // And again, with the macros
683    utext_setNativeIndex(ut, len);
684    for (i=cpCount-1; i>=0; i--) {
685        expectedC     = cpMap[i].cp;
686        expectedIndex = cpMap[i].nativeIdx;
687        foundC        = UTEXT_PREVIOUS32(ut);
688        foundIndex    = UTEXT_GETNATIVEINDEX(ut);
689        TEST_ASSERT(expectedIndex == foundIndex);
690        TEST_ASSERT(expectedC == foundC);
691        if (gFailed) {
692            return;
693        }
694    }
695
696    //
697    //  Backwards iteration, above, should have left our iterator
698    //   position at zero, and continued backwards iterationshould fail.
699    //
700    foundIndex = UTEXT_GETNATIVEINDEX(ut);
701    TEST_ASSERT(foundIndex == 0);
702
703    foundC = UTEXT_PREVIOUS32(ut);
704    TEST_ASSERT(foundC == U_SENTINEL);
705    foundIndex = UTEXT_GETNATIVEINDEX(ut);
706    TEST_ASSERT(foundIndex == 0);
707    if (gFailed) {
708        return;
709    }
710
711    //
712    //  next32From(), prevous32From(), Iterate in a somewhat random order.
713    //
714    int  cpIndex = 0;
715    for (i=0; i<cpCount; i++) {
716        cpIndex = (cpIndex + 9973) % cpCount;
717        index         = cpMap[cpIndex].nativeIdx;
718        expectedC     = cpMap[cpIndex].cp;
719        foundC        = utext_next32From(ut, index);
720        TEST_ASSERT(expectedC == foundC);
721        if (gFailed) {
722            return;
723        }
724    }
725
726    cpIndex = 0;
727    for (i=0; i<cpCount; i++) {
728        cpIndex = (cpIndex + 9973) % cpCount;
729        index         = cpMap[cpIndex+1].nativeIdx;
730        expectedC     = cpMap[cpIndex].cp;
731        foundC        = utext_previous32From(ut, index);
732        TEST_ASSERT(expectedC == foundC);
733        if (gFailed) {
734            return;
735        }
736    }
737
738
739    //
740    // moveIndex(int32_t delta);
741    //
742
743    // Walk through frontwards, incrementing by one
744    utext_setNativeIndex(ut, 0);
745    for (i=1; i<=cpCount; i++) {
746        utext_moveIndex32(ut, 1);
747        index = utext_getNativeIndex(ut);
748        expectedIndex = cpMap[i].nativeIdx;
749        TEST_ASSERT(expectedIndex == index);
750        index = UTEXT_GETNATIVEINDEX(ut);
751        TEST_ASSERT(expectedIndex == index);
752    }
753
754    // Walk through frontwards, incrementing by two
755    utext_setNativeIndex(ut, 0);
756    for (i=2; i<cpCount; i+=2) {
757        utext_moveIndex32(ut, 2);
758        index = utext_getNativeIndex(ut);
759        expectedIndex = cpMap[i].nativeIdx;
760        TEST_ASSERT(expectedIndex == index);
761        index = UTEXT_GETNATIVEINDEX(ut);
762        TEST_ASSERT(expectedIndex == index);
763    }
764
765    // walk through the string backwards, decrementing by one.
