1/*	$OpenBSD: queue.h,v 1.16 2000/09/07 19:47:59 art Exp $	*/
2/*	$NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $	*/
3
4/*
5 * Copyright (c) 1991, 1993
6 *	The Regents of the University of California.  All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	@(#)queue.h	8.5 (Berkeley) 8/20/94
33 */
34
35#ifndef	_SYS_QUEUE_H_
36#define	_SYS_QUEUE_H_
37
38/*
39 * This file defines five types of data structures: singly-linked lists,
40 * lists, simple queues, tail queues, and circular queues.
41 *
42 *
43 * A singly-linked list is headed by a single forward pointer. The elements
44 * are singly linked for minimum space and pointer manipulation overhead at
45 * the expense of O(n) removal for arbitrary elements. New elements can be
46 * added to the list after an existing element or at the head of the list.
47 * Elements being removed from the head of the list should use the explicit
48 * macro for this purpose for optimum efficiency. A singly-linked list may
49 * only be traversed in the forward direction.  Singly-linked lists are ideal
50 * for applications with large datasets and few or no removals or for
51 * implementing a LIFO queue.
52 *
53 * A list is headed by a single forward pointer (or an array of forward
54 * pointers for a hash table header). The elements are doubly linked
55 * so that an arbitrary element can be removed without a need to
56 * traverse the list. New elements can be added to the list before
57 * or after an existing element or at the head of the list. A list
58 * may only be traversed in the forward direction.
59 *
60 * A simple queue is headed by a pair of pointers, one the head of the
61 * list and the other to the tail of the list. The elements are singly
62 * linked to save space, so elements can only be removed from the
63 * head of the list. New elements can be added to the list before or after
64 * an existing element, at the head of the list, or at the end of the
65 * list. A simple queue may only be traversed in the forward direction.
66 *
67 * A tail queue is headed by a pair of pointers, one to the head of the
68 * list and the other to the tail of the list. The elements are doubly
69 * linked so that an arbitrary element can be removed without a need to
70 * traverse the list. New elements can be added to the list before or
71 * after an existing element, at the head of the list, or at the end of
72 * the list. A tail queue may be traversed in either direction.
73 *
74 * A circle queue is headed by a pair of pointers, one to the head of the
75 * list and the other to the tail of the list. The elements are doubly
76 * linked so that an arbitrary element can be removed without a need to
77 * traverse the list. New elements can be added to the list before or after
78 * an existing element, at the head of the list, or at the end of the list.
79 * A circle queue may be traversed in either direction, but has a more
80 * complex end of list detection.
81 *
82 * For details on the use of these macros, see the queue(3) manual page.
83 */
84
85/*
86 * Singly-linked List definitions.
87 */
88#define SLIST_HEAD(name, type)						\
89struct name {								\
90	struct type *slh_first;	/* first element */			\
91}
92
93#define	SLIST_HEAD_INITIALIZER(head)					\
94	{ NULL }
95
96#ifndef WIN32
97#define SLIST_ENTRY(type)						\
98struct {								\
99	struct type *sle_next;	/* next element */			\
100}
101#endif
102
103/*
104 * Singly-linked List access methods.
105 */
106#define	SLIST_FIRST(head)	((head)->slh_first)
107#define	SLIST_END(head)		NULL
108#define	SLIST_EMPTY(head)	(SLIST_FIRST(head) == SLIST_END(head))
109#define	SLIST_NEXT(elm, field)	((elm)->field.sle_next)
110
111#define	SLIST_FOREACH(var, head, field)					\
112	for((var) = SLIST_FIRST(head);					\
113	    (var) != SLIST_END(head);					\
114	    (var) = SLIST_NEXT(var, field))
115
116/*
117 * Singly-linked List functions.
