1// Copyright (c) 2012 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4//
5// The original source code is from:
6// https://code.google.com/p/libphonenumber/source/browse/trunk/cpp/src/phonenumbers/base/memory/scoped_ptr.h?r=621
7
8#ifndef I18N_ADDRESSINPUT_UTIL_SCOPED_PTR_H_
9#define I18N_ADDRESSINPUT_UTIL_SCOPED_PTR_H_
10
11// This is an implementation designed to match the anticipated future TR2
12// implementation of the scoped_ptr class and scoped_ptr_malloc (deprecated).
13
14#include <libaddressinput/util/basictypes.h>
15#include <libaddressinput/util/template_util.h>
16
17#include <algorithm>  // For std::swap().
18#include <cassert>
19#include <cstddef>
20#include <cstdlib>
21
22namespace i18n {
23namespace addressinput {
24
25// Function object which deletes its parameter, which must be a pointer.
26// If C is an array type, invokes 'delete[]' on the parameter; otherwise,
27// invokes 'delete'. The default deleter for scoped_ptr<T>.
28template <class T>
29struct DefaultDeleter {
30  DefaultDeleter() {}
31  template <typename U> DefaultDeleter(const DefaultDeleter<U>& other) {
32    // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor
33    // if U* is implicitly convertible to T* and U is not an array type.
34    //
35    // Correct implementation should use SFINAE to disable this
36    // constructor. However, since there are no other 1-argument constructors,
37    // using a COMPILE_ASSERT() based on is_convertible<> and requiring
38    // complete types is simpler and will cause compile failures for equivalent
39    // misuses.
40    //
41    // Note, the is_convertible<U*, T*> check also ensures that U is not an
42    // array. T is guaranteed to be a non-array, so any U* where U is an array
43    // cannot convert to T*.
44    enum { T_must_be_complete = sizeof(T) };
45    enum { U_must_be_complete = sizeof(U) };
46    COMPILE_ASSERT((is_convertible<U*, T*>::value),
47                   U_ptr_must_implicitly_convert_to_T_ptr);
48  }
49  inline void operator()(T* ptr) const {
50    enum { type_must_be_complete = sizeof(T) };
51    delete ptr;
52  }
53};
54
55// Specialization of DefaultDeleter for array types.
56template <class T>
57struct DefaultDeleter<T[]> {
58  inline void operator()(T* ptr) const {
59    enum { type_must_be_complete = sizeof(T) };
60    delete[] ptr;
61  }
62
63 private:
64  // Disable this operator for any U != T because it is undefined to execute
65  // an array delete when the static type of the array mismatches the dynamic
66  // type.
67  //
68  // References:
69  //   C++98 [expr.delete]p3
70  //   http://cplusplus.github.com/LWG/lwg-defects.html#938
71  template <typename U> void operator()(U* array) const;
72};
73
74template <class T, int n>
75struct DefaultDeleter<T[n]> {
76  // Never allow someone to declare something like scoped_ptr<int[10]>.
77  COMPILE_ASSERT(sizeof(T) == -1, do_not_use_array_with_size_as_type);
78};
79
80// Function object which invokes 'free' on its parameter, which must be
81// a pointer. Can be used to store malloc-allocated pointers in scoped_ptr:
82//
83// scoped_ptr<int, base::FreeDeleter> foo_ptr(
84//     static_cast<int*>(malloc(sizeof(int))));
85struct FreeDeleter {
86  inline void operator()(void* ptr) const {
87    free(ptr);
88  }
89};
90
91// Minimal implementation of the core logic of scoped_ptr, suitable for
92// reuse in both scoped_ptr and its specializations.
93template <class T, class D>
94class scoped_ptr_impl {
95 public:
96  explicit scoped_ptr_impl(T* p) : data_(p) { }
97
98  // Initializer for deleters that have data parameters.
99  scoped_ptr_impl(T* p, const D& d) : data_(p, d) {}
100
101  // Templated constructor that destructively takes the value from another
102  // scoped_ptr_impl.
103  template <typename U, typename V>
104  scoped_ptr_impl(scoped_ptr_impl<U, V>* other)
105      : data_(other->release(), other->get_deleter()) {
106    // We do not support move-only deleters.  We could modify our move
107    // emulation to have base::subtle::move() and base::subtle::forward()
108    // functions that are imperfect emulations of their C++11 equivalents,
109    // but until there's a requirement, just assume deleters are copyable.