766    i = cpMap[cpCount].nativeIdx;
767    utext_setNativeIndex(ut, i);
768    for (i=cpCount; i>=0; i--) {
769        expectedIndex = cpMap[i].nativeIdx;
770        index = utext_getNativeIndex(ut);
771        TEST_ASSERT(expectedIndex == index);
772        index = UTEXT_GETNATIVEINDEX(ut);
773        TEST_ASSERT(expectedIndex == index);
774        utext_moveIndex32(ut, -1);
775    }
776
777
778    // walk through backwards, decrementing by three
779    i = cpMap[cpCount].nativeIdx;
780    utext_setNativeIndex(ut, i);
781    for (i=cpCount; i>=0; i-=3) {
782        expectedIndex = cpMap[i].nativeIdx;
783        index = utext_getNativeIndex(ut);
784        TEST_ASSERT(expectedIndex == index);
785        index = UTEXT_GETNATIVEINDEX(ut);
786        TEST_ASSERT(expectedIndex == index);
787        utext_moveIndex32(ut, -3);
788    }
789
790
791    //
792    // Extract
793    //
794    int bufSize = us.length() + 10;
795    UChar *buf = new UChar[bufSize];
796    status = U_ZERO_ERROR;
797    expectedLen = us.length();
798    len = utext_extract(ut, 0, utlen, buf, bufSize, &status);
799    TEST_SUCCESS(status);
800    TEST_ASSERT(len == expectedLen);
801    int compareResult = us.compare(buf, -1);
802    TEST_ASSERT(compareResult == 0);
803
804    status = U_ZERO_ERROR;
805    len = utext_extract(ut, 0, utlen, NULL, 0, &status);
806    if (utlen == 0) {
807        TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING);
808    } else {
809        TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR);
810    }
811    TEST_ASSERT(len == expectedLen);
812
813    status = U_ZERO_ERROR;
814    u_memset(buf, 0x5555, bufSize);
815    len = utext_extract(ut, 0, utlen, buf, 1, &status);
816    if (us.length() == 0) {
817        TEST_SUCCESS(status);
818        TEST_ASSERT(buf[0] == 0);
819    } else {
820        // Buf len == 1, extracting a single 16 bit value.
821        // If the data char is supplementary, it doesn't matter whether the buffer remains unchanged,
822        //   or whether the lead surrogate of the pair is extracted.
823        //   It's a buffer overflow error in either case.
824        TEST_ASSERT(buf[0] == us.charAt(0) ||
825                    (buf[0] == 0x5555 && U_IS_SUPPLEMENTARY(us.char32At(0))));
826        TEST_ASSERT(buf[1] == 0x5555);
827        if (us.length() == 1) {
828            TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING);
829        } else {
830            TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR);
831        }
832    }
833
834    delete []buf;
835}
836
837//
838//  ErrorTest()    Check various error and edge cases.
839//
840void UTextTest::ErrorTest()
841{
842    // Close of an unitialized UText.  Shouldn't blow up.
843    {
844        UText  ut;
845        memset(&ut, 0, sizeof(UText));
846        utext_close(&ut);
847        utext_close(NULL);
848    }
849
850    // Double-close of a UText.  Shouldn't blow up.  UText should still be usable.
851    {
852        UErrorCode status = U_ZERO_ERROR;
853        UText ut = UTEXT_INITIALIZER;
854        UnicodeString s("Hello, World");
855        UText *ut2 = utext_openUnicodeString(&ut, &s, &status);
856        TEST_SUCCESS(status);
857        TEST_ASSERT(ut2 == &ut);
858
859        UText *ut3 = utext_close(&ut);
860        TEST_ASSERT(ut3 == &ut);
861
862        UText *ut4 = utext_close(&ut);
863        TEST_ASSERT(ut4 == &ut);
864
865        utext_openUnicodeString(&ut, &s, &status);
866        TEST_SUCCESS(status);
867        utext_close(&ut);
868    }
869
870    // Re-use of a UText, chaining through each of the types of UText
871    //   (If it doesn't blow up, and doesn't leak, it's probably working fine)
872    {
873        UErrorCode status = U_ZERO_ERROR;
874        UText ut = UTEXT_INITIALIZER;
875        UText  *utp;
876        UnicodeString s1("Hello, World");
877        UChar s2[] = {(UChar)0x41, (UChar)0x42, (UChar)0};
878        const char  *s3 = "\x66\x67\x68";
879
880        utp = utext_openUnicodeString(&ut, &s1, &status);
881        TEST_SUCCESS(status);
882        TEST_ASSERT(utp == &ut);
883
884        utp = utext_openConstUnicodeString(&ut, &s1, &status);
885        TEST_SUCCESS(status);
886        TEST_ASSERT(utp == &ut);
887
888        utp = utext_openUTF8(&ut, s3, -1, &status);
889        TEST_SUCCESS(status);
890        TEST_ASSERT(utp == &ut);
891
892        utp = utext_openUChars(&ut, s2, -1, &status);
893        TEST_SUCCESS(status);
894        TEST_ASSERT(utp == &ut);
895
896        utp = utext_close(&ut);
897        TEST_ASSERT(utp == &ut);
898
899        utp = utext_openUnicodeString(&ut, &s1, &status);
900        TEST_SUCCESS(status);
901        TEST_ASSERT(utp == &ut);
902    }
903
904    // Invalid parameters on open
905    //
906    {
907        UErrorCode status = U_ZERO_ERROR;
908        UText ut = UTEXT_INITIALIZER;
909
910        utext_openUChars(&ut, NULL, 5, &status);
911        TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR);
912
913        status = U_ZERO_ERROR;
914        utext_openUChars(&ut, NULL, -1, &status);
915        TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR);
916
917        status = U_ZERO_ERROR;
918        utext_openUTF8(&ut, NULL, 4, &status);
919        TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR);
920
921        status = U_ZERO_ERROR;
922        utext_openUTF8(&ut, NULL, -1, &status);
923        TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR);
924    }
925
926    //
927    //  UTF-8 with malformed sequences.