118 */
119#define	SLIST_INIT(head) {						\
120	SLIST_FIRST(head) = SLIST_END(head);				\
121}
122
123#define	SLIST_INSERT_AFTER(slistelm, elm, field) do {			\
124	(elm)->field.sle_next = (slistelm)->field.sle_next;		\
125	(slistelm)->field.sle_next = (elm);				\
126} while (0)
127
128#define	SLIST_INSERT_HEAD(head, elm, field) do {			\
129	(elm)->field.sle_next = (head)->slh_first;			\
130	(head)->slh_first = (elm);					\
131} while (0)
132
133#define	SLIST_REMOVE_HEAD(head, field) do {				\
134	(head)->slh_first = (head)->slh_first->field.sle_next;		\
135} while (0)
136
137/*
138 * List definitions.
139 */
140#define LIST_HEAD(name, type)						\
141struct name {								\
142	struct type *lh_first;	/* first element */			\
143}
144
145#define LIST_HEAD_INITIALIZER(head)					\
146	{ NULL }
147
148#define LIST_ENTRY(type)						\
149struct {								\
150	struct type *le_next;	/* next element */			\
151	struct type **le_prev;	/* address of previous next element */	\
152}
153
154/*
155 * List access methods
156 */
157#define	LIST_FIRST(head)		((head)->lh_first)
158#define	LIST_END(head)			NULL
159#define	LIST_EMPTY(head)		(LIST_FIRST(head) == LIST_END(head))
160#define	LIST_NEXT(elm, field)		((elm)->field.le_next)
161
162#define LIST_FOREACH(var, head, field)					\
163	for((var) = LIST_FIRST(head);					\
164	    (var)!= LIST_END(head);					\
165	    (var) = LIST_NEXT(var, field))
166
167/*
168 * List functions.
169 */
170#define	LIST_INIT(head) do {						\
171	LIST_FIRST(head) = LIST_END(head);				\
172} while (0)
173
174#define LIST_INSERT_AFTER(listelm, elm, field) do {			\
175	if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)	\
176		(listelm)->field.le_next->field.le_prev =		\
177		    &(elm)->field.le_next;				\
178	(listelm)->field.le_next = (elm);				\
179	(elm)->field.le_prev = &(listelm)->field.le_next;		\
180} while (0)
181
182#define	LIST_INSERT_BEFORE(listelm, elm, field) do {			\
183	(elm)->field.le_prev = (listelm)->field.le_prev;		\
184	(elm)->field.le_next = (listelm);				\
185	*(listelm)->field.le_prev = (elm);				\
186	(listelm)->field.le_prev = &(elm)->field.le_next;		\
187} while (0)
188
189#define LIST_INSERT_HEAD(head, elm, field) do {				\
190	if (((elm)->field.le_next = (head)->lh_first) != NULL)		\
191		(head)->lh_first->field.le_prev = &(elm)->field.le_next;\
192	(head)->lh_first = (elm);					\
193	(elm)->field.le_prev = &(head)->lh_first;			\
194} while (0)
195
196#define LIST_REMOVE(elm, field) do {					\
197	if ((elm)->field.le_next != NULL)				\
198		(elm)->field.le_next->field.le_prev =			\
199		    (elm)->field.le_prev;				\
200	*(elm)->field.le_prev = (elm)->field.le_next;			\
201} while (0)
202
203#define LIST_REPLACE(elm, elm2, field) do {				\
204	if (((elm2)->field.le_next = (elm)->field.le_next) != NULL)	\
205		(elm2)->field.le_next->field.le_prev =			\
206		    &(elm2)->field.le_next;				\
207	(elm2)->field.le_prev = (elm)->field.le_prev;			\
208	*(elm2)->field.le_prev = (elm2);				\
209} while (0)
210
211/*
212 * Simple queue definitions.
213 */
214#define SIMPLEQ_HEAD(name, type)					\
215struct name {								\
216	struct type *sqh_first;	/* first element */			\
217	struct type **sqh_last;	/* addr of last next element */		\
218}
219
220#define SIMPLEQ_HEAD_INITIALIZER(head)					\
221	{ NULL, &(head).sqh_first }
222
223#define SIMPLEQ_ENTRY(type)						\
224struct {								\
225	struct type *sqe_next;	/* next element */			\
226}
227
228/*
229 * Simple queue access methods.