110  }
111
112  template <typename U, typename V>
113  void TakeState(scoped_ptr_impl<U, V>* other) {
114    // See comment in templated constructor above regarding lack of support
115    // for move-only deleters.
116    reset(other->release());
117    get_deleter() = other->get_deleter();
118  }
119
120  ~scoped_ptr_impl() {
121    if (data_.ptr != NULL) {
122      // Not using get_deleter() saves one function call in non-optimized
123      // builds.
124      static_cast<D&>(data_)(data_.ptr);
125    }
126  }
127
128  void reset(T* p) {
129    // This is a self-reset, which is no longer allowed: http://crbug.com/162971
130    if (p != NULL && p == data_.ptr)
131      abort();
132
133    // Note that running data_.ptr = p can lead to undefined behavior if
134    // get_deleter()(get()) deletes this. In order to pevent this, reset()
135    // should update the stored pointer before deleting its old value.
136    //
137    // However, changing reset() to use that behavior may cause current code to
138    // break in unexpected ways. If the destruction of the owned object
139    // dereferences the scoped_ptr when it is destroyed by a call to reset(),
140    // then it will incorrectly dispatch calls to |p| rather than the original
141    // value of |data_.ptr|.
142    //
143    // During the transition period, set the stored pointer to NULL while
144    // deleting the object. Eventually, this safety check will be removed to
145    // prevent the scenario initially described from occuring and
146    // http://crbug.com/176091 can be closed.
147    T* old = data_.ptr;
148    data_.ptr = NULL;
149    if (old != NULL)
150      static_cast<D&>(data_)(old);
151    data_.ptr = p;
152  }
153
154  T* get() const { return data_.ptr; }
155
156  D& get_deleter() { return data_; }
157  const D& get_deleter() const { return data_; }
158
159  void swap(scoped_ptr_impl& p2) {
160    // Standard swap idiom: 'using std::swap' ensures that std::swap is
161    // present in the overload set, but we call swap unqualified so that
162    // any more-specific overloads can be used, if available.
163    using std::swap;
164    swap(static_cast<D&>(data_), static_cast<D&>(p2.data_));
165    swap(data_.ptr, p2.data_.ptr);
166  }
167
168  T* release() {
169    T* old_ptr = data_.ptr;
170    data_.ptr = NULL;
171    return old_ptr;
172  }
173
174 private:
175  // Needed to allow type-converting constructor.
176  template <typename U, typename V> friend class scoped_ptr_impl;
177
178  // Use the empty base class optimization to allow us to have a D
179  // member, while avoiding any space overhead for it when D is an
180  // empty class.  See e.g. http://www.cantrip.org/emptyopt.html for a good
181  // discussion of this technique.
182  struct Data : public D {
183    explicit Data(T* ptr_in) : ptr(ptr_in) {}
184    Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
185    T* ptr;
186  };
187
188  Data data_;
189
190  DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl);
191};
192
193// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
194// automatically deletes the pointer it holds (if any).
195// That is, scoped_ptr<T> owns the T object that it points to.
196// Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
197// Also like T*, scoped_ptr<T> is thread-compatible, and once you
198// dereference it, you get the thread safety guarantees of T.
199//
200// The size of scoped_ptr is small. On most compilers, when using the
201// DefaultDeleter, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters will
202// increase the size proportional to whatever state they need to have. See
203// comments inside scoped_ptr_impl<> for details.
204//
205// Current implementation targets having a strict subset of  C++11's
206// unique_ptr<> features. Known deficiencies include not supporting move-only
207// deleteres, function pointers as deleters, and deleters with reference
208// types.
209template <class T, class D = DefaultDeleter<T> >
210class scoped_ptr {
211 public:
212  // The element and deleter types.
213  typedef T element_type;
214  typedef D deleter_type;
215
216  // Constructor.  Defaults to initializing with NULL.
217  scoped_ptr() : impl_(NULL) { }
218
219  // Constructor.  Takes ownership of p.
220  explicit scoped_ptr(element_type* p) : impl_(p) { }
221
222  // Constructor.  Allows initialization of a stateful deleter.