928    //    These should come through as the Unicode replacement char, \ufffd
929    //
930    {
931        UErrorCode status = U_ZERO_ERROR;
932        UText *ut = NULL;
933        const char *badUTF8 = "\x41\x81\x42\xf0\x81\x81\x43";
934        UChar32  c;
935
936        ut = utext_openUTF8(NULL, badUTF8, -1, &status);
937        TEST_SUCCESS(status);
938        c = utext_char32At(ut, 1);
939        TEST_ASSERT(c == 0xfffd);
940        c = utext_char32At(ut, 3);
941        TEST_ASSERT(c == 0xfffd);
942        c = utext_char32At(ut, 5);
943        TEST_ASSERT(c == 0xfffd);
944        c = utext_char32At(ut, 6);
945        TEST_ASSERT(c == 0x43);
946
947        UChar buf[10];
948        int n = utext_extract(ut, 0, 9, buf, 10, &status);
949        TEST_SUCCESS(status);
950        TEST_ASSERT(n==5);
951        TEST_ASSERT(buf[1] == 0xfffd);
952        TEST_ASSERT(buf[3] == 0xfffd);
953        TEST_ASSERT(buf[2] == 0x42);
954        utext_close(ut);
955    }
956
957
958    //
959    //  isLengthExpensive - does it make the exptected transitions after
960    //                      getting the length of a nul terminated string?
961    //
962    {
963        UErrorCode status = U_ZERO_ERROR;
964        UnicodeString sa("Hello, this is a string");
965        UBool  isExpensive;
966
967        UChar sb[100];
968        memset(sb, 0x20, sizeof(sb));
969        sb[99] = 0;
970
971        UText *uta = utext_openUnicodeString(NULL, &sa, &status);
972        TEST_SUCCESS(status);
973        isExpensive = utext_isLengthExpensive(uta);
974        TEST_ASSERT(isExpensive == FALSE);
975        utext_close(uta);
976
977        UText *utb = utext_openUChars(NULL, sb, -1, &status);
978        TEST_SUCCESS(status);
979        isExpensive = utext_isLengthExpensive(utb);
980        TEST_ASSERT(isExpensive == TRUE);
981        int64_t  len = utext_nativeLength(utb);
982        TEST_ASSERT(len == 99);
983        isExpensive = utext_isLengthExpensive(utb);
984        TEST_ASSERT(isExpensive == FALSE);
985        utext_close(utb);
986    }
987
988    //
989    // Index to positions not on code point boundaries.
990    //
991    {
992        const char *u8str =         "\xc8\x81\xe1\x82\x83\xf1\x84\x85\x86";
993        int32_t startMap[] =        {   0,  0,  2,  2,  2,  5,  5,  5,  5,  9,  9};
994        int32_t nextMap[]  =        {   2,  2,  5,  5,  5,  9,  9,  9,  9,  9,  9};
995        int32_t prevMap[]  =        {   0,  0,  0,  0,  0,  2,  2,  2,  2,  5,  5};
996        UChar32  c32Map[] =    {0x201, 0x201, 0x1083, 0x1083, 0x1083, 0x044146, 0x044146, 0x044146, 0x044146, -1, -1};
997        UChar32  pr32Map[] =   {    -1,   -1,  0x201,  0x201,  0x201,   0x1083,   0x1083,   0x1083,   0x1083, 0x044146, 0x044146};
998
999        // extractLen is the size, in UChars, of what will be extracted between index and index+1.