230 */
231#define	SIMPLEQ_FIRST(head)	    ((head)->sqh_first)
232#define	SIMPLEQ_END(head)	    NULL
233#define	SIMPLEQ_EMPTY(head)	    (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
234#define	SIMPLEQ_NEXT(elm, field)    ((elm)->field.sqe_next)
235
236#define SIMPLEQ_FOREACH(var, head, field)				\
237	for((var) = SIMPLEQ_FIRST(head);				\
238	    (var) != SIMPLEQ_END(head);					\
239	    (var) = SIMPLEQ_NEXT(var, field))
240
241/*
242 * Simple queue functions.
243 */
244#define	SIMPLEQ_INIT(head) do {						\
245	(head)->sqh_first = NULL;					\
246	(head)->sqh_last = &(head)->sqh_first;				\
247} while (0)
248
249#define SIMPLEQ_INSERT_HEAD(head, elm, field) do {			\
250	if (((elm)->field.sqe_next = (head)->sqh_first) == NULL)	\
251		(head)->sqh_last = &(elm)->field.sqe_next;		\
252	(head)->sqh_first = (elm);					\
253} while (0)
254
255#define SIMPLEQ_INSERT_TAIL(head, elm, field) do {			\
256	(elm)->field.sqe_next = NULL;					\
257	*(head)->sqh_last = (elm);					\
258	(head)->sqh_last = &(elm)->field.sqe_next;			\
259} while (0)
260
261#define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
262	if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
263		(head)->sqh_last = &(elm)->field.sqe_next;		\
264	(listelm)->field.sqe_next = (elm);				\
265} while (0)
266
267#define SIMPLEQ_REMOVE_HEAD(head, elm, field) do {			\
268	if (((head)->sqh_first = (elm)->field.sqe_next) == NULL)	\
269		(head)->sqh_last = &(head)->sqh_first;			\
270} while (0)
271
272/*
273 * Tail queue definitions.
274 */
275#define TAILQ_HEAD(name, type)						\
276struct name {								\
277	struct type *tqh_first;	/* first element */			\
278	struct type **tqh_last;	/* addr of last next element */		\
279}
280
281#define TAILQ_HEAD_INITIALIZER(head)					\
282	{ NULL, &(head).tqh_first }
283
284#define TAILQ_ENTRY(type)						\
285struct {								\
286	struct type *tqe_next;	/* next element */			\
287	struct type **tqe_prev;	/* address of previous next element */	\
288}
289
290/*
291 * tail queue access methods
292 */
293#define	TAILQ_FIRST(head)		((head)->tqh_first)
294#define	TAILQ_END(head)			NULL
295#define	TAILQ_NEXT(elm, field)		((elm)->field.tqe_next)
296#define TAILQ_LAST(head, headname)					\
297	(*(((struct headname *)((head)->tqh_last))->tqh_last))
298/* XXX */
299#define TAILQ_PREV(elm, headname, field)				\
300	(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
301#define	TAILQ_EMPTY(head)						\
302	(TAILQ_FIRST(head) == TAILQ_END(head))
303
304#define TAILQ_FOREACH(var, head, field)					\
305	for((var) = TAILQ_FIRST(head);					\
306	    (var) != TAILQ_END(head);					\
307	    (var) = TAILQ_NEXT(var, field))
308
309#define TAILQ_FOREACH_REVERSE(var, head, field, headname)		\
310	for((var) = TAILQ_LAST(head, headname);				\
311	    (var) != TAILQ_END(head);					\
312	    (var) = TAILQ_PREV(var, headname, field))
313
314/*
315 * Tail queue functions.