223  scoped_ptr(element_type* p, const D& d) : impl_(p, d) { }
224
225  // Constructor.  Allows construction from a scoped_ptr rvalue for a
226  // convertible type and deleter.
227  //
228  // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this constructor distinct
229  // from the normal move constructor. By C++11 20.7.1.2.1.21, this constructor
230  // has different post-conditions if D is a reference type. Since this
231  // implementation does not support deleters with reference type,
232  // we do not need a separate move constructor allowing us to avoid one
233  // use of SFINAE. You only need to care about this if you modify the
234  // implementation of scoped_ptr.
235  template <typename U, typename V>
236  scoped_ptr(scoped_ptr<U, V> other) : impl_(&other.impl_) {
237    COMPILE_ASSERT(!is_array<U>::value, U_cannot_be_an_array);
238  }
239
240  // operator=.  Allows assignment from a scoped_ptr rvalue for a convertible
241  // type and deleter.
242  //
243  // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
244  // the normal move assignment operator. By C++11 20.7.1.2.3.4, this templated
245  // form has different requirements on for move-only Deleters. Since this
246  // implementation does not support move-only Deleters, we do not need a
247  // separate move assignment operator allowing us to avoid one use of SFINAE.
248  // You only need to care about this if you modify the implementation of
249  // scoped_ptr.
250  template <typename U, typename V>
251  scoped_ptr& operator=(scoped_ptr<U, V> rhs) {
252    COMPILE_ASSERT(!is_array<U>::value, U_cannot_be_an_array);
253    impl_.TakeState(&rhs.impl_);
254    return *this;
255  }
256
257  // Reset.  Deletes the currently owned object, if any.
258  // Then takes ownership of a new object, if given.
259  void reset(element_type* p = NULL) { impl_.reset(p); }
260
261  // Accessors to get the owned object.
262  // operator* and operator-> will assert() if there is no current object.
263  element_type& operator*() const {
264    assert(impl_.get() != NULL);
265    return *impl_.get();
266  }
267  element_type* operator->() const  {
268    assert(impl_.get() != NULL);
269    return impl_.get();
270  }
271  element_type* get() const { return impl_.get(); }
272
273  // Access to the deleter.
274  deleter_type& get_deleter() { return impl_.get_deleter(); }
275  const deleter_type& get_deleter() const { return impl_.get_deleter(); }
276
277  // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
278  // implicitly convertible to a real bool (which is dangerous).
279 private:
280  typedef scoped_ptr_impl<element_type, deleter_type> scoped_ptr::*Testable;
281
282 public:
283  operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
284
285  // Comparison operators.
286  // These return whether two scoped_ptr refer to the same object, not just to
287  // two different but equal objects.
288  bool operator==(const element_type* p) const { return impl_.get() == p; }
289  bool operator!=(const element_type* p) const { return impl_.get() != p; }
290
291  // Swap two scoped pointers.
292  void swap(scoped_ptr& p2) {
293    impl_.swap(p2.impl_);
294  }
295
296  // Release a pointer.
297  // The return value is the current pointer held by this object.
298  // If this object holds a NULL pointer, the return value is NULL.
299  // After this operation, this object will hold a NULL pointer,
300  // and will not own the object any more.
301  element_type* release() {
302    return impl_.release();
303  }
304
305 private:
306  // Needed to reach into |impl_| in the constructor.
307  template <typename U, typename V> friend class scoped_ptr;
308  scoped_ptr_impl<element_type, deleter_type> impl_;
309
310  // Forbid comparison of scoped_ptr types.  If U != T, it totally
311  // doesn't make sense, and if U == T, it still doesn't make sense
312  // because you should never have the same object owned by two different
313  // scoped_ptrs.
314  template <class U> bool operator==(scoped_ptr<U> const& p2) const;
315  template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
316};
317
318template <class T, class D>
319class scoped_ptr<T[], D> {
320 public:
321  // The element and deleter types.
322  typedef T element_type;
323  typedef D deleter_type;
324
325  // Constructor.  Defaults to initializing with NULL.
326  scoped_ptr() : impl_(NULL) { }
327
328  // Constructor. Stores the given array. Note that the argument's type
329  // must exactly match T*. In particular:
330  // - it cannot be a pointer to a type derived from T, because it is
331  //   inherently unsafe in the general case to access an array through a
332  //   pointer whose dynamic type does not match its static type (eg., if
333  //   T and the derived types had different sizes access would be
334  //   incorrectly calculated). Deletion is also always undefined
335  //   (C++98 [expr.delete]p3). If you're doing this, fix your code.