1000        //  is zero when both index positions lie within the same code point.
1001        int32_t  exLen[] =          {   0,  1,   0,  0,  1,  0,  0,  0,  2,  0,  0};
1002
1003
1004        UErrorCode status = U_ZERO_ERROR;
1005        UText *ut = utext_openUTF8(NULL, u8str, -1, &status);
1006        TEST_SUCCESS(status);
1007
1008        // Check setIndex
1009        int32_t i;
1010        int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t);
1011        for (i=0; i<startMapLimit; i++) {
1012            utext_setNativeIndex(ut, i);
1013            int64_t cpIndex = utext_getNativeIndex(ut);
1014            TEST_ASSERT(cpIndex == startMap[i]);
1015            cpIndex = UTEXT_GETNATIVEINDEX(ut);
1016            TEST_ASSERT(cpIndex == startMap[i]);
1017        }
1018
1019        // Check char32At
1020        for (i=0; i<startMapLimit; i++) {
1021            UChar32 c32 = utext_char32At(ut, i);
1022            TEST_ASSERT(c32 == c32Map[i]);
1023            int64_t cpIndex = utext_getNativeIndex(ut);
1024            TEST_ASSERT(cpIndex == startMap[i]);
1025        }
1026
1027        // Check utext_next32From
1028        for (i=0; i<startMapLimit; i++) {
1029            UChar32 c32 = utext_next32From(ut, i);
1030            TEST_ASSERT(c32 == c32Map[i]);
1031            int64_t cpIndex = utext_getNativeIndex(ut);
1032            TEST_ASSERT(cpIndex == nextMap[i]);
1033        }
1034
1035        // check utext_previous32From
1036        for (i=0; i<startMapLimit; i++) {
1037            gTestNum++;
1038            UChar32 c32 = utext_previous32From(ut, i);
1039            TEST_ASSERT(c32 == pr32Map[i]);
1040            int64_t cpIndex = utext_getNativeIndex(ut);
1041            TEST_ASSERT(cpIndex == prevMap[i]);
1042        }
1043
1044        // check Extract
1045        //   Extract from i to i+1, which may be zero or one code points,
1046        //     depending on whether the indices straddle a cp boundary.
1047        for (i=0; i<startMapLimit; i++) {
1048            UChar buf[3];
1049            status = U_ZERO_ERROR;
1050            int32_t  extractedLen = utext_extract(ut, i, i+1, buf, 3, &status);
1051            TEST_SUCCESS(status);
1052            TEST_ASSERT(extractedLen == exLen[i]);
1053            if (extractedLen > 0) {
1054                UChar32  c32;
1055                /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */
1056                U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32);
1057                TEST_ASSERT(c32 == c32Map[i]);
1058            }
1059        }
1060
1061        utext_close(ut);
1062    }
1063
1064
1065    {    //  Similar test, with utf16 instead of utf8
1066         //  TODO:  merge the common parts of these tests.