316 */
317#define	TAILQ_INIT(head) do {						\
318	(head)->tqh_first = NULL;					\
319	(head)->tqh_last = &(head)->tqh_first;				\
320} while (0)
321
322#define TAILQ_INSERT_HEAD(head, elm, field) do {			\
323	if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)	\
324		(head)->tqh_first->field.tqe_prev =			\
325		    &(elm)->field.tqe_next;				\
326	else								\
327		(head)->tqh_last = &(elm)->field.tqe_next;		\
328	(head)->tqh_first = (elm);					\
329	(elm)->field.tqe_prev = &(head)->tqh_first;			\
330} while (0)
331
332#define TAILQ_INSERT_TAIL(head, elm, field) do {			\
333	(elm)->field.tqe_next = NULL;					\
334	(elm)->field.tqe_prev = (head)->tqh_last;			\
335	*(head)->tqh_last = (elm);					\
336	(head)->tqh_last = &(elm)->field.tqe_next;			\
337} while (0)
338
339#define TAILQ_INSERT_AFTER(head, listelm, elm, field) do {		\
340	if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
341		(elm)->field.tqe_next->field.tqe_prev =			\
342		    &(elm)->field.tqe_next;				\
343	else								\
344		(head)->tqh_last = &(elm)->field.tqe_next;		\
345	(listelm)->field.tqe_next = (elm);				\
346	(elm)->field.tqe_prev = &(listelm)->field.tqe_next;		\
347} while (0)
348
349#define	TAILQ_INSERT_BEFORE(listelm, elm, field) do {			\
350	(elm)->field.tqe_prev = (listelm)->field.tqe_prev;		\
351	(elm)->field.tqe_next = (listelm);				\
352	*(listelm)->field.tqe_prev = (elm);				\
353	(listelm)->field.tqe_prev = &(elm)->field.tqe_next;		\
354} while (0)
355
356#define TAILQ_REMOVE(head, elm, field) do {				\
357	if (((elm)->field.tqe_next) != NULL)				\
358		(elm)->field.tqe_next->field.tqe_prev =			\
359		    (elm)->field.tqe_prev;				\
360	else								\
361		(head)->tqh_last = (elm)->field.tqe_prev;		\
362	*(elm)->field.tqe_prev = (elm)->field.tqe_next;			\
363} while (0)
364
365#define TAILQ_REPLACE(head, elm, elm2, field) do {			\
366	if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL)	\
367		(elm2)->field.tqe_next->field.tqe_prev =		\
368		    &(elm2)->field.tqe_next;				\
369	else								\
370		(head)->tqh_last = &(elm2)->field.tqe_next;		\
371	(elm2)->field.tqe_prev = (elm)->field.tqe_prev;			\
372	*(elm2)->field.tqe_prev = (elm2);				\
373} while (0)
374
375/*
376 * Circular queue definitions.
377 */
378#define CIRCLEQ_HEAD(name, type)					\
379struct name {								\
380	struct type *cqh_first;		/* first element */		\
381	struct type *cqh_last;		/* last element */		\
382}
383
384#define CIRCLEQ_HEAD_INITIALIZER(head)					\
385	{ CIRCLEQ_END(&head), CIRCLEQ_END(&head) }
386
387#define CIRCLEQ_ENTRY(type)						\
388struct {								\
389	struct type *cqe_next;		/* next element */		\
390	struct type *cqe_prev;		/* previous element */		\
391}
392
393/*
394 * Circular queue access methods
395 */
396#define	CIRCLEQ_FIRST(head)		((head)->cqh_first)
397#define	CIRCLEQ_LAST(head)		((head)->cqh_last)
398#define	CIRCLEQ_END(head)		((void *)(head))
399#define	CIRCLEQ_NEXT(elm, field)	((elm)->field.cqe_next)
400#define	CIRCLEQ_PREV(elm, field)	((elm)->field.cqe_prev)
401#define	CIRCLEQ_EMPTY(head)						\
402	(CIRCLEQ_FIRST(head) == CIRCLEQ_END(head))
403
404#define CIRCLEQ_FOREACH(var, head, field)				\
405	for((var) = CIRCLEQ_FIRST(head);				\
406	    (var) != CIRCLEQ_END(head);					\
407	    (var) = CIRCLEQ_NEXT(var, field))
408
409#define CIRCLEQ_FOREACH_REVERSE(var, head, field)			\
410	for((var) = CIRCLEQ_LAST(head);					\
411	    (var) != CIRCLEQ_END(head);					\
412	    (var) = CIRCLEQ_PREV(var, field))
413
414/*
415 * Circular queue functions.