336  // - it cannot be NULL, because NULL is an integral expression, not a
337  //   pointer to T. Use the no-argument version instead of explicitly
338  //   passing NULL.
339  // - it cannot be const-qualified differently from T per unique_ptr spec
340  //   (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
341  //   to work around this may use implicit_cast<const T*>().
342  //   However, because of the first bullet in this comment, users MUST
343  //   NOT use implicit_cast<Base*>() to upcast the static type of the array.
344  explicit scoped_ptr(element_type* array) : impl_(array) { }
345
346  // Reset.  Deletes the currently owned array, if any.
347  // Then takes ownership of a new object, if given.
348  void reset(element_type* array = NULL) { impl_.reset(array); }
349
350  // Accessors to get the owned array.
351  element_type& operator[](size_t i) const {
352    assert(impl_.get() != NULL);
353    return impl_.get()[i];
354  }
355  element_type* get() const { return impl_.get(); }
356
357  // Access to the deleter.
358  deleter_type& get_deleter() { return impl_.get_deleter(); }
359  const deleter_type& get_deleter() const { return impl_.get_deleter(); }
360
361  // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
362  // implicitly convertible to a real bool (which is dangerous).
363 private:
364  typedef scoped_ptr_impl<element_type, deleter_type> scoped_ptr::*Testable;
365
366 public:
367  operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
368
369  // Comparison operators.
370  // These return whether two scoped_ptr refer to the same object, not just to
371  // two different but equal objects.
372  bool operator==(element_type* array) const { return impl_.get() == array; }
373  bool operator!=(element_type* array) const { return impl_.get() != array; }
374
375  // Swap two scoped pointers.
376  void swap(scoped_ptr& p2) {
377    impl_.swap(p2.impl_);
378  }
379
380  // Release a pointer.
381  // The return value is the current pointer held by this object.
382  // If this object holds a NULL pointer, the return value is NULL.
383  // After this operation, this object will hold a NULL pointer,
384  // and will not own the object any more.
385  element_type* release() {
386    return impl_.release();
387  }
388
389 private:
390  // Force element_type to be a complete type.
391  enum { type_must_be_complete = sizeof(element_type) };
392
393  // Actually hold the data.
394  scoped_ptr_impl<element_type, deleter_type> impl_;
395
396  // Disable initialization from any type other than element_type*, by
397  // providing a constructor that matches such an initialization, but is
398  // private and has no definition. This is disabled because it is not safe to
399  // call delete[] on an array whose static type does not match its dynamic
400  // type.
401  template <typename U> explicit scoped_ptr(U* array);
402  explicit scoped_ptr(int disallow_construction_from_null);
403
404  // Disable reset() from any type other than element_type*, for the same
405  // reasons as the constructor above.
406  template <typename U> void reset(U* array);
407  void reset(int disallow_reset_from_null);
408
409  // Forbid comparison of scoped_ptr types.  If U != T, it totally
410  // doesn't make sense, and if U == T, it still doesn't make sense
411  // because you should never have the same object owned by two different
412  // scoped_ptrs.
413  template <class U> bool operator==(scoped_ptr<U> const& p2) const;
414  template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
415};
416
417// Free functions
418template <class T, class D>
419void swap(scoped_ptr<T, D>& p1, scoped_ptr<T, D>& p2) {
420  p1.swap(p2);
421}
422
423template <class T, class D>
424bool operator==(T* p1, const scoped_ptr<T, D>& p2) {
425  return p1 == p2.get();
426}
427
428template <class T, class D>
429bool operator!=(T* p1, const scoped_ptr<T, D>& p2) {
430  return p1 != p2.get();
431}
432
433// A function to convert T* into scoped_ptr<T>
434// Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation
435// for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg))
436template <typename T>
437scoped_ptr<T> make_scoped_ptr(T* ptr) {
438  return scoped_ptr<T>(ptr);
439}
440
441}  // namespace addressinput
442}  // namespace i18n
443
444#endif  // I18N_ADDRESSINPUT_UTIL_SCOPED_PTR_H_
445