1067
1068        UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000", -1, US_INV);
1069        int32_t startMap[]  ={ 0,     1,   1,    3,     4,  4,     6,  6};
1070        int32_t nextMap[]  = { 1,     3,   3,    4,     6,  6,     6,  6};
1071        int32_t prevMap[]  = { 0,     0,   0,    1,     3,  3,     4,  4};
1072        UChar32  c32Map[] =  {0x1000, 0x11000, 0x11000, 0x2000,  0x22000, 0x22000, -1, -1};
1073        UChar32  pr32Map[] = {    -1, 0x1000,  0x1000,  0x11000, 0x2000,  0x2000,   0x22000,   0x22000};
1074        int32_t  exLen[] =   {   1,  0,   2,  1,  0,  2,  0,  0,};
1075
1076        u16str = u16str.unescape();
1077        UErrorCode status = U_ZERO_ERROR;
1078        UText *ut = utext_openUnicodeString(NULL, &u16str, &status);
1079        TEST_SUCCESS(status);
1080
1081        int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t);
1082        int i;
1083        for (i=0; i<startMapLimit; i++) {
1084            utext_setNativeIndex(ut, i);
1085            int64_t cpIndex = utext_getNativeIndex(ut);
1086            TEST_ASSERT(cpIndex == startMap[i]);
1087        }
1088
1089        // Check char32At
1090        for (i=0; i<startMapLimit; i++) {
1091            UChar32 c32 = utext_char32At(ut, i);
1092            TEST_ASSERT(c32 == c32Map[i]);
1093            int64_t cpIndex = utext_getNativeIndex(ut);
1094            TEST_ASSERT(cpIndex == startMap[i]);
1095        }
1096
1097        // Check utext_next32From
1098        for (i=0; i<startMapLimit; i++) {
1099            UChar32 c32 = utext_next32From(ut, i);
1100            TEST_ASSERT(c32 == c32Map[i]);
1101            int64_t cpIndex = utext_getNativeIndex(ut);
1102            TEST_ASSERT(cpIndex == nextMap[i]);
1103        }
1104
1105        // check utext_previous32From
1106        for (i=0; i<startMapLimit; i++) {
1107            UChar32 c32 = utext_previous32From(ut, i);
1108            TEST_ASSERT(c32 == pr32Map[i]);
1109            int64_t cpIndex = utext_getNativeIndex(ut);
1110            TEST_ASSERT(cpIndex == prevMap[i]);
1111        }
1112
1113        // check Extract
1114        //   Extract from i to i+1, which may be zero or one code points,
1115        //     depending on whether the indices straddle a cp boundary.
1116        for (i=0; i<startMapLimit; i++) {
1117            UChar buf[3];
1118            status = U_ZERO_ERROR;
1119            int32_t  extractedLen = utext_extract(ut, i, i+1, buf, 3, &status);
1120            TEST_SUCCESS(status);
1121            TEST_ASSERT(extractedLen == exLen[i]);
1122            if (extractedLen > 0) {
1123                UChar32  c32;
1124                /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */
1125                U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32);
1126                TEST_ASSERT(c32 == c32Map[i]);
1127            }
1128        }
1129
1130        utext_close(ut);
1131    }
1132
1133    {    //  Similar test, with UText over Replaceable
1134         //  TODO:  merge the common parts of these tests.
1135
1136        UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000", -1, US_INV);
1137        int32_t startMap[]  ={ 0,     1,   1,    3,     4,  4,     6,  6};
1138        int32_t nextMap[]  = { 1,     3,   3,    4,     6,  6,     6,  6};
1139        int32_t prevMap[]  = { 0,     0,   0,    1,     3,  3,     4,  4};
1140        UChar32  c32Map[] =  {0x1000, 0x11000, 0x11000, 0x2000,  0x22000, 0x22000, -1, -1};
1141        UChar32  pr32Map[] = {    -1, 0x1000,  0x1000,  0x11000, 0x2000,  0x2000,   0x22000,   0x22000};
1142        int32_t  exLen[] =   {   1,  0,   2,  1,  0,  2,  0,  0,};
1143
1144        u16str = u16str.unescape();
1145        UErrorCode status = U_ZERO_ERROR;
1146        UText *ut = utext_openReplaceable(NULL, &u16str, &status);
1147        TEST_SUCCESS(status);
1148
1149        int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t);
1150        int i;
1151        for (i=0; i<startMapLimit; i++) {
1152            utext_setNativeIndex(ut, i);
1153            int64_t cpIndex = utext_getNativeIndex(ut);
1154            TEST_ASSERT(cpIndex == startMap[i]);
1155        }
1156
1157        // Check char32At
1158        for (i=0; i<startMapLimit; i++) {
1159            UChar32 c32 = utext_char32At(ut, i);
1160            TEST_ASSERT(c32 == c32Map[i]);
1161            int64_t cpIndex = utext_getNativeIndex(ut);
1162            TEST_ASSERT(cpIndex == startMap[i]);
1163        }
1164
1165        // Check utext_next32From
1166        for (i=0; i<startMapLimit; i++) {
1167            UChar32 c32 = utext_next32From(ut, i);
1168            TEST_ASSERT(c32 == c32Map[i]);
1169            int64_t cpIndex = utext_getNativeIndex(ut);
1170            TEST_ASSERT(cpIndex == nextMap[i]);
1171        }
1172
1173        // check utext_previous32From
1174        for (i=0; i<startMapLimit; i++) {
1175            UChar32 c32 = utext_previous32From(ut, i);
1176            TEST_ASSERT(c32 == pr32Map[i]);
1177            int64_t cpIndex = utext_getNativeIndex(ut);
1178            TEST_ASSERT(cpIndex == prevMap[i]);
1179        }
1180
1181        // check Extract
1182        //   Extract from i to i+1, which may be zero or one code points,
1183        //     depending on whether the indices straddle a cp boundary.
