1// Copyright (c) 2011 The Chromium Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style license that can be 3// found in the LICENSE file. 4// 5// The original source code is from: 6// http://src.chromium.org/viewvc/chrome/trunk/src/base/md5.cc?revision=94203 7 8// The original file was copied from sqlite, and was in the public domain. 9 10/* 11 * This code implements the MD5 message-digest algorithm. 12 * The algorithm is due to Ron Rivest. This code was 13 * written by Colin Plumb in 1993, no copyright is claimed. 14 * This code is in the public domain; do with it what you wish. 15 * 16 * Equivalent code is available from RSA Data Security, Inc. 17 * This code has been tested against that, and is equivalent, 18 * except that you don't need to include two pages of legalese 19 * with every copy. 20 * 21 * To compute the message digest of a chunk of bytes, declare an 22 * MD5Context structure, pass it to MD5Init, call MD5Update as 23 * needed on buffers full of bytes, and then call MD5Final, which 24 * will fill a supplied 16-byte array with the digest. 25 */ 26 27#include "md5.h" 28 29#include <libaddressinput/util/basictypes.h> 30 31#include <cstddef> 32#include <string> 33#include <string.h> 34 35namespace { 36 37struct Context { 38 uint32 buf[4]; 39 uint32 bits[2]; 40 unsigned char in[64]; 41}; 42 43/* 44 * Note: this code is harmless on little-endian machines. 45 */ 46void byteReverse(unsigned char *buf, unsigned longs) { 47 uint32 t; 48 do { 49 t = (uint32)((unsigned)buf[3]<<8 | buf[2]) << 16 | 50 ((unsigned)buf[1]<<8 | buf[0]); 51 *(uint32 *)buf = t; 52 buf += 4; 53 } while (--longs); 54} 55 56/* The four core functions - F1 is optimized somewhat */ 57 58/* #define F1(x, y, z) (x & y | ~x & z) */ 59#define F1(x, y, z) (z ^ (x & (y ^ z))) 60#define F2(x, y, z) F1(z, x, y) 61#define F3(x, y, z) (x ^ y ^ z) 62#define F4(x, y, z) (y ^ (x | ~z)) 63 64/* This is the central step in the MD5 algorithm. */ 65#define MD5STEP(f, w, x, y, z, data, s) \ 66 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x ) 67 68/* 69 * The core of the MD5 algorithm, this alters an existing MD5 hash to 70 * reflect the addition of 16 longwords of new data. MD5Update blocks 71 * the data and converts bytes into longwords for this routine. 72 */ 73void MD5Transform(uint32 buf[4], const uint32 in[16]) { 74 register uint32 a, b, c, d; 75 76 a = buf[0]; 77 b = buf[1]; 78 c = buf[2]; 79 d = buf[3]; 80 81 MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478, 7); 82 MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12); 83 MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17); 84 MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22); 85 MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf, 7); 86 MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12); 87 MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17); 88 MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22); 89 MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8, 7); 90 MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12); 91 MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17); 92 MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22); 93 MD5STEP(F1, a, b, c, d, in[12]+0x6b901122, 7); 94 MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12); 95 MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17); 96 MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22); 97 98 MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562, 5); 99 MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340, 9); 100 MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14); 101 MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20); 102 MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d, 5); 103 MD5STEP(F2, d, a, b, c, in[10]+0x02441453, 9); 104 MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14); 105 MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20); 106 MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6, 5); 107 MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6, 9); 108 MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14); 109 MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20); 110 MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905, 5); 111 MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8, 9); 112 MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14); 113 MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20); 114 115 MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942, 4); 116 MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11); 117 MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16); 118 MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23); 119 MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44, 4); 120 MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11); 121 MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16); 122 MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23); 123 MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6, 4); 124 MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11); 125 MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16); 126 MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23); 127 MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039, 