416 */
417#define	CIRCLEQ_INIT(head) do {						\
418	(head)->cqh_first = CIRCLEQ_END(head);				\
419	(head)->cqh_last = CIRCLEQ_END(head);				\
420} while (0)
421
422#define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
423	(elm)->field.cqe_next = (listelm)->field.cqe_next;		\
424	(elm)->field.cqe_prev = (listelm);				\
425	if ((listelm)->field.cqe_next == CIRCLEQ_END(head))		\
426		(head)->cqh_last = (elm);				\
427	else								\
428		(listelm)->field.cqe_next->field.cqe_prev = (elm);	\
429	(listelm)->field.cqe_next = (elm);				\
430} while (0)
431
432#define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do {		\
433	(elm)->field.cqe_next = (listelm);				\
434	(elm)->field.cqe_prev = (listelm)->field.cqe_prev;		\
435	if ((listelm)->field.cqe_prev == CIRCLEQ_END(head))		\
436		(head)->cqh_first = (elm);				\
437	else								\
438		(listelm)->field.cqe_prev->field.cqe_next = (elm);	\
439	(listelm)->field.cqe_prev = (elm);				\
440} while (0)
441
442#define CIRCLEQ_INSERT_HEAD(head, elm, field) do {			\
443	(elm)->field.cqe_next = (head)->cqh_first;			\
444	(elm)->field.cqe_prev = CIRCLEQ_END(head);			\
445	if ((head)->cqh_last == CIRCLEQ_END(head))			\
446		(head)->cqh_last = (elm);				\
447	else								\
448		(head)->cqh_first->field.cqe_prev = (elm);		\
449	(head)->cqh_first = (elm);					\
450} while (0)
451
452#define CIRCLEQ_INSERT_TAIL(head, elm, field) do {			\
453	(elm)->field.cqe_next = CIRCLEQ_END(head);			\
454	(elm)->field.cqe_prev = (head)->cqh_last;			\
455	if ((head)->cqh_first == CIRCLEQ_END(head))			\
456		(head)->cqh_first = (elm);				\
457	else								\
458		(head)->cqh_last->field.cqe_next = (elm);		\
459	(head)->cqh_last = (elm);					\
460} while (0)
461
462#define	CIRCLEQ_REMOVE(head, elm, field) do {				\
463	if ((elm)->field.cqe_next == CIRCLEQ_END(head))			\
464		(head)->cqh_last = (elm)->field.cqe_prev;		\
465	else								\
466		(elm)->field.cqe_next->field.cqe_prev =			\
467		    (elm)->field.cqe_prev;				\
468	if ((elm)->field.cqe_prev == CIRCLEQ_END(head))			\
469		(head)->cqh_first = (elm)->field.cqe_next;		\
470	else								\
471		(elm)->field.cqe_prev->field.cqe_next =			\
472		    (elm)->field.cqe_next;				\
473} while (0)
474
475#define CIRCLEQ_REPLACE(head, elm, elm2, field) do {			\
476	if (((elm2)->field.cqe_next = (elm)->field.cqe_next) ==		\
477	    CIRCLEQ_END(head))						\
478		(head).cqh_last = (elm2);				\
479	else								\
480		(elm2)->field.cqe_next->field.cqe_prev = (elm2);	\
481	if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) ==		\
482	    CIRCLEQ_END(head))						\
483		(head).cqh_first = (elm2);				\
484	else								\
485		(elm2)->field.cqe_prev->field.cqe_next = (elm2);	\
486} while (0)
487
488#endif	/* !_SYS_QUEUE_H_ */
489