1184        for (i=0; i<startMapLimit; i++) {
1185            UChar buf[3];
1186            status = U_ZERO_ERROR;
1187            int32_t  extractedLen = utext_extract(ut, i, i+1, buf, 3, &status);
1188            TEST_SUCCESS(status);
1189            TEST_ASSERT(extractedLen == exLen[i]);
1190            if (extractedLen > 0) {
1191                UChar32  c32;
1192                /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */
1193                U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32);
1194                TEST_ASSERT(c32 == c32Map[i]);
1195            }
1196        }
1197
1198        utext_close(ut);
1199    }
1200}
1201
1202
1203void UTextTest::FreezeTest() {
1204    // Check isWritable() and freeze() behavior.
1205    //
1206
1207    UnicodeString  ustr("Hello, World.");
1208    const char u8str[] = {char(0x31), (char)0x32, (char)0x33, 0};
1209    const UChar u16str[] = {(UChar)0x31, (UChar)0x32, (UChar)0x44, 0};
1210
1211    UErrorCode status = U_ZERO_ERROR;
1212    UText  *ut        = NULL;
1213    UText  *ut2       = NULL;
1214
1215    ut = utext_openUTF8(ut, u8str, -1, &status);
1216    TEST_SUCCESS(status);
1217    UBool writable = utext_isWritable(ut);
1218    TEST_ASSERT(writable == FALSE);
1219    utext_copy(ut, 1, 2, 0, TRUE, &status);
1220    TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
1221
1222    status = U_ZERO_ERROR;
1223    ut = utext_openUChars(ut, u16str, -1, &status);
1224    TEST_SUCCESS(status);
1225    writable = utext_isWritable(ut);
1226    TEST_ASSERT(writable == FALSE);
1227    utext_copy(ut, 1, 2, 0, TRUE, &status);
1228    TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
1229
1230    status = U_ZERO_ERROR;
1231    ut = utext_openUnicodeString(ut, &ustr, &status);
1232    TEST_SUCCESS(status);
1233    writable = utext_isWritable(ut);
1234    TEST_ASSERT(writable == TRUE);
1235    utext_freeze(ut);
1236    writable = utext_isWritable(ut);
1237    TEST_ASSERT(writable == FALSE);
1238    utext_copy(ut, 1, 2, 0, TRUE, &status);
1239    TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
1240
1241    status = U_ZERO_ERROR;
1242    ut = utext_openUnicodeString(ut, &ustr, &status);
1243    TEST_SUCCESS(status);
1244    ut2 = utext_clone(ut2, ut, FALSE, FALSE, &status);  // clone with readonly = false
1245    TEST_SUCCESS(status);
1246    writable = utext_isWritable(ut2);
1247    TEST_ASSERT(writable == TRUE);
1248    ut2 = utext_clone(ut2, ut, FALSE, TRUE, &status);  // clone with readonly = true
1249    TEST_SUCCESS(status);
1250    writable = utext_isWritable(ut2);
1251    TEST_ASSERT(writable == FALSE);
1252    utext_copy(ut2, 1, 2, 0, TRUE, &status);
1253    TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
1254
1255    status = U_ZERO_ERROR;
1256    ut = utext_openConstUnicodeString(ut, (const UnicodeString *)&ustr, &status);
1257    TEST_SUCCESS(status);
1258    writable = utext_isWritable(ut);
1259    TEST_ASSERT(writable == FALSE);
1260    utext_copy(ut, 1, 2, 0, TRUE, &status);
1261    TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
1262
1263    // Deep Clone of a frozen UText should re-enable writing in the copy.