4); 128 MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11); 129 MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16); 130 MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23); 131 132 MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244, 6); 133 MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10); 134 MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15); 135 MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21); 136 MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3, 6); 137 MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10); 138 MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15); 139 MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21); 140 MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f, 6); 141 MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10); 142 MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15); 143 MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21); 144 MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82, 6); 145 MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10); 146 MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15); 147 MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21); 148 149 buf[0] += a; 150 buf[1] += b; 151 buf[2] += c; 152 buf[3] += d; 153} 154 155} // namespace 156 157namespace i18n { 158namespace addressinput { 159 160/* 161 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious 162 * initialization constants. 163 */ 164void MD5Init(MD5Context* context) { 165 struct Context *ctx = (struct Context *)context; 166 ctx->buf[0] = 0x67452301; 167 ctx->buf[1] = 0xefcdab89; 168 ctx->buf[2] = 0x98badcfe; 169 ctx->buf[3] = 0x10325476; 170 ctx->bits[0] = 0; 171 ctx->bits[1] = 0; 172} 173 174/* 175 * Update context to reflect the concatenation of another buffer full 176 * of bytes. 177 */ 178void MD5Update(MD5Context* context, const std::string& data) { 179 const unsigned char* inbuf = (const unsigned char*)data.data(); 180 size_t len = data.size(); 181 struct Context *ctx = (struct Context *)context; 182 const unsigned char* buf = (const unsigned char*)inbuf; 183 uint32 t; 184 185 /* Update bitcount */ 186 187 t = ctx->bits[0]; 188 if ((ctx->bits[0] = t + ((uint32)len << 3)) < t) 189 ctx->bits[1]++; /* Carry from low to high */ 190 ctx->bits[1] += static_cast<uint32>(len >> 29); 191 192 t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ 193 194 /* Handle any leading odd-sized chunks */ 195 196 if (t) { 197 unsigned char *p = (unsigned char *)ctx->in + t; 198 199 t = 64-t; 200 if (len < t) { 201 memcpy(p, buf, len); 202 return; 203 } 204 memcpy(p, buf, t); 205 byteReverse(ctx->in, 16); 206 MD5Transform(ctx->buf, (uint32 *)ctx->in); 207 buf += t; 208 len -= t; 209 } 210 211 /* Process data in 64-byte chunks */ 212 213 while (len >= 64) { 214 memcpy(ctx->in, buf, 64); 215 byteReverse(ctx->in, 16); 216 MD5Transform(ctx->buf, (uint32 *)ctx->in); 217 buf += 64; 218 len -= 64; 219 } 220 221 /* Handle any remaining bytes of data. */ 222 223 memcpy(ctx->in, buf, len); 224} 225 226/* 227 * Final wrapup - pad to 64-byte boundary with the bit pattern 228 * 1 0* (64-bit count of bits processed, MSB-first) 229 */ 230void MD5Final(MD5Digest* digest, MD5Context* context) { 231 struct Context *ctx = (struct Context *)context; 232 unsigned count; 233 unsigned char *p; 234 235 /* Compute number of bytes mod 64 */ 236 count = (ctx->bits[0] >> 3) & 0x3F; 237 238 /* Set the first char of padding to 0x80. This is safe since there is 239 always at least one byte free */ 240 p = ctx->in + count; 241 *p++ = 0x80; 242 243 /* Bytes of padding needed to make 64 bytes */ 244 count = 64 - 1 - count; 245 246 /* Pad out to 56 mod 64 */ 247 if (count < 8) { 248 /* Two lots of padding: Pad the first block to 64 bytes */ 249 memset(p, 0, count); 250 byteReverse(ctx->in, 16); 251 MD5Transform(ctx->buf, (uint32 *)ctx->in); 252 253 /* Now fill the next block with 56 bytes */ 254 memset(ctx->in, 0, 56); 255 } else { 256 /* Pad block to 56 bytes */ 257 memset(p, 0, count-8); 258 } 259 byteReverse(ctx->in, 14); 260 261 /* Append length in bits and transform */ 262 ((uint32 *)ctx->in)[ 14 ] = ctx->bits[0]; 263 ((uint32 *)ctx->in)[ 15 ] = ctx->bits[1]; 264 265 MD5Transform(ctx->buf, (uint32 *)ctx->in); 266 byteReverse((unsigned char *)ctx->buf, 4); 267 memcpy(digest->a, ctx->buf, 16); 268 memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */ 269} 270 271std::string MD5DigestToBase16(const MD5Digest& digest) { 272 static char const zEncode[] = "0123456789abcdef"; 273 274 std::string ret; 275 ret.resize(32); 276 277 int j = 0; 278 for (int i = 0; i < 16; i ++) { 279 int a = digest.a[i]; 280 ret[j++] = zEncode[(a>>4)&0xf]; 281 ret[j++] = zEncode[a & 0xf]; 282 } 283 return ret; 284} 285 286void MD5Sum(const void* data, size_t length, MD5Digest* digest) { 287 MD5Context ctx; 288 MD5Init(&ctx); 289 MD5Update(&ctx, 290 std::string(reinterpret_cast<const char*>(data), length)); 291 MD5Final(digest, &ctx); 292} 293 294std::string MD5String(const std::string& str) { 295 MD5Digest digest; 296 MD5Sum(str.data(), str.length(), &digest); 297 return MD5DigestToBase16(digest); 298} 299 300} // namespace addressinput 301} // namespace i18n 302