1264    status = U_ZERO_ERROR;
1265    ut = utext_openUnicodeString(ut, &ustr, &status);
1266    TEST_SUCCESS(status);
1267    utext_freeze(ut);
1268    ut2 = utext_clone(ut2, ut, TRUE, FALSE, &status);   // deep clone
1269    TEST_SUCCESS(status);
1270    writable = utext_isWritable(ut2);
1271    TEST_ASSERT(writable == TRUE);
1272
1273
1274    // Deep clone of a frozen UText, where the base type is intrinsically non-writable,
1275    //  should NOT enable writing in the copy.
1276    status = U_ZERO_ERROR;
1277    ut = utext_openUChars(ut, u16str, -1, &status);
1278    TEST_SUCCESS(status);
1279    utext_freeze(ut);
1280    ut2 = utext_clone(ut2, ut, TRUE, FALSE, &status);   // deep clone
1281    TEST_SUCCESS(status);
1282    writable = utext_isWritable(ut2);
1283    TEST_ASSERT(writable == FALSE);
1284
1285    // cleanup
1286    utext_close(ut);
1287    utext_close(ut2);
1288}
1289
1290
1291//
1292//  Fragmented UText
1293//      A UText type that works with a chunk size of 1.
1294//      Intended to test for edge cases.
1295//      Input comes from a UnicodeString.
1296//
1297//       ut.b    the character.  Put into both halves.
1298//
1299
1300U_CDECL_BEGIN
1301static UBool U_CALLCONV
1302fragTextAccess(UText *ut, int64_t index, UBool forward) {
1303    const UnicodeString *us = (const UnicodeString *)ut->context;
1304    UChar  c;
1305    int32_t length = us->length();
1306    if (forward && index>=0 && index<length) {
1307        c = us->charAt((int32_t)index);
1308        ut->b = c | c<<16;
1309        ut->chunkOffset = 0;
1310        ut->chunkLength = 1;
1311        ut->chunkNativeStart = index;
1312        ut->chunkNativeLimit = index+1;
1313        return true;
1314    }
1315    if (!forward && index>0 && index <=length) {
1316        c = us->charAt((int32_t)index-1);
1317        ut->b = c | c<<16;
1318        ut->chunkOffset = 1;
1319        ut->chunkLength = 1;
1320        ut->chunkNativeStart = index-1;
1321        ut->chunkNativeLimit = index;
1322        return true;
1323    }
1324    ut->b = 0;
1325    ut->chunkOffset = 0;
1326    ut->chunkLength = 0;
1327    if (index <= 0) {
1328        ut->chunkNativeStart = 0;
1329        ut->chunkNativeLimit = 0;
1330    } else {
1331        ut->chunkNativeStart = length;
1332        ut->chunkNativeLimit = length;
1333    }
1334    return false;
1335}
1336
1337// Function table to be used with this fragmented text provider.
1338//   Initialized in the open function.
1339static UTextFuncs  fragmentFuncs;
1340
1341// Clone function for fragmented text provider.
1342//   Didn't really want to provide this, but it's easier to provide it than to keep it
1343//   out of the tests.
1344//
1345UText *
1346cloneFragmentedUnicodeString(UText *dest, const UText *src, UBool deep, UErrorCode *status) {
1347    if (U_FAILURE(*status)) {
1348        return NULL;
1349    }
1350    if (deep) {
1351        *status = U_UNSUPPORTED_ERROR;
1352        return NULL;
1353    }
1354    dest = utext_openUnicodeString(dest, (UnicodeString *)src->context, status);
1355    utext_setNativeIndex(dest, utext_getNativeIndex(src));
1356    return dest;
1357}
1358
1359U_CDECL_END
1360
1361// Open function for the fragmented text provider.
1362UText *
1363openFragmentedUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) {
1364    ut = utext_openUnicodeString(ut, s, status);
1365    if (U_FAILURE(*status)) {
1366        return ut;
1367    }
1368
1369    // Copy of the function table from the stock UnicodeString UText,
1370    //   and replace the entry for the access function.
1371    memcpy(&fragmentFuncs, ut->pFuncs, sizeof(fragmentFuncs));
1372    fragmentFuncs.access = fragTextAccess;
1373    fragmentFuncs.clone  = cloneFragmentedUnicodeString;
1374    ut->pFuncs = &fragmentFuncs;
1375
1376    ut->chunkContents = (UChar *)&ut->b;
1377    ut->pFuncs->access(ut, 0, TRUE);
1378    return ut;
1379}
1380
1381// Regression test for Ticket 5560
1382//   Clone fails to update chunkContentPointer in the cloned copy.
1383//   This is only an issue for UText types that work in a local buffer,
1384//      (UTF-8 wrapper, for example)
1385//
1386//   The test:
1387//     1.  Create an inital UText
1388//     2.  Deep clone it.  Contents should match original.
1389//     3.  Reset original to something different.
1390//     4.  Check that clone contents did not change.
1391//
1392void UTextTest::Ticket5560() {
1393    /* The following two strings are in UTF-8 even on EBCDIC platforms. */
1394    static const char s1[] = {0x41,0x42,0x43,0x44,0x45,0x46,0}; /* "ABCDEF" */
1395    static const char s2[] = {0x31,0x32,0x33,0x34,0x35,0x36,0}; /* "123456" */
1396	UErrorCode status = U_ZERO_ERROR;
1397
1398	UText ut1 = UTEXT_INITIALIZER;
1399	UText ut2 = UTEXT_INITIALIZER;
1400
1401	utext_openUTF8(&ut1, s1, -1, &status);
1402	UChar c = utext_next32(&ut1);
1403	TEST_ASSERT(c == 0x41);  // c == 'A'
1404
1405	utext_clone(&ut2, &ut1, TRUE, FALSE, &status);
1406	TEST_SUCCESS(status);
1407    c = utext_next32(&ut2);
1408	TEST_ASSERT(c == 0x42);  // c == 'B'
1409    c = utext_next32(&ut1);
1410	TEST_ASSERT(c == 0x42);  // c == 'B'
1411
1412	utext_openUTF8(&ut1, s2, -1, &status);
1413	c = utext_next32(&ut1);
1414	TEST_ASSERT(c == 0x31);  // c == '1'
1415    c = utext_next32(&ut2);
1416	TEST_ASSERT(c == 0x43);  // c == 'C'
1417
1418    utext_close(&ut1);
1419    utext_close(&ut2);
1420}
1421
1422
1423// Test for Ticket 6847
1424//
1425void UTextTest::Ticket6847() {
1426    const int STRLEN = 90;
1427    UChar s[STRLEN+1];
1428    u_memset(s, 0x41, STRLEN);
1429    s[STRLEN] = 0;
1430
1431    UErrorCode status = U_ZERO_ERROR;
1432    UText *ut = utext_openUChars(NULL, s, -1, &status);
1433
1434    utext_setNativeIndex(ut, 0);
1435    int32_t count = 0;
1436    UChar32 c = 0;
1437    int64_t nativeIndex = UTEXT_GETNATIVEINDEX(ut);
1438    TEST_ASSERT(nativeIndex == 0);
1439    while ((c = utext_next32(ut)) != U_SENTINEL) {
1440        TEST_ASSERT(c == 0x41);
1441        TEST_ASSERT(count < STRLEN);
1442        if (count >= STRLEN) {
1443            break;
1444        }
1445        count++;
1446        nativeIndex = UTEXT_GETNATIVEINDEX(ut);
1447        TEST_ASSERT(nativeIndex == count);
1448    }
1449    TEST_ASSERT(count == STRLEN);
1450    nativeIndex = UTEXT_GETNATIVEINDEX(ut);
1451    TEST_ASSERT(nativeIndex == STRLEN);
1452    utext_close(ut);
1453}
1454
1455